Skip to main content Accessibility help
×
Home

Aggregation behavior of the amyloid model peptide NACore

  • Jon Pallbo (a1), Emma Sparr (a1) and Ulf Olsson (a1)

Abstract

The aggregation of the 11 residue long NACore peptide segment of α-synuclein (68-GAVVTGVTAVA-78) has been investigated using a combination of cryogenic transmission electron microscopy (cryo-TEM), small- and wide-angle X-ray scattering, and spectroscopy techniques. The aqueous peptide solubility is pH dependent, and aggregation was triggered by a pH quench from pH 11.3 to approximately pH 8 or 6, where the average peptide net charge is weakly negative (pH 8), or essentially zero (pH 6). Cryo-TEM shows the presence of long and stiff fibrillar aggregates at both pH, that are built up from β-sheets, as demonstrated by circular dichroism spectroscopy and thioflavin T fluorescence. The fibrils are crystalline, with a wide angle X-ray diffraction pattern that is consistent with a previously determined crystal structure of NACore. Of particular note is the cryo-TEM observation of small globular shaped aggregates, of the order of a few nanometers in size, adsorbed onto the surface of already formed fibrils at pH 6. The fibrillation kinetics is slow, and occurs on the time scale of days. Similarly slow kinetics is observed at both pH, but slightly slower at pH 6, even though the peptide solubility is here expected to be lower. The observation of the small globular shaped aggregates, together with the associated kinetics, could be highly relevant in relation to mechanisms of secondary nucleation and oligomer formation in amyloid systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Aggregation behavior of the amyloid model peptide NACore
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Aggregation behavior of the amyloid model peptide NACore
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Aggregation behavior of the amyloid model peptide NACore
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Jon Pallbo, E-mail: jon.pallbo_arvidsson@fkem1.lu.se

References

Hide All
Adamcik, J and Mezzenga, R (2018) Amyloid polymorphism in the protein folding and aggregation energy landscape. Angewandte Chemie International Edition 57, 83708382.
Aggeli, A, Nyrkova, IA, Bell, M, Harding, R, Carrick, L, Mcleish, TCB, Semenov, AN and Boden, N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proceedings of the National Academy of Sciences of the United States of America 98, 1185711862.
Auer, S, Ricchiuto, P and Kashchiev, D (2012) Two-step nucleation of amyloid fibrils: omnipresent or not? Journal of Molecular Biology 422, 723730.
Bauer, H, Aebi, U, Haner, M, Hermann, R, Muller, M, Arvinte, T and Merkle, H (1995) Architecture and polymorphism of fibrillar supramolecular assemblies produced by in-vitro aggregation of human calcitonin. Journal of Structural Biology 115, 115.
Berman, HM, Westbrook, J, Feng, Z, Gilliland, G, Bhat, TN, Weissig, H, Shindyalov, IN and Bourne, PE (2000) The protein data bank. Nucleic Acids Research 28, 235242.
Bodles, AM, Guthrie, DJS, Greer, B and Irvine, GB (2001) Identification of the region of non-Aβ component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity. Journal of Neurochemistry 78, 384395.
Brookes, A and Stclair, D (1994) Synuclein proteins and Alzheimer's-disease. Trends in Neurosciences 17, 404405.
Buell, AK, Galvagnion, C, Gaspar, R, Sparr, E, Vendruscolo, M, Knowles, TPJ, Linse, S and Dobson, CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America 111, 76717676.
Bustamante, C, Tinoco, I and Maestre, M (1983) Circular differential scattering can be an important part of the circular-dichroism of macromolecules. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 80, 35683572.
Cherny, I and Gazit, E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angewandte Chemie-International Edition 47, 40624069.
Chiti, F and Dobson, CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annual Review of Biochemistry 86, 2768.
Chothia, C (1973) Conformation of twisted β-pleated sheets in proteins. Journal of Molecular Biology 75, 295302.
Cohen, SIA, Linse, S, Luheshi, LM, Hellstrand, E, White, DA, Rajah, L, Otzen, DE, Vendruscolo, M, Dobson, CM and Knowles, TPJ (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America 110, 97589763.
Diaz-Avalos, R, Long, C, Fontano, E, Balbirnie, M, Grothe, R, Eisenberg, D and Caspar, DLD (2003) Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide. Journal of Molecular Biology 330, 11651175.
Eanes, E and Glenner, G (1968) X-ray diffraction studies on amyloid filaments. Journal of Histochemistry & Cytochemistry 16, 673.
Eisenberg, DS and Sawaya, MR (2017) Structural studies of amyloid proteins at the molecular level. Annual Review of Biochemistry 86, 6995.
Fowler, DM, Koulov, AV, Balch, WE and Kelly, JW (2007) Functional amyloid – from bacteria to humans. Trends in Biochemical Sciences 32, 217224.
Fraser, P, Nguyen, J, Surewicz, W and Kirschner, D (1991) pH-dependent structural transitions of Alzheimer amyloid peptides. Biophysical Journal 60, 11901201.
Goldsbury, CS, Cooper, GJS, Goldie, KN, Muller, SA, Saafi, EL, Gruijters, WTM and Misur, MP (1997) Polymorphic fibrillar assembly of human amylin. Journal of Structural Biology 119, 1727.
Guerrero-Ferreira, R, Taylor, NMI, Mona, D, Ringler, P, Lauer, ME, Riek, R, Britschgi, M and Stahlberg, H (2018) Cryo-EM structure of alpha-synuclein fibrils. Elife 7, e36402.
Hagan, MF, Elrad, OM and Jack, RL (2011) Mechanisms of kinetic trapping in self-assembly and phase transformation. The Journal of Chemical Physics 135, 104115.
Hoyer, W, Antony, T, Cherny, D, Heim, G, Jovin, TM and Subramaniam, V (2002) Dependence of α-synuclein aggregation morphology on solution conditions. Journal of Molecular Biology 322, 383393.
Ilie, IM, Nayar, D, Den Otter, WK, Van Der Vegt, NFA and Briels, WJ (2018) Intrinsic conformational preferences and interactions in α-synuclein fibrils: insights from molecular dynamics simulations. Journal of Chemical Theory and Computation 14, 32983310.
Jimenez, JL, Nettleton, EJ, Bouchard, M, Robinson, CV, Dobson, CM and Saibil, HR (2002) The protofilament structure of insulin amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America 99, 91969201.
Lee, J, Culyba, EK, Powers, ET and Kelly, JW (2011) Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature Chemical Biology 7, 602609.
Li, B, Ge, P, Murray, KA, Sheth, P, Zhang, M, Nair, G, Sawaya, MR, Shin, WS, Boyer, DR, Ye, S, Eisenberg, DS, Zhou, ZH and Jiang, L (2018) Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nature Communications 9, 3609.
Lindner, P and Zemb, T (eds) (2002). Neutrons, X-Rays and Light: Scattering Methods Applied to Soft Condensed Matter. Amsterdam: Elsevier.
Macrae, CF, Bruno, IJ, Chisholm, JA, Edgington, PR, Mccabe, P, Pidcock, E, Rodriguez-Monge, L, Taylor, R, Van De Streek, J and Wood, PA (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography 41, 466470.
Nilsson, MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34, 151160.
Pace, CN, Grimsley, GR and Scholtz, JM (2009) Protein ionizable groups: pK values and their contribution to protein stability and solubility. Journal of Biological Chemistry 284, 1328513289.
Pedersen, JS, Dikov, D, Flink, JL, Hjuler, HA, Christiansen, G and Otzen, DE (2006) The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting. Journal of Molecular Biology 355, 501523.
Periole, X, Huber, T, Bonito-Oliva, A, Aberg, KC, Van Der Wel, PCA, Sakmar, TP and Marrink, SJ (2018) Energetics underlying twist polymorphisms in amyloid fibrils. Journal of Physical Chemistry B 122, 10811091.
Reynolds, NP, Adamcik, J, Berryman, JT, Handschin, S, Zanjani, AAH, Li, W, Liu, K, Zhang, A and Mezzenga, R (2017) Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nature Communications 8, 1338.
Rodriguez, JA, Ivanova, MI, Sawaya, MR, Cascio, D, Reyes, FE, Shi, D, Sangwan, S, Guenther, EL, Johnson, LM, Zhang, M, Jiang, L, Arbing, MA, Nannenga, BL, Hattne, J, Whitelegge, J, Brewster, AS, Messerschmidt, M, Boutet, B, Sauter, NK, Gonen, T and Eisenberg, DS (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486490.
Saiki, M, Honda, S, Kawasaki, K, Zhou, DS, Kaito, A, Konakahara, T and Morii, H (2005) Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains. Journal of Molecular Biology 348, 983998.
Saric, A, Buell, AK, Meisl, G, Michaels, TCT, Dobson, CM, Linse, S, Knowles, TPJ and Frenkel, D (2016) Physical determinants of the self-replication of protein fibrils. Nature Physics 12, 874880.
Serio, TR, Cashikar, AG, Kowal, AS, Sawicki, GJ, Moslehi, JJ, Serpell, L, Arnsdorf, MF and Lindquist, SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 13171321.
Serpell, LC, Berriman, J, Jakes, R, Goedert, M and Crowther, RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proceedings of the National Academy of Sciences of the United States of America 97, 48974902.
Solomon, MJ and Spicer, PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6, 13911400.
Spillantini, MG, Schmidt, ML, Lee, VMY, Trojanowski, JQ, Jakes, R and Goedert, M (1997) α-Synuclein in Lewy bodies. Nature 388, 839840.
Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M and Goedert, M (1998 a) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America 95, 64696473.
Spillantini, MG, Crowther, RA, Jakes, R, Cairns, NJ, Lantos, PL and Goedert, M (1998 b) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neuroscience Letters 251, 205208.
Sunde, M, Serpell, LC, Bartlam, M, Fraser, PE, Pepys, MB and Blake, CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of Molecular Biology 273, 729739.
Tornquist, M, Michaels, TCT, Sanagavarapu, K, Yang, X, Meisl, G, Cohen, SIA, Knowles, TPJ and Linse, S (2018) Secondary nucleation in amyloid formation. Chemical Communications 54, 86678684.
Tuttle, MD, Comellas, G, Nieuwkoop, AJ, Covell, DJ, Berthold, DA, Kloepper, KD, Courtney, JM, Kim, JK, Barclay, AM, Kendall, A, Wan, W, Stubbs, G, Schwieters, CD, Lee, VMY, George, JM and Rienstra, CM (2016) Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature Structural & Molecular Biology 23, 409415.
Ueda, K, Fukushima, H, Masliah, E, Xia, Y, Iwai, A, Yoshimoto, M, Otero, D, Kondo, J, Ihara, Y and Saitoh, T (1993) Molecular-cloning of cDNA-encoding an unrecognized component of amyloid. Proceedings of the National Academy of Sciences of the United States of America 90, 1128211286.
Vetri, V, Canale, C, Relini, A, Librizzi, F, Militello, V, Gliozzi, A and Leone, M (2007) Amyloid fibrils formation and amorphous aggregation in concanavalin A. Biophysical Chemistry 125, 184190.
Wallace, B and Teeters, C (1987) Differential absorption flattening optical effects are significant in the circular-dichroism spectra of large membrane-fragments. Biochemistry 26, 6570.
Weatherford, D and Salemme, F (1979) Conformations of twisted parallel β-sheets and the origin of chirality in protein structures. Proceedings of the National Academy of Sciences of the United States of America 76, 1923.
Wei, L, Jiang, P, Xu, W, Li, H, Zhang, H, Yan, L, Chan-Park, MB, Liu, XW, Tang, K, Mu, Y and Pervushin, K (2011) The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. Journal of Biological Chemistry 286, 62916300.
Yoshimura, Y, Lin, Y, Yagi, H, Lee, YH, Kitayama, H, Sakurai, K, So, M, Ogi, H, Naiki, H and Goto, Y (2012) Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proceedings of the National Academy of Sciences of the United States of America 109, 1444614451.

Keywords

Type Description Title
PDF
Supplementary materials

Pallbo et al. supplementary material
Pallbo et al. supplementary material 1

 PDF (3.5 MB)
3.5 MB

Aggregation behavior of the amyloid model peptide NACore

  • Jon Pallbo (a1), Emma Sparr (a1) and Ulf Olsson (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed