Skip to main content Accessibility help
×
Home

A VOEvent-based automatic trigger system for the Murchison Widefield Array

  • P. J. Hancock (a1), G. E. Anderson (a1), A. Williams (a2), M. Sokolowski (a1), S. E. Tremblay (a1) (a3), A. Rowlinson (a4) (a5), B. Crosse (a1), B. W. Meyers (a1) (a3) (a6), C. R. Lynch (a1) (a7), A. Zic (a7), A. P. Beardsley (a8), D. Emrich (a2), T. M. O. Franzen (a1), L. Horsley (a2), M. Johnston-Hollitt (a1), D. L. Kaplan (a9), D. Kenney (a1), M. F. Morales (a10), D. Pallot (a11), K. Steele (a2), S. J. Tingay (a1), C. M. Trott (a1) (a3), M. Walker (a2), R. B. Wayth (a1) (a3) and C. Wu (a11)...

Abstract

The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.

Copyright

Corresponding author

Author for correspondence: P. J. Hancock, E-mail: Paul.Hancock@Curtin.edu.au

References

Hide All
Abbott, B. P., et al. 2017a, ApJ, 848, L12
Abbott, B. P., et al. 2017b, ApJ, 848, L13
Abdo, A. A., et al. 2010, ApJ, 708, 1254
Anderson, G. E., et al. 2014, MNRAS, 440, 2059
Anderson, G. E., et al. 2018a, MNRAS, 473, 1512
Anderson, G. E., et al. 2018b, GRB Coordinates Network, 23467, 1
Anderson, M. M., et al. 2018c, ApJ, 864, 22
Andreoni, I., et al. 2017, PASA, 34, e069
Argiroffi, C., et al. 2019, NA, p. 328
Collaboration, Astropy et al. 2018, 156, 123
Bailes, M., et al. 2017, PASA, 34, e045
Bannister, K. W., Murphy, T., Gaensler, B. M., & Reynolds, J. E. 2012, ApJ, 757, 38
Bannister, K., et al. 2017, ApJL, 841, L12
Bansal, K., Taylor, G. B., Stovall, K., & Dowell, J. 2019, ApJ, 875, 146
Barthelmy, S. D., et al. 2005, SSR, 120, 143
Beardsley, A. P., et al. 2019, Science with the Murchison Widefield Array: Phase I Results and Phase II Opportunities
Bowman, J. D., et al. 2013, PASA, 30, e031
Boyle, P. C., & CHIME/FRB Collaboration 2018, ATEL, 11901, 1
Burke-Spolaor, S., et al. 2011, MNRAS, 416, 2465
Callister, T. A., et al. 2019, ApJ, 877, L39
Chawla, P., et al. 2017, ApJ, 844, 140
Coenen, T., et al. 2014, AA, 570, A60
Connaughton, V., et al. 2015, AJSS, 216, 32
Crosley, M. K., & Osten, R. A. 2018, ApJ, 862, 113
Dessenne, C. A. C., et al. 1996, MNRAS, 281, 977
Ellingson, S. W., Craig, J., Dowell, J., Taylor, G. B., & Helmboldt, J. F. 2013, arXiv e-prints, p. arXiv:1307.0697
Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137
Fender, R., Stewart, A., Macquart, J. P., Donnarumma, I., Murphy, T., Deller, A., Paragi, Z., & Chatterjee, S. 2015a, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), p. 51
Fender, R. P., Anderson, G. E., Osten, R., Staley, T., Rumsey, C., Grainge, K., & Saunders, R. D. E. 2015b, MNRAS, 446, L66
Fender, R. P., & Bell, M. E. 2011, BASI, 39, 315
Frail, D. A., Kulkarni, S. R., Nicastro, L., Feroci, M., & Taylor, G. B. 1997, Nature, 389, 261
Galama, T. J., et al. 1999, Nature, 398, 394
Gehrels, N., et al. 2004, ApJ, 611, 1005
Geyer, M., et al. 2017, MNRAS, 470, 2659
Gopalswamy, N. 2006, AGU, Geophysical Monograph Series, Washington DC, 165, 207
Green, D. A., et al. 1995, ASS, 231, 281
Hansen, B. M. S., & Lyutikov, M. 2001, MNRAS, 322, 695
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1
Hermsen, W., et al. 2013, Science, 339, 436
Hermsen, W., et al. 2018, MNRAS, 480, 3655
Hotan, A. W., et al. 2014, PASA, 31, e041
Hurley-Walker, N., et al. 2017, MNRAS, 464, 1146
Inoue, S. 2004, MNRAS, 348, 999
James, C. W., Anderson, G. E., Wen, L., Bosveld, J., Chu, Q., Kovalam, M., Slaven-Blair, T. J., & Williams, A. 2019a, MNRAS Letters, slz129
James, C. W., et al. 2019b, PASA, 36, e009
Jankowski, F., van Straten, W., Keane, E. F., Bailes, M., Barr, E. D., Johnston, S., & Kerr, M. 2018, MNRAS, 473, 4436
Johnston, S., et al. 2008, EA, 22, 151
Jones, E., et al. 2001, SciPy: Open Source Scientific Tools for Python
Kaplan, D. L., et al. 2015, ApJL, 814, 6
Kaplan, D. L., Murphy, T., Rowlinson, A., Croft, S. D., Wayth, R. B., & Trott, C. M. 2016, PASA, 33, id.e050 7 pp. 33
Kirsten, F., Bhat, N. D. R., Meyers, B. W., Macquart, J.-P., Tremblay, S. E., & Ord, S. M., 2019, ApJ, 874, 179
Kouveliotou, C., Meegan, C. A., Fishman, G. J., Bhat, N. P., Briggs, M. S., Koshut, T. M., Paciesas, W. S., & Pendleton, G. N. 1993, ApJ, 413, L101
Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A., & Lorimer, D. R. 2006, Science, 312, 549
Krishnakumar, M. A., Joshi, B. C., & Manoharan, P. K. 2017, ApJ, 846, 104
Lasky, P. D., Haskell, B., Ravi, V., Howell, E. J., & Coward, D. M. 2014, PRD, 89, 047302
Lattimer, J. M. 2012, ARNPS, 62, 485
Lorimer, D. R., Lyne, A. G., McLaughlin, M. A., Kramer, M., Pavlov, G. G., & Chang, C. 2012, ApJ, 758, 141
Lovell, B. 1964, Nature, 203, 1213
Lynch, C. R., Lenc, E., Kaplan, D. L., Murphy, T., & Anderson, G. E. 2017, ApJ, 836, L30
Lyutikov, M. 2013, ApJ, 768, 63
Meegan, C., et al. 2009, AJ, 702, 791
Metzger, B. D., Berger, E., & Margalit, B. 2017, ApJ, 841, 14
Meyers, B. W., et al. 2017, ApJ, 851, 20
Meyers, B. W., et al. 2018, preprint, 1811, arXiv:1811.01142
Nelson, G. J., Robinson, R. D., Slee, O. B., Fielding, G., Page, A. A., & Walker, W. S. G. 1979, MNRAS, 187, 405
Obenberger, K. S., et al. 2014, ApJ, 785, 27
Oronsaye, S. I., et al. 2015, ApJ, 809, 51
Osten, R. A., Hawley, S. L., Allred, J. C., Johns-Krull, C. M., & Roark, C. 2005, ApJ, 621, 398
Osten, R. A., et al. 2010, ApJ, 721, 785
Osten, R. A., et al. 2016, ApJ, 832, 174
Palaniswamy, D., Wayth, R. B., Trott, C. M., McCallum, J. N., Tingay, S. J., & Reynolds, C. 2014, ApJ, 790, 63
Prasad, P., Wijnholds, S. J., Huizinga, F., & Wijers, R. A. M. J. 2014, A&A, 568, A48
Prasad, P., et al. 2016, JAI, 5, 1641008
Rees, M. J. 1988, Nature, 333, 523
Rowlinson, A., Anderson, G. E. 2019, arXiv e-prints, p. arXiv:1905.02509
Rowlinson, A., O’Brien, P. T., Metzger, B. D., Tanvir, N. R., & Levan, A. J. 2013, MNRAS, 430, 1061
Rowlinson, A., et al. 2016, MNRAS, 458
Seaman, R., et al. 2011, IVOA Recommendation, 11 July 201, p. 711
Shannon, R. M., et al. 2018, Nature, 562, 386
Slee, O. B. 1963, Nature, 199, 991
Soderberg, A. M., et al. 2008, Nature, 453, 469
Sokolowski, M., et al. 2017, PASA, 34, e062
Sokolowski, M., et al. 2018, ApJL, 867, L12
Spangler, S. R., Shawhan, S. D., & Rankin, J. M. 1974, ApJ, 190, L129
Staley, T. D. 2014, Astrophysics Source Code Library, record ascl:1411.003
Staley, T. D., & Fender, R. 2016, arXiv e-prints, p. arXiv:1606.03735
Staley, T. D., et al. 2013, MNRAS, 428, 3114
Swinbank, J. J. 2014, A&C, 7, 12
Taylor, G. B., et al. 2012, JAI, 1, 1250004
Taylor, J. H., & Cordes, J. M. 1993, ApJ, 411, 674
The Astropy Collaboration et al. 2013, A&A, 558, 9
Thornton, D., et al. 2013, Science, 341, 53
Tingay, S. J., et al. 2013, PASA, 30, 21
Tingay, S. J., et al. 2015, AJ, 150, 1
Totani, T. 2013, PASJ, 65, L12
Tremblay, S. E., et al. 2015, PASA, 32, e005
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CS&E, 13, 22
Venkatraman Krishnan, V. et al. 2019, arXiv e-prints, p. arXiv:1905.02415
Vestrand, W. T., et al. 2014, Science, 343, 38
Wayth, R. B., et al. 2018, PASA, 35
Webb, D. F., & Howard, T. A. 2012, LRSP, 9, 3
Williams, P. K. G., & Berger, E. 2016, ApJL, 821, L22
Wright, E. L. 2006, PASP, 118, 1711
Yancey, C. C., et al. 2015, ApJ, 812, 168
Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835, 29
Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G., & Kramer, M. 2014, MNRAS, 442, 2519
Zhang, B. 2014, ApJ, 780, L21

Keywords

A VOEvent-based automatic trigger system for the Murchison Widefield Array

  • P. J. Hancock (a1), G. E. Anderson (a1), A. Williams (a2), M. Sokolowski (a1), S. E. Tremblay (a1) (a3), A. Rowlinson (a4) (a5), B. Crosse (a1), B. W. Meyers (a1) (a3) (a6), C. R. Lynch (a1) (a7), A. Zic (a7), A. P. Beardsley (a8), D. Emrich (a2), T. M. O. Franzen (a1), L. Horsley (a2), M. Johnston-Hollitt (a1), D. L. Kaplan (a9), D. Kenney (a1), M. F. Morales (a10), D. Pallot (a11), K. Steele (a2), S. J. Tingay (a1), C. M. Trott (a1) (a3), M. Walker (a2), R. B. Wayth (a1) (a3) and C. Wu (a11)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed