Hostname: page-component-5d59c44645-l48q4 Total loading time: 0 Render date: 2024-03-01T04:17:06.198Z Has data issue: false hasContentIssue false

Biophysics of mitosis

Published online by Cambridge University Press:  10 February 2012

J. Richard McIntosh*
Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 80309 CO, USA
Maxim I. Molodtsov
Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow 119991, Russia
Fazly I. Ataullakhanov
Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow 119991, Russia National Research Center for Hematology, Moscow 117513, Russia Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
*Author for correspondence: J. Richard McIntosh, Tel.: 303-492-8533; Email:


Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.

Review Article
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


10. References

Aist, J. R., Bayles, C. J., Tao, W. & Berns, M. W. (1991). Direct experimental evidence for the existence, structural basis and function of astral forces during anaphase B in vivo. Journal of Cell Science 100, 279288.Google Scholar
Akiyoshi, B., Sarangapani, K. K., Powers, A. F., Nelson, C. R., Reichow, S. L., Arellano-Santoyo, H., Gonen, T., Ranish, J. A., Asbury, C. L. & Biggins, S. (2010). Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576579.Google Scholar
Alexander, S. P. & Rieder, C. L. (1991). Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. Journal of Cell Biology 113, 805815.Google Scholar
Altan-Bonnet, N., Sougrat, R. & Lippincott-Schwartz, J. (2004). Molecular basis for Golgi maintenance and biogenesis. Current Opinion in Cell Biology 16, 364372.Google Scholar
Antonio, C., Ferby, I., Wilhelm, H., Jones, M., Karsenti, E., Nebreda, A. R. & Vernos, I. (2000). Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425435.Google Scholar
Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. (2006). The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proceedings of the National Academy of Sciences of the United States of America 103, 98739878.Google Scholar
Athale, C. A., Dinarina, A., Mora-Coral, M., Pugieux, C., Nedelec, F. & Karsenti, E. (2008). Regulation of microtubule dynamics by reaction cascades around chromosomes. Science 322, 12431247.Google Scholar
Ault, J. G., Demarco, A. J., Salmon, E. D. & Rieder, C. L. (1991). Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes. Journal of Cell Science 99, 701710.Google Scholar
Bajer, A. S., Cypher, C., Mole-Bajer, J. & Howard, H. M. (1982). Taxol-induced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells . Proceedings of the National Academy of Sciences of the United States of America 79, 65696573.Google Scholar
Bajer, A. S. & Mole-Bajer, J. (1986). Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. Journal of Cell Biology 102, 263281.Google Scholar
Bannigan, A., Lizotte-Waniewski, M., Riley, M. & Baskin, T. I. (2008). Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motility and the Cytoskeleton 65, 111.Google Scholar
Barak, L. S., Nothnagel, E. A., Demarco, E. F. & Webb, W. W. (1981). Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and fluorescent DNase: is actin involved in chromosomal movement? Proceedings of the National Academy of Sciences of the United States of America 78, 30343038.Google Scholar
Barr, F. A., Sillje, H. H. & Nigg, E. A. (2004). Polo-like kinases and the orchestration of cell division. Nature Reviews. Molecular Cell Biology 5, 429440.Google Scholar
Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A. & Raff, J. W. (2006). Flies without centrioles. Cell 125, 13751386.Google Scholar
Begg, D. A. & Ellis, G. W. (1979). Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers. Journal of Cell Biology 82, 528541.Google Scholar
Belmont, A. S. (2006). Mitotic chromosome structure and condensation. Current Opinion in Cell Biology 18, 632638.Google Scholar
Bird, A. W. & Hyman, A. A. (2008). Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. Journal of Cell Biology 182, 289300.Google Scholar
Bollen, M., Gerlich, D. W. & Lesage, B. (2009). Mitotic phosphatases: from entry guards to exit guides. Trends in Cell Biology 19, 531541.Google Scholar
Bormuth, V., Varga, V., Howard, J. & Schaffer, E. (2009). Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870873.Google Scholar
Brouhard, G. J. & Hunt, A. J. (2005). Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proceedings of the National Academy of Sciences of the United States of America 102, 1390313908.Google Scholar
Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K., Harrison, S. C., Howard, J. & Hyman, A. A. (2008). XMAP215 is a processive microtubule polymerase. Cell 132, 7988.Google Scholar
Brown, K. S., Blower, M. D., Maresca, T. J., Grammer, T. C., Harland, R. M. & Heald, R. (2007). Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. The Journal of Cell Biology 176, 765770.Google Scholar
Brust-Mascher, I., Civelekoglu-Scholey, G., Kwon, M., Mogilner, A. & Scholey, J. M. (2004). Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proceedings of the National Academy of Sciences of the United States of America 101, 1593815943.Google Scholar
Brust-Mascher, I. & Scholey, J. M. (2007). Mitotic spindle dynamics in Drosophila. International Review of Cytology 259, 139172.Google Scholar
Burbank, K. S., Mitchison, T. J. & Fisher, D. S. (2007). Slide-and-cluster models for spindle assembly. Current Biology: CB 17, 13731383.Google Scholar
Cai, S., O'Connell, C. B., Khodjakov, A. & Walczak, C. E. (2009a). Chromosome congression in the absence of kinetochore fibres. Nature Cell Biology 11, 832838.Google Scholar
Cai, S., Weaver, L. N., Ems-Mcclung, S. C. & Walczak, C. E. (2009b). Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Molecular Biology of the Cell 20, 13481359.Google Scholar
Carazo-Salas, R. E., Guarguaglini, G., Gruss, O. J., Segref, A., Karsenti, E. & Mattaj, I. W. (1999). Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178181.Google Scholar
Cassimeris, L., Rieder, C. L. & Salmon, E. D. (1994). Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. Journal of Cell Science 107, 285297.Google Scholar
Chakravarty, A., Howard, L. & Compton, D. A. (2004). A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Molecular Biology of the Cell 15, 21162132.Google Scholar
Chang, P., Coughlin, M. & Mitchison, T. J. (2005). Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nature Cell Biology 7, 11331139.Google Scholar
Channels, W. E., Nedelec, F. J., Zheng, Y. & Iglesias, P. A. (2008). Spatial regulation improves antiparallel microtubule overlap during mitotic spindle assembly. Biophysical Journal 94, 25982609.Google Scholar
Charlebois, B. D., Kollu, S., Schek, H. T., Compton, D. A. & Hunt, A. J. (2011). Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages. Biophysical Journal 100, 17561764.Google Scholar
Cheeseman, I. M. & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interface. Journal of Cell Biology 9, 3346.Google Scholar
Cheeseman, I. M., Hori, T., Fukagawa, T. & Desai, A. (2008). KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Molecular Biology of the Cell 19, 587594.Google Scholar
Cheng, L., Zhang, J., Ahmad, S., Rozier, L., Yu, H., Deng, H. & Mao, Y. (2011). Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Developmental Cell 20, 342352.Google Scholar
Ciliberto, A. & Shah, J. V. (2009). A quantitative systems view of the spindle assembly checkpoint. EMBO Journal 28, 21622173.Google Scholar
Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. (2006). Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Current Biology 16, 17111718.Google Scholar
Ciosk, R., Depalma, M. & Priess, J. R. (2006). Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 311, 851853.Google Scholar
Civelekoglu-Scholey, G. & Scholey, J. M. (2010a). Mitotic force generators and chromosome segregation. Cellular and Molecular Life Sciences: CMLS 67, 22312250.Google Scholar
Civelekoglu-Scholey, G., Sharp, D. J., Mogilner, A. & Scholey, J. M. (2006). Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophysical Journal 90, 39663982.Google Scholar
Civelekoglu-Scholey, G., Tao, L., Brust-Mascher, I., Wollman, R. & Scholey, J. M. (2010b). Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. Journal of Cell Biology 188, 4968.Google Scholar
Cleveland, D. W., Mao, Y. & Sullivan, K. F. (2003). Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407421.Google Scholar
Compton, D. A. & Cleveland, D. W. (1994). NuMA, a nuclear protein involved in mitosis and nuclear reformation. Current Opinion in Cell Biology 6, 343346.Google Scholar
Cottingham, F. R., Gheber, L., Miller, D. L. & Hoyt, M. A. (1999). Novel roles for saccharomyces cerevisiae mitotic spindle motors. Journal of Cell Biology 147, 335350.Google Scholar
Coue, M., Lombillo, V. A. & McIntosh, J. R. (1991). Microtubule depolymerization promotes particle and chromosome movement in vitro. Journal of Cell Biology 112, 11651175.Google Scholar
Cowley, D. O., Rivera-Perez, J. A., Schliekelman, M., He, Y. J., Oliver, T. G., Lu, L., O'QUINN, R., Salmon, E. D., Magnuson, T. & Van Dyke, T. (2009). Aurora-A kinase is essential for bipolar spindle formation and early development. Molecular and Cellular Biology 29, 10591071.Google Scholar
De Brabander, M., Geuens, G., Nuydens, R., Willebrords, R., Aerts, F., Demey, J. & McIntosh, J. R. (1986). Microtubule dynamics during the cell cycle: The effects of taxol and nocodazole on the microtubule separation of PtK2 cells at different stages of the mitotic cycle. International Review of Cytology 101, 215274.Google Scholar
De Mey, J., Lambert, A. M., Bajer, A. S., Moeremans, M. & De Brabander, M. (1982). Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proceedings of the National Academy of Sciences of the United States of America 79, 18981902.Google Scholar
Deluca, J. G., Gall, W. E., Ciferri, C., Cimini, D., Musacchio, A. & Salmon, E. D. (2006). Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969982.Google Scholar
Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. (1999). Kin I kinesins are microtubule-destabilizing enzymes. Cell 96(1), 6978.Google Scholar
Desai, A., Maddox, P. S., Mitchison, T. J. & Salmon, E. D. (1998). Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles. The Journal of Cell Biology 141, 703713.Google Scholar
Desai, A. & Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annual Review of Cell and Developmental Biology 13, 83117.Google Scholar
Dictenberg, J. B., Zimmerman, W., Sparks, C. A., Young, A., Vidair, C., Zheng, Y., Carrington, W., Fay, F. S. & Doxsey, S. J. (1998). Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. Journal of Cell Biology 141, 163174.Google Scholar
Dinarina, A., Pugieux, C., Corral, M. M., Loose, M., Spatz, J., Karsenti, E. & Nedelec, F. (2009). Chromatin shapes the mitotic spindle. Cell 138, 502513.Google Scholar
Dujardin, D. L. & Vallee, R. B. (2002). Dynein at the cortex. Current Opinion in Cell Biology 14, 4449.Google Scholar
Dumont, S. & Mitchison, T. (2012). Mechanical forces in mitosis. In Comprehensive Biophysics, vol. 4, Chapter 4.16. (Ed. Egelman, E.). Amsterdam: Elsevier. doi:10.1016/B978-0-12-374920-8.00419-7.Google Scholar
Dumont, S. & Mitchison, T. (2011). Mechanical forces in mitosis. In Comprehensive Biophysics, vol. 7 (Eds. Goldman, Y. E. and Ostap, M. E.). Elsevier (online, in press).Google Scholar
Dumont, S. & Mitchison, T. J. (2009a). Compression regulates mitotic spindle length by a mechanochemical switch at the poles. Current Biology 19, 10861095.Google Scholar
Dumont, S. & Mitchison, T. J. (2009b). Force and length in the mitotic spindle. Current Biology 19, R749R761.Google Scholar
Duncan, T. & Wakefield, J. G. (2011). 50 ways to build a spindle: the complexity of microtubule generation during mitosis. Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology 19, 321333.Google Scholar
Efremov, A., Grishchuk, E. L., McIntosh, J. R. & Ataullakhanov, F. I. (2007). In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proceedings of the National Academy of Sciences of the United States of America 104, 1901719022.Google Scholar
Euteneuer, U. & McIntosh, J. R. (1981). Structural polarity of kinetochore microtubules in PtK1 cells. Journal of Cell Biology 89, 338345.Google Scholar
Fabian, L., Xia, X., Venkitaramani, D. V., Johansen, K. M., Johansen, J., Andrew, D. J. & Forer, A. (2007). Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin and the matrix proteins skeletor, megator and chromator. Journal of Cell Science 120, 21902204.Google Scholar
Feng, J., Huang, H. & Yen, T. J. (2006). CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma 115, 320329.Google Scholar
Fink, G., Schuchardt, I., Colombelli, J., Stelzer, E. & Steinberg, G. (2006). Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. The EMBO Journal 25, 48974908.Google Scholar
Forer, A. (1965). Local reduction of spindle fiber birefringence in living Nephrotoma suturalis (Loew) spermatocytes induced by ultraviolet microbeam irradiation. Journal of Cell Biology 25 (Suppl.), 95117.Google Scholar
Francisco, L., Wang, W. & Chan, C. S. (1994). Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Molecular and Cellular Biology 14, 47314740.Google Scholar
Fuller, B. G., Lampson, M. A., Foley, E. A., Rosasco-Nitcher, S., Le, K. V., Tobelmann, P., Brautigan, D. L., Stukenberg, P. T. & Kapoor, T. M. (2008). Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 11321136.Google Scholar
Funabiki, H. & Murray, A. W. (2000). The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411424.Google Scholar
Gaglio, T., Dionne, M. A. & Compton, D. A. (1997). Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. Journal of Cell Biology 138, 10551066.Google Scholar
Gaglio, T., Saredi, A., Bingham, J. B., Hasbani, M. J., Gill, S. R., Schroer, T. A. & Compton, D. A. (1996). Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. Journal of Cell Biology 135, 399414.Google Scholar
Gardner, M. K., Bouck, D. C., Paliulis, L. V., Meehl, J. B., O'Toole, E. T., Haase, J., Soubry, A., Joglekar, A. P., Winey, M., Salmon, E. D., Bloom, K. & Odde, D. J. (2008). Chromosome congression by kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135, 894906.Google Scholar
Gardner, M. K., Pearson, C. G., Sprague, B. L., Zarzar, T. R., Bloom, K., Salmon, E. D. & Odde, D. J. (2005). Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Molecular Biology of the Cell 16, 37643775.Google Scholar
Garrett, S., Auer, K., Compton, D. A. & Kapoor, T. M. (2002). hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Current Biology 12, 20552059.Google Scholar
Gatlin, J. C. & Bloom, K. (2010). Microtubule motors in eukaryotic spindle assembly and maintenance. Seminars in Cell and Developmental Biology 21, 248254.Google Scholar
Geuens, G., Hill, A. M., Levilliers, N., Adoutte, A. & Debrabander, M. (1989). Microtubule dynamics investigated by microinjection of Paramecium axonemal tubulin: lack of nucleation but proximal assembly of microtubules at the kinetochore during prometaphase. Journal of Cell Biology 108, 939953.Google Scholar
Glover, D. M., Leibowitz, M. H., Mclean, D. A. & Parry, H. (1995). Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95105.Google Scholar
Goodwin, S. S. & Vale, R. D. (2010). Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263274.Google Scholar
Gorbsky, G. J. & Borisy, G. G. (1989). Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase. Journal of Cell Biology 109, 653662.Google Scholar
Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. (1987). Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. Journal of Cell Biology 104, 918.Google Scholar
Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. (1988). Microtubule dynamics and chromosome motion visualized in living anaphase cells. Journal of Cell Biology 106, 11851192.Google Scholar
Goshima, G., Mayer, M., Zhang, N., Stuurman, N. & Vale, R. D. (2008). Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. Journal of Cell Biology 181, 421429.Google Scholar
Goshima, G. & Scholey, J. M. (2010). Control of mitotic spindle length. Annual Review of Cell and Developmental Biology 26, 2157.Google Scholar
Goshima, G. & Vale, R. D. (2003). The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. Journal of Cell Biology 162, 10031016.Google Scholar
Goshima, G. & Yanagida, M. (2001). Time course analysis of precocious separation of sister centromeres in budding yeast: continuously separated or frequently reassociated? Genes to Cells 6, 765773.Google Scholar
Greenan, G., Brangwynne, C. P., Jaensch, S., Gharakhani, J., Julicher, F. & Hyman, A. A. (2010). Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. Current Biology 20, 353358.Google Scholar
Gregan, J., Polakova, S., Zhang, L., Tolic-Norrelykke, I. M. & Cimini, D. (2011). Merotelic kinetochore attachment: causes and effects. Trends in Cell Biology 21, 374381.Google Scholar
Grishchuk, E. L., McIntosh, J. R., Molodtsov, M. I. & Ataullakhanov, F. I. (2012). Force generation by dynamic microtubule polymers. In Comprehensive Biophysics, vol. 4, Chapter 4.7. (Ed. Egelman, E.). Amsterdam: Elsevier. doi:10.1016/B978-0-12-374920-8.00409-4.Google Scholar
Grishchuk, E. L. (2009). Toward a comprehensive and quantitative understanding of intracellular microtubule organization. Molecular Systems Biology 5, 251.Google Scholar
Grishchuk, E. L., Efremov, A. K., Volkov, V. A., Spiridonov, I. S., Gudimchuk, N., Westermann, S., Drubin, D., Barnes, G., McIntosh, J. R. & Ataullakhanov, F. I. (2008a). The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proceedings of the National Academy of Sciences of the United States of America 105, 1542315428.Google Scholar
Grishchuk, E. L. & McIntosh, J. R. (2006). Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO Journal 25, 48884896.Google Scholar
Grishchuk, E. L., Molodtsov, M. I., Ataullakhanov, F. I. & McIntosh, J. R. (2005). Force production by disassembling microtubules. Nature 438(7066), 384388.Google Scholar
Grishchuk, E. L., Spiridonov, I. S., Volkov, V. A., Efremov, A., Westermann, S., Drubin, D., Barnes, G., Ataullakhanov, F. I. & McIntosh, J. R. (2008b). Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America 105(19), 69186923.Google Scholar
Grissom, P. M., Fiedler, T., Grishchuk, E. L., Nicastro, D., West, R. R. & McIntosh, J. R. (2009). Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. Molecular Biology of the Cell 20, 963972.Google Scholar
Gruss, O. J. & Vernos, I. (2004). The mechanism of spindle assembly: functions of Ran and its target TPX2. Journal of Cell Biology 166, 949955.Google Scholar
Gupta, M. L. JR., Carvalho, P., Roof, D. M. & Pellman, D. (2006). Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nature Cell Biology 8, 913923.Google Scholar
Hara, Y. & Kimura, A. (2009). Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo. Current Biology 19, 15491554.Google Scholar
Hartwell, L. H. & Smith, D. (1985). Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110, 381395.Google Scholar
Hays, T. (1985). The Force-Balance Mechanism of Chromosome Congression, Ph.D. thesis, University of North Carolina.Google Scholar
Hays, T. S. & Salmon, E. D. (1990). Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules. Journal of Cell Biology 110, 391404.Google Scholar
Hays, T. S., Wise, D. & Salmon, E. D. (1982). Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. Journal of Cell Biology 93, 374389.Google Scholar
Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A. & Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420425.Google Scholar
Hepler, P. K., McIntosh, J. R. & Cleland, S. (1970). Intermicrotubule bridges in mitotic spindle apparatus. Journal of Cell Biology 45, 438444.Google Scholar
Hill, T. L. (1985). Theoretical problems related to the attachment of microtubules to kinetochores. Proceedings of the National Academy of Sciences of the United States of America 82, 44044408.Google Scholar
Hogan, C. J., Wein, H., Wordeman, L., Scholey, J. M., Sawin, K. E. & Cande, W. Z. (1993). Inhibition of anaphase spindle elongation in vitro by a peptide antibody that recognizes kinesin motor domain. Proceedings of the National Academy of Sciences of the United States of America 90, 66116615.Google Scholar
Holy, T. E. & Leibler, S. (1994). Dynamic instability of microtubules as an efficient way to search in space. Proceedings of the National Academy of Sciences of the United States of America 91, 56825685.Google Scholar
Howell, B. J., Hoffman, D. B., Fang, G., Murray, A. W. & Salmon, E. D. (2000). Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. Journal of Cell Biology 150, 12331250.Google Scholar
Hoyt, M. A., He, L., Totis, L. & Saunders, W. S. (1993). Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 3544.Google Scholar
Hoyt, M. A., Totis, L. & Roberts, B. T. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507517.Google Scholar
Huitorel, P. & Kirschner, M. W. (1988). The polarity and stability of microtubule capture by the kinetochore. Journal of Cell Biology 106, 151159.Google Scholar
Hyman, A. A. & Karsenti, E. (1996). Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401410.Google Scholar
Inoue, S. & Bajer, A. (1961). Birefringence in endosperm mitosis. Chromosoma 12, 4863.Google Scholar
Inoue, S., Fuseler, J., Salmon, E. D. & Ellis, G. W. (1975). Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system. Biophysical Journal 15, 725744.Google Scholar
Inoue, S. & Salmon, E. D. (1995). Force generation by microtubule assembly/disassembly in mitosis and related movements. Molecular Biology of the Cell 6, 16191640.Google Scholar
Itabashi, T., Takagi, J., Shimamoto, Y., Inoe, H., Kuwana, K., Shimoyama, I., Gaetz, J., Kapoor, T. M., and Ishiwata, S. (2009). Probing the mechanical architecture of the vertebrate meiotic spindle. Nature Methods 6, 167–72.Google Scholar
Janson, M. E., Loughlin, R., Loiodice, I., Fu, C., Brunner, D., Nedelec, F. J. & Tran, P. T. (2007). Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357368.Google Scholar
Jaqaman, K., King, E. M., Amaro, A. C., Winter, J. R., Dorn, J. F., Elliott, H. L., Mchedlishvili, N., Mcclelland, S. E., Porter, I. M., Posch, M., Toso, A., Danuser, G., McAinsh, A. D., Meraldi, P. & Swedlow, J. R. (2010). Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. Journal of Cell Biology 188, 665679.Google Scholar
Jensen, C. & Bajer, A. (1973). Spindle dynamics and arrangement of microtubules. Chromosoma 44, 7389.Google Scholar
Joglekar, A. P. & Hunt, A. J. (2002). A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophysical Journal 83, 4258.Google Scholar
Kalab, P. & Heald, R. (2008). The RanGTP gradient – a GPS for the mitotic spindle. Journal of Cell Science 121, 15771586.Google Scholar
Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., McEwen, B. F. & Khodjakov, A. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388391.Google Scholar
Kapoor, T. M. & Mitchison, T. J. (2001). Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. Journal of Cell Biology 154, 11251133.Google Scholar
Ke, K., Cheng, J. & Hunt, A. J. (2009). The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Current Biology 19, 807815.Google Scholar
Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311320.Google Scholar
Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. (2000). Centrosome-independent mitotic spindle formation in vertebrates. Current Biology 10, 5967.Google Scholar
Khodjakov, A. & Pines, J. (2010). Centromere tension: a divisive issue. Nature Cell Biology 12, 919923.Google Scholar
Khodjakov, A. & Rieder, C. L. (1996). Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. The Journal of Cell Biology 135, 315327.Google Scholar
Khodjakov, A. & Rieder, C. L. (1999). The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. Journal of Cell Biology 146, 585596.Google Scholar
Kilmartin, J. V. & Goh, P. Y. (1996). Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO Journal 15, 45924602.Google Scholar
King, J. M., Hays, T. S. & Nicklas, R. B. (2000). Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. Journal of Cell Biology 151, 739748.Google Scholar
Kirschner, M. & Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329342.Google Scholar
Kitamura, E., Tanaka, K., Kitamura, Y. & Tanaka, T. U. (2007). Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae. Genes and Development 21, 33193330.Google Scholar
Kitamura, E., Tanaka, K., Komoto, S., Kitamura, Y., Antony, C. & Tanaka, T. U. (2010). Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Developmental Cell 18, 248259.Google Scholar
Kops, G. J., Saurin, A. T. & Meraldi, P. (2010). Finding the middle ground: how kinetochores power chromosome congression. Cellular and Molecular Life Sciences 67, 21452161.Google Scholar
Kuriyama, R. (1986). Isolation of sea urchin spindles and cytasters. Methods in Enzymology 134, 190199.Google Scholar
Laan, L. & Dogterom, M. (2010). In vitro assays to study force generation at dynamic microtubule ends. Methods in Cell Biology 95, 617639.Google Scholar
Labbe, J. C., Mccarthy, E. K. & Goldstein, B. (2004). The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. Journal of Cell Biology 167, 245256.Google Scholar
Lafountain, J. R. JR., Cohan, C. S., Siegel, A. J. & Lafountain, D. J. (2004). Direct visualization of microtubule flux during metaphase and anaphase in crane-fly spermatocytes. Molecular Biology of the Cell 15, 57245732.Google Scholar
Lampson, M. A. & Cheeseman, I. M. (2011). Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends in Cell Biology 21, 133140.Google Scholar
Leslie, R. J. & Pickett-Heaps, J. D. (1983). Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. Journal of Cell Biology 96, 548561.Google Scholar
Levesque, A. A. & Compton, D. A. (2001). The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. Journal of Cell Biology 154, 11351146.Google Scholar
Li, R. & Murray, A. W. (1991). Feedback control of mitosis in budding yeast. Cell 66, 519531.Google Scholar
Li, X. & Nicklas, R. B. (1995). Mitotic forces control a cell-cycle checkpoint. Nature 373, 630632.Google Scholar
Liu, B., Marc, J., Joshi, H. C. & Palevitz, B. A. (1993). A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. Journal of Cell Science 104, 12171228.Google Scholar
Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. (1995a). Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. Journal of Cell Biology 128, 107115.Google Scholar
Lombillo, V. A., Stewart, R. J. & McIntosh, J. R. (1995b). Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161164.Google Scholar
Loughlin, R., Heald, R. & Nedelec, F. (2010). A computational model predicts Xenopus meiotic spindle organization. Journal of Cell Biology 191, 12391249.Google Scholar
Magidson, V., O'Connell, C. B., Lončarek, J., Paul, R., Mogilner, A. & Khodjakov, A. (2011). The spatial arrangement of chromosomes during prometaphase facilitates spindle formation. Cell 146, 555567.Google Scholar
Mahoney, N. M., Goshima, G., Douglass, A. D. & Vale, R. D. (2006). Making microtubules and mitotic spindles in cells without functional centrosomes. Current Biology 16, 564569.Google Scholar
Maiato, H., Rieder, C. L. & Khodjakov, A. (2004). Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. Journal of Cell Biology 167, 831840.Google Scholar
Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. (1991). Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. Journal of Cell Biology 114, 977991.Google Scholar
Mandelkow, E. M., Schultheiss, R., Rapp, R., Muller, M. & Mandelkow, E. (1986). On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness. Journal of Cell Biology 102, 10671073.Google Scholar
Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. (1998). Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. Journal of Cell Biology 142, 787801.Google Scholar
Maresca, T. J. & Salmon, E. D. (2010). Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. Journal of Cell Science 123, 825835.Google Scholar
Margolis, R. L. & Wilson, L. (1981). Microtubule treadmills – possible molecular machinery. Nature 293, 705711.Google Scholar
Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. (1993). Interpolar spindle microtubules in PTK cells. Journal of Cell Biology 123, 14751489.Google Scholar
Masuda, H., Hirano, T., Yanagida, M. & Cande, W. Z. (1990). In vitro reactivation of spindle elongation in fission yeast nuc2 mutant cells. Journal of Cell Biology 110, 417425.Google Scholar
Matos, I. & Maiato, H. (2011). Prevention and correction mechanisms behind anaphase synchrony: implications for the genesis of aneuploidy. Cytogenetic and Genome Research 133, 243253.Google Scholar
Mayr, M. I., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G. & Mayer, T. U. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology 17, 488498.Google Scholar
McAinsh, A. D., Tytell, J. D. & Sorger, P. K. (2003). Structure, function, and regulation of budding yeast kinetochores. Annual Review of Cell and Developmental Biology 19, 519539.Google Scholar
McDonald, K., Pickett-Heaps, J. D., McIntosh, J. R. & Tippit, D. H. (1977). On the mechanism of anaphase spindle elongation in Diatoma vulgare. Journal of Cell Biology 74, 377388.Google Scholar
McDonald, K. L., Pfister, K., Masuda, H., Wordeman, L., Staiger, C. & Cande, W. Z. (1986). Comparison of spindle elongation in vivo and in vitro in Stephanopyxis turris. Journal of Cell Science Supplement 5, 205227.Google Scholar
McEwen, B. F., Hsieh, C. E., Mattheyses, A. L. & Rieder, C. L. (1998). A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107, 366375.Google Scholar
McIntosh, J. R., Volkov, V., Ataullakhanov, F. I. & Grishchuk, E. L. (2010). Tubulin depolymerization may be an ancient biological motor. Journal of Cell Science 123(Pt 20), 34253434.Google Scholar
McIntosh, J. R. (1991). Structural and mechanical control of mitotic progression. Cold Spring Harbour Symposis on Quantitative Biology 56, 613619.Google Scholar
McIntosh, J. R., Grishchuk, E. L., Morphew, M. K., Efremov, A. K., Zhudenkov, K., Volkov, V. A., Cheeseman, I. M., Desai, A., Mastronarde, D. N. & Ataullakhanov, F. I. (2008). Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135, 322333.Google Scholar
McIntosh, J. R., Grishchuk, E. L. & West, R. R. (2002). Chromosome-microtubule interactions during mitosis. Annual Review of Cell and Developmental Biology 18, 193219.Google Scholar
McIntosh, J. R., Hepler, P. K. & Van Wie, D. G. (1969). Model for Mitosis. Nature 224, 659663.Google Scholar
McIntosh, J. R. & Hering, G. E. (1991). Spindle fiber action and chromosome movement. Annual Review of Cell Biology 7, 403426.Google Scholar
McIntosh, J. R. & Landis, S. C. (1971). The distribution of spindle microtubules during mitosis in cultured human cells. Journal of Cell Biology 49, 468497.Google Scholar
McIntosh, J. R., Morphew, M. K., Grissom, P. M., Gilbert, S. P. & Hoenger, A. (2009). Lattice structure of cytoplasmic microtubules in a cultured mammalian cell. Journal of Molecular Biology 394, 177182.Google Scholar
McNeill, P. A. & Berns, M. W. (1981). Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. Journal of Cell Biology 88, 543553.Google Scholar
Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. (2000). Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. Journal of Cell Biology 149, 851862.Google Scholar
Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. (2005). The yeast DASH complex forms closed rings on microtubules. Nature Structural and Molecular Biology 12, 138143.Google Scholar
Mitchison, T., Evans, L., Schulze, E. & Kirschner, M. (1986). Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45, 515527.Google Scholar
Mitchison, T. & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237242.Google Scholar
Mitchison, T. J. (1989a). Mitosis: basic concepts. Current Opinion in Cell Biology 1, 6774.Google Scholar
Mitchison, T. J. (1989b). Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. Journal of Cell Biology 109, 637652.Google Scholar
Mitchison, T. J. & Kirschner, M. W. (1985). Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. Journal of Cell Biology 101, 755765.Google Scholar
Mitchison, T. J. & Salmon, E. D. (1992). Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. Journal of Cell Biology 119, 569582.Google Scholar
Mogilner, A. & Craig, E. (2010). Towards a quantitative understanding of mitotic spindle assembly and mechanics. Journal of Cell Science 123, 34353445.Google Scholar
Molodtsov, M. I., Grishchuk, E. L., Efremov, A. K., McIntosh, J. R. & Ataullakhanov, F. I. (2005). Force production by depolymerizing microtubules: a theoretical study. Proceedings of the National Academy of Sciences of the United States of America 102, 43534358.Google Scholar
Munro, E., Nance, J. & Priess, J. R. (2004). Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Developmental Cell 7, 413424.Google Scholar
Murata, T., Sonobe, S., Baskin, T. I., Hyodo, S., Hasezawa, S., Nagata, T., Horio, T. & Hasebe, M. (2005). Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nature Cell Biology 7, 961968.Google Scholar
Murphy, D. B. (1980). Identification of microtubule-associated proteins in the meiotic spindle of surf clam oocytes. The Journal of Cell Biology 84, 235245.Google Scholar
Murray, A. W., Desai, A. B. & Salmon, E. D. (1996). Real time observation of anaphase in vitro. Proceedings of the National Academy of Sciences of the United States of America 93, 1232712332.Google Scholar
Nedelec, F. (2002). Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. Journal of Cell Biology 158, 10051015.Google Scholar
Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. (1997). Self-organization of microtubules and motors. Nature 389, 305308.Google Scholar
Nezi, L. & Musacchio, A. (2009). Sister chromatid tension and the spindle assembly checkpoint. Current Opinion in Cell Biology 21, 785795.Google Scholar
Nicklas, R. B. (1965). Chromosome velocity during mitosis as a function of chromosome size and position. Journal of Cell Biology 25 (Suppl.), 119135.Google Scholar
Nicklas, R. B. (1979). Chromosome movement and spindle birefringence in locally heated cells: interaction versus local control. Chromosoma 74, 137.Google Scholar
Nicklas, R. B. (1983). Measurements of the force produced by the mitotic spindle in anaphase. Journal of Cell Biology 97, 542548.Google Scholar
Nicklas, R. B. (1988). The forces that move chromosomes in mitosis. Annual Review of Biophysics and Biophysical Chemistry 17, 431449.Google Scholar
Nicklas, R. B. (1989). The motor for poleward chromosome movement in anaphase is in or near the kinetochore. Journal of Cell Biology 109, 22452255.Google Scholar
Nicklas, R. B. (1997). How cells get the right chromosomes. Science 275, 632637.Google Scholar
Nicklas, R. B. & Arana, P. (1992). Evolution and the meaning of metaphase. Journal of Cell Science 102, 681690.Google Scholar
Nicklas, R. B. & Gordon, G. W. (1985). The total length of spindle microtubules depends on the number of chromosomes present. Journal of Cell Biology 100, 17.Google Scholar
Nicklas, R. B., Kubai, D. F. & Hays, T. S. (1982). Spindle microtubules and their mechanical associations after micromanipulation in anaphase. Journal of Cell Biology 95, 91104.Google Scholar
Nicklas, R. B. & Ward, S. C. (1994). Elements of error correction in mitosis: microtubule capture, release, and tension. Journal of Cell Biology 126, 12411253.Google Scholar
Nurse, P. M. (2002). Nobel Lecture. Cyclin dependent kinases and cell cycle control. Bioscience Reports 22, 487499.Google Scholar
O'Connell, C. B. & Khodjakov, A. L. (2007). Cooperative mechanisms of mitotic spindle formation. Journal of Cell Science 120, 17171722.Google Scholar
O'Toole, E. T., McDonald, K. L., Mantler, J., McIntosh, J. R., Hyman, A. A. & Muller-Reichert, T. (2003). Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. Journal of Cell Biology 163, 451456.Google Scholar
O'Toole, E. T., Winey, M. & McIntosh, J. R. (1999). High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell 10, 20172031.Google Scholar
Ostergren, G. (1945). Equilibrium of trivalents and the mechanism of chromosome movement. Hereditas 31, 498511.Google Scholar
Ostergren, G. (1951). The mechanism of co-ordination of bivalents and multivalents. Hereditas 37, 85156.Google Scholar
Ostergren, G. (1961). Mitosis with undivided chromosomes. II. Some theoretical aspects of the problem. Chromosoma 12, 8096.Google Scholar
Ostergren, G. & Bajer, A. (1961). Mitosis with undivided chromosomes. I. A study of living material. Chromosoma 12, 7279.Google Scholar
Paul, R., Wollman, R., Silkworth, W. T., Nardi, I. K., Cimini, D. & Mogilner, A. (2009). Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy. Proceedings of the National Academy of Sciences of the United States of America 106, 1570815713.Google Scholar
Pease, D. C. (1946). Hydrostatic pressure effects upon the spindle figure and chromosome movement. II. Experiments on the meiotic divisions of tradescantia pollen mother cells. Biological Bulletin 91, 146169.Google Scholar
Pellman, D., Bagget, M., Tu, Y. H., Fink, G. R. & Tu, H. (1995). Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. Journal of Cell Biology 130, 13731385.Google Scholar
Peterman, E. J. & Scholey, J. M. (2009). Mitotic microtubule crosslinkers: insights from mechanistic studies. Current Biology 19, R1089R1094.Google Scholar
Pickett-Heaps, J. D. (1969). Preprophase microtubules and stomatal differentiation; some effects of centrifugation on symmetrical and asymmetrical cell division. Journal of Ultrastructure Research 27, 2444.Google Scholar
Pickett-Heaps, J. D., Tippit, D. H. & Leslie, R. (1980). Light and electron microscopic observations on cell division in two large pennate diatoms, Hantzschia and Nitzschia. I. Mitosis in vivo. European Journal of Cell Biology 21, 111.Google Scholar
Poirier, M., Eroglu, S., Chatenay, D. & Marko, J. F. (2000). Reversible and irreversible unfolding of mitotic newt chromosomes by applied force. Molecular Biology of the Cell 11, 269276.Google Scholar
Pollard, T. D. (2010). Mechanics of cytokinesis in eukaryotes. Current Opinion in Cell Biology 22, 5056.Google Scholar
Powers, A. F., Franck, A. D., Gestaut, D. R., Cooper, J., Gracyzk, B., Wei, R. R., Wordeman, L., Davis, T. N. & Asbury, C. L. (2009). The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865875.Google Scholar
Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R. & Cleveland, D. W. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Developmental Cell 3, 351365.Google Scholar
Qi, H., Rath, U., Wang, D., Xu, Y. Z., Ding, Y., Zhang, W., Blacketer, M. J., Paddy, M. R., Girton, J., Johansen, J. & Johansen, K. M. (2004). Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Molecular Biology of the Cell 15, 48544865.Google Scholar
Rasala, B. A., Orjalo, A. V., Shen, Z., Briggs, S. & Forbes, D. J. (2006). ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proceedings of the National Academy of Sciences of the United States of America 103, 1780117806.Google Scholar
Rasmussen, C. G., Humphries, J. A. & Smith, L. G. (2011). Determination of symmetric and asymmetric division planes in plant cells Annual Review of Plant Biology 62, 387409.Google Scholar
Rebhun, L. I., Jemiolo, D., Ivy, N., Mellon, M. & Nath, J. (1975). Regulation of the in vivo mitotic apparatus by glycols and metabolic inhibitors. Annals of the New York Academy of Sciences 253, 362377.Google Scholar
Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. (1986). Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. Journal of Cell Biology 103, 581591.Google Scholar
Rieder, C. L., Khodjakov, A., Paliulis, L. V., Fortier, T. M., Cole, R. W. & Sluder, G. (1997). Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proceedings of the National Academy of Sciences of the United States of America 94, 51075112.Google Scholar
Rieder, C. L. & Salmon, E. D. (1994). Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. Journal of Cell Biology 124, 223233.Google Scholar
Rieder, C. L. & Salmon, E. D. (1998). The vertebrate cell kinetochore and its roles during mitosis. Trends in Cell Biology 8, 310318.Google Scholar
Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. Journal of Cell Biology 127, 13011310.Google Scholar
Rogers, G. C., Rogers, S. L., Schwimmer, T. A., Ems-Mcclung, S. C., Walczak, C. E., Vale, R. D., Scholey, J. M. & Sharp, D. J. (2004). Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364370.Google Scholar
Roos, U. P. (1973). Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus. Chromosoma 40, 4382.Google Scholar
Roostalu, J., Hentrich, C., Bieling, P., Telley, I. A., Schiebel, E. & Surrey, T. (2011). Directional switching of the kinesin Cin8 through motor coupling. Science 332, 9499.Google Scholar
Salmon, E. D. (1975). Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Annals of the New York Academy of Sciences 253, 383406.Google Scholar
Salmon, E. D., Goode, D., Maugel, T. K. & Bonar, D. B. (1976). Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. The Journal of Cell Biology 69, 443454.Google Scholar
Salmon, E. D., Mckeel, M. & Hays, T. (1984). Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. The Journal of Cell Biology 99, 10661075.Google Scholar
Saunders, A. M., Powers, J., Strome, S. & Saxton, W. M. (2007). Kinesin-5 acts as a brake in anaphase spindle elongation. Current Biology 17, R453R454.Google Scholar
Saxton, W. M. & McIntosh, J. R. (1987). Interzone microtubule behavior in late anaphase and telophase spindles. The Journal of Cell Biology 105, 875886.Google Scholar
Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M. & McIntosh, J. R. (1984). Tubulin dynamics in cultured mammalian cells. Journal of Cell Biology 99, 21752186.Google Scholar
Schaap, C. J. & Forer, A. (1979). Temperature effects on anaphase chromosome movement in the spermatocytes of two species of crane flies (Nephrotoma suturalis Loew and Nephrotoma ferruginea Fabricius). Journal of Cell Science 39, 2952.Google Scholar
Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology 139, 13731382.Google Scholar
Schaffner, S. C. & Jose, J. V. (2006). Biophysical model of self-organized spindle formation patterns without centrosomes and kinetochores. Proceedings of the National Academy of Sciences of the United States of America 103, 1116611171.Google Scholar
Schmidt, D. J., Rose, D. J., Saxton, W. M. & Strome, S. (2005). Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Molecular Biology of the Cell 16, 12001212.Google Scholar
Segui-Simarro, J. M., Austin, J. R. 2ND, White, E. A. & Staehelin, L. A. (2004). Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16, 836856.Google Scholar
Sharp, D. J., Rogers, G. C. & Scholey, J. M. (2000). Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biology 2, 922930.Google Scholar
Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. (1999). Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biology 1, 5154.Google Scholar
Shimamoto, Y., Maeda, Y. T., Ishiwata, S., Libchaber, A. J. & Kapoor, T. M. (2011). Insights into the micromechanical properties of the metaphase spindle. Cell 145, 10621074.Google Scholar
Siller, K. H. & Doe, C. Q. (2009). Spindle orientation during asymmetric cell division. Nature Cell Biology 11, 365374.Google Scholar
Skibbens, R. V., Rieder, C. L. & Salmon, E. D. (1995). Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. Journal of Cell Science 108, 25372548.Google Scholar
Skibbens, R. V., Skeen, V. P. & Salmon, E. D. (1993). Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push–pull mechanism. Journal of Cell Biology 122, 859875.Google Scholar
Skoufias, D. A., Andreassen, P. R., Lacroix, F. B., Wilson, L. & Margolis, R. L. (2001). Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proceedings of the National Academy of Sciences of the United States of America 98, 44924497.Google Scholar
Smirnova, E. A. & Bajer, A. S. (1994). Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motility and the Cytoskeleton 27, 219233.Google Scholar
Snyder, J. A. & Cohen, L. (1995). Cytochalasin J affects chromosome congression and spindle microtubule organization in PtK1 cells. Cell Motility and the Cytoskeleton 32, 245257.Google Scholar
Snyder, J. A. & McIntosh, J. R. (1975). Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. Journal of Cell Biology 67, 744760.Google Scholar
Sprague, B. L., Pearson, C. G., Maddox, P. S., Bloom, K. S., Salmon, E. D. & Odde, D. J. (2003). Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophysical Journal 84, 35293546.Google Scholar
Spurck, T., Forer, A. & Pickett-Heaps, J. (1997). Ultraviolet microbeam irradiations of epithelial and spermatocyte spindles suggest that forces act on the kinetochore fibre and are not generated by its disassembly. Cell Motility and the Cytoskeleton 36, 136148.Google Scholar
Spurck, T. P. & Pickett-Heaps, J. D. (1987). On the mechanism of anaphase A: evidence that ATP is needed for microtubule disassembly and not generation of polewards force. Journal of Cell Biology 105, 16911705.Google Scholar
Stout, J. R., Rizk, R. S., Kline, S. L. & Walczak, C. E. (2006). Deciphering protein function during mitosis in PtK cells using RNAi. BMC Cell Biology [electronic resource] 7, 26.Google Scholar
Straight, A. F., Marshall, W. F., Sedat, J. W. & Murray, A. W. (1997). Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574578.Google Scholar
Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. (2001). Physical properties determining self-organization of motors and microtubules. Science 292(5519), 11671171.Google Scholar
Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. (2007). Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. Journal of Cell Biology 178, 269281.Google Scholar
Tanaka, K., Mukae, N., Dewar, H., Van Breugel, M., James, E. K., Prescott, A. R., Antony, C. & Tanaka, T. U. (2005). Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987994.Google Scholar
Tanaka, T. U., Rachidi, N., Janke, C., Pereira, G., Galova, M., Schiebel, E., Stark, M. J. & Nasmyth, K. (2002). Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317329.Google Scholar
Tang, D., Mar, K., Warren, G. & Wang, Y. (2008). Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. Journal of Biological Chemistry 283, 60856094.Google Scholar
Taylor, E. W. (1959). Dynamics of spindle formation and its inhibition by chemicals. Journal of Cell Biology 6, 193196.Google Scholar
Tischer, C., Brunner, D. & Dogterom, M. (2009). Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Molecular Systems Biology 5, 250.Google Scholar
Tokai-Nishizumi, N., Ohsugi, M., Suzuki, E. & Yamamoto, T. (2005). The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Molecular Biology of the Cell 16, 54555463.Google Scholar
Toso, A., Winter, J. R., Garrod, A. J., Amaro, A. C., Meraldi, P. & McAinsh, A. D. (2009). Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. Journal of Cell Biology 184, 365372.Google Scholar
Tsai, M. Y., Wang, S., Heidinger, J. M., Shumaker, D. K., Adam, S. A., Goldman, R. D. & Zheng, Y. (2006). A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 18871893.Google Scholar
Uehara, R. & Goshima, G. (2010). Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. Journal of Cell Biology 191, 259267.Google Scholar
Urrutia, R., Mcniven, M. A., Albanesi, J. P., Murphy, D. B. & Kachar, B. (1991). Purified kinesin promotes vesicle motility and induces active sliding between microtubules in vitro. Proceedings of the National Academy of Sciences of the United States of America 88, 67016705.Google Scholar
Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. (1993). Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. Journal of Cell Biology 123, 849858.Google Scholar
Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell 112, 467480.Google Scholar
Vallotton, P., Ponti, A., Waterman-Storer, C. M., Salmon, E. D. & Danuser, G. (2003). Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. Biophysical Journal 85, 12891306.Google Scholar
Varetti, G. & Musacchio, A. (2008). The spindle assembly checkpoint. Current Biology 18, R591R595.Google Scholar
Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U. & Howard, J. (2006). Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biology 8, 957962.Google Scholar
Vigers, G. P., Coue, M. & McIntosh, J. R. (1988). Fluorescent microtubules break up under illumination. Journal of Cell Biology 107, 10111024.Google Scholar
Vladimirou, E., Harry, E., Burroughs, N. & McAinsh, A. D. (2011). Springs, clutches and motors: driving forward kinetochore mechanism by modelling. Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology 19, 409421.Google Scholar
Vorozhko, V. V., Emanuele, M. J., Kallio, M. J., Stukenberg, P. T. & Gorbsky, G. J. (2008). Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma 117, 169179.Google Scholar
Vos, J. W., Pieuchot, L., Evrard, J. L., Janski, N., Bergdoll, M., De Ronde, D., Perez, L. H., Sardon, T., Vernos, I. & Schmit, A. C. (2008). The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell 20, 27832797.Google Scholar
Walczak, C. E. & Heald, R. (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytology 265, 111158.Google Scholar
Walczak, C. E., Mitchison, T. J. & Desai, A. (1996). XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 3747.Google Scholar
Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Current Biology 8, 903913.Google Scholar
Wan, X., O'Quinn, R. P., Pierce, H. L., Joglekar, A. P., Gall, W. E., Deluca, J. G., Carroll, C. W., Liu, S. T., Yen, T. J., McEwen, B. F., Stukenberg, P. T., Desai, A. & Salmon, E. D. (2009). Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672684.Google Scholar
Wang, H. W. & Nogales, E. (2005). Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911915.Google Scholar
Wang, S. Z. & Adler, R. (1995). Chromokinesin: a DNA-binding, kinesin-like nuclear protein. Journal of Cell Biology 128, 761768.Google Scholar
Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. (1998). Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Current Biology 8, 12271230.Google Scholar
Waters, J. C., Cole, R. W. & Rieder, C. L. (1993). The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. Journal of Cell Biology 122, 361372.Google Scholar
Waters, J. C., Skibbens, R. V. & Salmon, E. D. (1996). Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. Journal of Cell Science 109, 28232831.Google Scholar
Weisenberg, R. & Rosenfeld, A. (1975). Role of intermediates in microtubule assembly in vivo and in vitro. Annals of the New York Academy of Sciences 253, 7889.Google Scholar
Welburn, J. P. & Cheeseman, I. M. (2008). Toward a molecular structure of the eukaryotic kinetochore. Developmental Cell 15, 645655.Google Scholar
Welburn, J. P., Grishchuk, E. L., Backer, C. B., Wilson-Kubalek, E. M., Yates, J. R. 3RD & Cheeseman, I. M. (2009). The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Developmental Cell 16, 374385.Google Scholar
Welburn, J. P., Vleugel, M., Liu, D., Yates, J. R. 3RD, Lampson, M. A., Fukagawa, T. & Cheeseman, I. M. (2010). Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface. Molecular Cell 38, 383392.Google Scholar
West, R. R., Malmstrom, T. & McIntosh, J. R. (2002). Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. Journal of Cell Science 115(Pt 5), 931940.Google Scholar
Westermann, S., Wang, H. W., Avila-Sakar, A., Drubin, D. G., Nogales, E. & Barnes, G. (2006). The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565569.Google Scholar
Widlund, P. O., Stear, J. H., Pozniakovsky, A., Zanic, M., Reber, S., Brouhard, G. J., Hyman, A. A. & Howard, J. (2011). XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proceedings of the National Academy of Sciences of the United States of America 108, 27412746.Google Scholar
Wiese, C. & Zheng, Y. (2006). Microtubule nucleation: gamma-tubulin and beyond. Journal of Cell Science 119(Pt 20), 41434153.Google Scholar
Wirth, K. G., Wutz, G., Kudo, N. R., Desdouets, C., Zetterberg, A., Taghybeeglu, S., Seznec, J., Ducos, G. M., Ricci, R., Firnberg, N., Peters, J. M. & Nasmyth, K. (2006). Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression. Journal of Cell Biology 172, 847860.Google Scholar
Witt, P. L., Ris, H. & Borisy, G. G. (1980). Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81, 483505.Google Scholar
Wollman, R., Civelekoglu-Scholey, G., Scholey, J. M. & Mogilner, A. (2008). Reverse engineering of force integration during mitosis in the Drosophila embryo. Molecular Systems Biology 4, 195.Google Scholar
Wollman, R., Cytrynbaum, E. N., Jones, J. T., Meyer, T., Scholey, J. M. & Mogilner, A. (2005). Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Current Biology 15, 828832.Google Scholar
Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357366.Google Scholar
Wordeman, L. (2005). Microtubule-depolymerizing kinesins. Current Opinion in Cell Biology 17, 8288.Google Scholar
Wordeman, L. & Stumpff, J. (2009). Microtubule length control, a team sport? Developmental Cell 17, 437438.Google Scholar
Yajima, J., Edamatsu, M., Watai-Nishii, J., Tokai-Nishizumi, N., Yamamoto, T. & Toyoshima, Y. Y. (2003). The human chromokinesin Kid is a plus end-directed microtubule-based motor. The EMBO Journal 22, 10671074.Google Scholar
Yang, G., Cameron, L. A., Maddox, P. S., Salmon, E. D. & Danuser, G. (2008). Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle. Journal of Cell Biology 182, 631639.Google Scholar
Yang, G., Houghtaling, B. R., Gaetz, J., Liu, J. Z., Danuser, G. & Kapoor, T. M. (2007a). Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging. Nature Cell Biology 9, 12331242.Google Scholar
Yang, Z., Guo, J., Chen, Q., Ding, C., Du, J. & Zhu, X. (2005). Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Molecular and Cellular Biology 25, 40624074.Google Scholar
Yang, Z., Kenny, A. E., Brito, D. A. & Rieder, C. L. (2009). Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments. Journal of Cell Biology 186, 675684.Google Scholar
Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. (2007b). Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Current Biology 17, 973980.Google Scholar
Yokoyama, H., Gruss, O. J., Rybina, S., Caudron, M., Schelder, M., Wilm, M., Mattaj, I. W. & Karsenti, E. (2008). Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. Journal of Cell Biology 180, 867875.Google Scholar
Zhai, Y., Kronebusch, P. J. & Borisy, G. G. (1995). Kinetochore microtubule dynamics and the metaphase-anaphase transition. Journal of Cell Biology 131, 721734.Google Scholar
Zhang, D., Rogers, G. C., Buster, D. W. & Sharp, D. J. (2007). Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. Journal of Cell Biology 177, 231242.Google Scholar
Zhu, C. & Jiang, W. (2005). Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis. Proceedings of the National Academy of Sciences of the United States of America 102, 343348.Google Scholar