Skip to main content
×
×
Home

An RNA folding motif: GNRA tetraloop–receptor interactions

  • Julie L. Fiore (a1) and David J. Nesbitt (a1)
Abstract

Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.

Copyright
Corresponding author
*Author for Correspondence: D. J. Nesbitt, JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA. Tel.: (303)492-8857; Fax: (303)492-5235; E-mail: djn@jila.colorado.edu
References
Hide All
Abramovitz, D. L. & Pyle, A. M. (1997). Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop–receptor interaction. Journal of Molecular Biology 266, 493506.
Adams, P. L., Stahley, M. R., Gill, M. L., Kosek, A. B., Wang, J. M. & Strobel, S. A. (2004a). Crystal structure of a group I intron splicing intermediate. RNA 10, 18671887.
Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. M. & Strobel, S. A. (2004b). Crystal structure of a self-splicing group I intron with both exons. Nature 430, 4550.
Afonin, K. A., Lin, Y. P., Calkins, E. R. & Jaeger, L. (2012). Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Research 40, 21682180.
Ansari, A., Jones, C. M., Henry, E. R., Hofrichter, J. & Eaton, W. A. (1992). The role of solvent viscosity in the dynamics of protein conformational changes. Science 256, 17961798.
Antao, V. P. & Tinoco, I. (1992). Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Research 20, 819824.
Antao, V. P., Lai, S. Y. & Tinoco, I. (1991). A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Research 19, 59015905.
Antonioli, A. H., Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. (2010). Plasticity of the RNA kink turn structural motif. RNA 16, 762768.
Bai, Y., Chu, V. B., Lipfert, J., Pande, V. S., Herschlag, D. & Doniach, S. (2008). Critical assessment of nucleic acid electrostatics via experimental and computational investigation of an unfolded state ensemble. Journal of the American Chemical Society 130, 1233412341.
Baird, N. J., Westhof, E., Qin, H., Pan, T. & Sosnick, T. R. (2005). Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. Journal of Molecular Biology 352, 712722.
Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289, 905920.
Bartley, L. E., Zhuang, X. W., Das, R., Chu, S. & Herschlag, D. (2003). Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. Journal of Molecular Biology 328, 10111026.
Basu, S., Rambo, R. P., Strauss-Soukup, J., Cate, J. H., Ferre-D'amare, A. R., Strobel, S. A. & Doudna, J. A. (1998). A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nature Structural Biology 5, 986992.
Batey, R. T., Rambo, R. P. & Doudna, J. A. (1999). Tertiary motifs in RNA structure and folding. Angewandte Chemie-International Edition 38, 23272343.
Behrouzi, R., Roh, J. H., Kilburn, D., Briber, R. M. & Woodson, S. A. (2012). Cooperative tertiary interaction network guides RNA folding. Cell 149, 348357.
Benz-Moy, T. L. & Herschlag, D. (2011). Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 50, 87338755.
Birgisdottir, A. B., Nielsen, H., Beckert, B., Masquida, B. & Johansen, S. D. (2011). Intermolecular interaction between a branching ribozyme and associated homing endonuclease mRNA. Biological Chemistry 392, 491499.
Bokinsky, G., Rueda, D., Misra, V. K., Rhodes, M. M., Gordus, A., Babcock, H. P., Walter, N. G. & Zhuang, X. W. (2003). Single-molecule transition-state analysis of RNA folding. Proceedings of the National Academy of Sciences, USA 100, 93029307.
Brion, P. & Westhof, E. (1997). Hierarchy and dynamics of RNA folding. Annual Review of Biophysics and Biomolecular Structure 26, 113137.
Brown, J. W., Nolan, J. M., Haas, E. S., Rubio, M. A. T., Major, F. & Pace, N. R. (1996). Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proceedings of the National Academy of Sciences, USA 93, 30013006.
Butcher, S. E. & Pyle, A. M. (2011). The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Accounts of Chemical Research 44, 13021311.
Butcher, S. E., Dieckmann, T. & Feigon, J. (1997). Solution structure of a GAAA tetraloop receptor RNA. EMBO Journal 16, 74907499.
Cate, J. H. & Doudna, J. A. (1996). Metal-binding sites in the major groove of a large ribozyme domain. Structure 4, 12211229.
Cate, J. H., Gooding, A. R., Podell, E., Zhou, K. H., Golden, B. L., Kundrot, C. E., Cech, T. R. & Doudna, J. A. (1996a). Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 16781685.
Cate, J. H., Gooding, A. R., Podell, E., Zhou, K. H., Golden, B. L., Szewczak, A. A., Kundrot, C. E., Cech, T. R. & Doudna, J. A. (1996b). RNA tertiary structure mediation by adenosine platforms. Science 273, 16961699.
Chauhan, S. & Woodson, S. A. (2008). Tertiary interactions determine the accuracy of RNA folding. Journal of the American Chemical Society 130, 12961303.
Chauhan, S., Caliskan, G., Briber, R. M., Perez-Salas, U., Rangan, P., Thirumalai, D. & Woodson, S. A. (2005). RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. Journal of Molecular Biology 353, 11991209.
Correll, C. C. & Swinger, K. (2003). Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 angstrom resolution. RNA 9, 355363.
Correll, C. C., Munishkin, A., Chan, Y. L., Ren, Z., Wool, I. G. & Steitz, T. A. (1998). Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proceedings of the National Academy of Sciences, USA 95, 1343613441.
Costa, M. & Michel, F. (1995). Frequent use of the same tertiary motif by self-folding RNAs. EMBO Journal 14, 12761285.
Costa, M. & Michel, F. (1997). Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO Journal 16, 32893302.
Davis, J. H., Foster, T. R., Tonelli, M. & Butcher, S. E. (2007). Role of metal ions in the tetraloop-receptor complex as analyzed by NMR. RNA 13, 7686.
Davis, J. H., Tonelli, M., Scott, L. G., Jaeger, L., Williamson, J. R. & Butcher, S. E. (2005). RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. Journal of Molecular Biology 351, 371382.
Dibrov, S. M., Mclean, J., Parsons, J. & Hermann, T. (2011). Self-assembling RNA square. Proceedings of the National Academy of Sciences, USA 108, 64056408.
Ditzler, M. A., Rueda, D., Mo, J. J., Hakansson, K. & Walter, N. G. (2008). A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Research 36, 70887099.
Doherty, E. A., Batey, R. T., Masquida, B. & Doudna, J. A. (2001). A universal mode of helix packing in RNA. Nature Structural Biology 8, 339343.
Downey, C. D., Crisman, R. L., Randolph, T. W. & Pardi, A. (2007). Influence of hydrostatic pressure and cosolutes on RNA tertiary structure. Journal of the American Chemical Society 129, 92909291.
Downey, C. D., Fiore, J. L., Stoddard, C. D., Hodak, J. H., Nesbitt, D. J. & Pardi, A. (2006). Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker. Biochemistry 45, 36643673.
Duncan, C. D. S. & Weeks, K. M. (2010). The Mrs1 splicing factor binds the bI3 group I Intron at each of two tetraloop-receptor motifs. PLoS ONE 5, e8983.
Fedoruk-Wyszomirska, A., Szymanski, M., Wyszko, E., Barciszewska, M. Z. & Barciszewski, J. (2009). Highly active low magnesium hammerhead ribozyme. Journal of Biochemistry 145, 451459.
Ferre-D'amare, A. R., Zhou, K. H. & Doudna, J. A. (1998). A general module for RNA crystallization. Journal of Molecular Biology 279, 621631.
Fersht, A. R., Matouschek, A. & Serrano, L. (1992). The folding of an Enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. Journal of Molecular Biology 224, 771782.
Fiore, J. L., Hodak, J. H., Piestert, O., Downey, C. D. & Nesbitt, D. J. (2008). Monovalent and divalent promoted GAAA tetraloop-receptor tertiary interactions from freely diffusing single-molecule studies. Biophysical Journal 95, 38923905.
Fiore, J. L., Holmstrom, E. D., Fiegland, L. R., Hodak, J. H. & Nesbitt, D. J. (2012a). The role of counterion valence and size in GAAA tetraloop-teceptor docking/undocking kinetics. Journal of Molecular Biology 423, 198216.
Fiore, J. L., Holmstrom, E. D. & Nesbitt, D. J. (2012b). Entropic origin of Mg2+-facilitated RNA folding. Proceedings of the National Academy of Sciences, USA 109, 29022907.
Fiore, J. L., Kraemer, B., Koberling, F., Erdmann, R. & Nesbitt, D. J. (2009). Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop–receptor tertiary interaction. Biochemistry 48, 25502558.
Fujita, Y., Tanaka, T., Furuta, H. & Ikawa, Y. (2012). Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch. Journal of Bioscience and Bioengineering 113, 141145.
Geary, C., Baudrey, S. & Jaeger, L. (2008). Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Research 36, 11381152.
Greenfeld, M., Solomatin, S. V. & Herschlag, D. (2011). Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. Journal of Biological Chemistry 286, 1987219879.
Greenleaf, W. J., Frieda, K. L., Foster, D. A. N., Woodside, M. T. & Block, S. M. (2008). Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630633.
Hanggi, P., Talkner, P. & Borkovec, M. (1990). Reaction-rate theory: 50 years after Kramers. Reviews of Modern Physics 62, 251341.
Hedenstierna, K. O. F., Siefert, J. L., Fox, G. E. & Murgola, E. J. (2000). Co-conservation of rRNA tetraloop sequences and helix length suggests involvement of the tetraloops in higher-order interactions. Biochimie 82, 221227.
Hendrix, D. K., Brenner, S. E. & Holbrook, S. R. (2005). RNA structural motifs: building blocks of a modular biomolecule. Quarterly Reviews of Biophysics 38, 221243.
Heus, H. A. & Pardi, A. (1991). Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191194.
Hodak, J. H., Downey, C. D., Fiore, J. L., Pardi, A. & Nesbitt, D. J. (2005). Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. Proceedings of the National Academy of Sciences, USA 102, 1050510510.
Holmstrom, E. D., Fiore, J. L. & Nesbitt, D. J. (2012). Thermodynamic origins of monovalent-facilitated RNA folding. Biochemistry 51, 37323743.
Ikawa, Y., Fukada, K., Watanabe, S., Shiraishi, H. & Inoue, T. (2002). Design, construction, and analysis of a novel class of self-folding RNA. Structure 10, 527534.
Ikawa, Y., Naito, D., Aono, N., Shiraishi, H. & Inoue, T. (1999). A conserved motif in group IC3 introns is a new class of GNRA receptor. Nucleic Acids Research 27, 18591865.
Ikawa, Y., Nohmi, K., Atsumi, S., Shiraishi, H. & Inoue, T. (2001). A comparative study on two GNRA-tetraloop receptors: 11-nt and IC3 motifs. Journal of Biochemistry 130, 251255.
Ishikawa, J., Fujita, Y., Maeda, Y., Furuta, H. & Ikawa, Y. (2011). GNRA/receptor interacting modules: versatile modular units for natural and artificial RNA architectures. Methods 54, 226238.
Jaeger, L. & Chworos, A. (2006). The architectonics of programmable RNA and DNA nanostructures. Current Opinion in Structural Biology 16, 531543.
Jaeger, L. & Leontis, N. B. (2000). Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angewandte Chemie-International Edition 39, 25212524.
Jaeger, L., Michel, F. & Westhof, E. (1994). Involvement of a GNRA tetraloop in long-range tertiary interactions. Journal of Molecular Biology 236, 12711276.
Jaeger, L., Westhof, E. & Leontis, N. B. (2001). TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Research 29, 455463.
Jucker, F. M. & Pardi, A. (1995). GNRA tetraloops make a U-Turn. RNA 1, 219222.
Jucker, F. M., Heus, H. A., Yip, P. F., Moors, E. H. M. & Pardi, A. (1996). A network of heterogeneous hydrogen bonds in GNRA tetraloops. Journal of Molecular Biology 264, 968980.
Juneau, K., Podell, E., Harrington, D. J. & Cech, T. R. (2001). Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure 9, 221231.
Kashiwagi, N., Yamashita, K., Furuta, H. & Ikawa, Y. (2009). Designed RNAs with two peptide-binding units as Artificial templates for native chemical ligation of RNA-binding peptides. Chembiochem 10, 27452752.
Keating, K. S., Toor, N. & Pyle, A. M. (2008). The GANC Tetraloop: a novel Motif in the group IIC intron structure. Journal of Molecular Biology 383, 475481.
Klosterman, P. S., Hendrix, D. K., Tamura, M., Holbrook, S. R. & Brenner, S. E. (2004). Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic Acids Research 32, 23422352.
Krasilnikov, A. S., Yang, X. J., Pan, T. & Mondragon, A. (2003). Crystal structure of the specificity domain of ribonuclease P. Nature 421, 760764.
Kulshina, N., Baird, N. J. & Ferre-D'amare, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Structural and Molecular Biology 16, 12121217.
Lambert, D., Leipply, D., Shiman, R. & Draper, D. E. (2009). The influence of monovalent cation size on the stability of RNA tertiary structures. Journal of Molecular Biology 390, 791804.
Lee, J. C., Gutell, R. R. & Russell, R. (2006). The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. Journal of Molecular Biology 360, 978988.
Leontis, N. B., Lescoute, A. & Westhof, E. (2006). The building blocks and motifs of RNA architecture. Current Opinion in Structural Biology 16, 279287.
Maglott, E. J., Goodwin, J. T. & Glick, G. D. (1999). Probing the structure of an RNA tertiary unfolding transition state. Journal of the American Chemical Society 121, 74617462.
Massire, C., Jaeger, L. & Westhof, E. (1997). Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs. RNA 3, 553556.
Matsumura, S., Ohmori, R., Saito, H., Ikawa, Y. & Inoue, T. (2009). Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. FEBS Letters 583, 28192826.
Michel, F. & Westhof, E. (1990). Modeling of the 3-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. Journal of Molecular Biology 216, 585610.
Michel, F., Costa, M. & Westhof, E. (2009). The ribozyme core of group II introns: a structure in want of partners. Trends in Biochemical Sciences 34, 189199.
Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. (1989). The guanosine binding-Site of the Tetrahymena ribozyme. Nature 342, 391395.
Misra, V. K. & Draper, D. E. (2001). A thermodynamic framework for Mg2+ binding to RNA. Proceedings of the National Academy of Sciences, USA 98, 1245612461.
Misra, V. K., Shiman, R. & Draper, D. E. (2003). A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69, 118136.
Mondragon, P. A., Krasilnikov, A. S. & Pan, T. (2003). Structural studies of the specificity domain of ribonuclease P. Biochemistry 42, 11.
Murphy, F. L. & Cech, T. R. (1994). GAAA tetraloop and conserved bulge stabilize tertiary structure of a group-I intron domain. Journal of Molecular Biology 236, 4963.
Nasalean, L., Baudrey, S., Leontis, N. B. & Jaeger, L. (2006). Controlling RNA self-assembly to form filaments. Nucleic Acids Research 34, 13811392.
Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. (2001). RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proceedings of the National Academy of Sciences, USA 98, 48994903.
Noller, H. F. (2005). RNA structure: reading the ribosome. Science 309, 15081514.
Novikova, I. V., Hassan, B. H., Mirzoyan, M. G. & Leontis, N. B. (2011). Engineering cooperative tecto-RNA complexes having programmable stoichiometries. Nucleic Acids Research 39, 29032917.
Ohuchi, S. P., Ikawa, Y. & Nakamura, Y. (2008). Selection of a novel class of RNA-RNA interaction motifs based on the ligase ribozyme with defined modular architecture. Nucleic Acids Research 36, 36003607.
Pley, H. W., Flaherty, K. M. & Mckay, D. B. (1994a). 3-Dimensional structure of a hammerhead ribozyme. Nature 372, 6874.
Pley, H. W., Flaherty, K. M. & Mckay, D. B. (1994b). Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111113.
Pljevaljcic, G., Millar, D. P. & Deniz, A. A. (2004). Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. Biophysical Journal 87, 457467.
Proctor, D. J., Schaak, J. E., Bevilacqua, J. M., Falzone, C. J. & Bevilacqua, P. C. (2002). Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. Biochemistry 41, 1206212075.
Qin, H., Sosnick, T. R. & Pan, T. (2001a). Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry 40, 1120211210.
Qin, P. Z., Butcher, S. E., Feigon, J. & Hubbell, W. L. (2001b). Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry 40, 69296936.
Qin, P. Z., Feigon, J. & Hubbell, W. L. (2005). Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+-dependent docking of a GAAA tetraloop. Journal of Molecular Biology 351, 18.
Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation. Cell 108, 557572.
Ramos, R. & Martinez-Salas, E. (1999). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5, 13741383.
Regulski, E. E., Moy, R. H., Weinberg, Z., Barrick, J. E., Yao, Z., Ruzzo, W. L. & Breaker, R. R. (2008). A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Molecular Microbiology 68, 918932.
Reiter, N. J., Osterman, A., Torres-Larios, A., Swinger, K. K., Pan, T. & Mondragon, A. (2010). Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468, 784789.
Santalucia, J., Kierzek, R. & Turner, D. H. (1992). Context dependence of hydrogen-bond free-energy revealed by substitutions in an RNA hairpin. Science 256, 217219.
Sattin, B. D., Zhao, W., Travers, K., Chut, S. & Herschlag, D. (2008). Direct measurement of tertiary contact cooperativity in RNA folding. Journal of the American Chemical Society 130, 60856087.
Serra, M. J., Turner, D. H., Michael, L. J. & Ackers, G. K. (1995). Predicting thermodynamic properties of RNA. Methods in Enzymology 259, 242261.
Shcherbakova, I. & Brenowitz, M. (2005). Perturbation of the hierarchical folding of a large RNA by the destabilization of its scaffold's tertiary structure. Journal of Molecular Biology 354, 483496.
Shiohara, T., Saito, H. & Inoue, T. (2009). A designed RNA selection: establishment of a stable complex between a target and selectant RNA via two coordinated interactions. Nucleic Acids Research 37, e23.
Silverman, S. K. & Cech, T. R. (1999). Energetics and cooperativity of tertiary hydrogen bonds in RNA structure. Biochemistry 38, 86918702.
Silverman, S. K. & Cech, T. R. (2001). An early transition state for folding of the P4-P6 RNA domain. RNA 7, 161166.
Smith, K. D., Lipchock, S. V., Ames, T. D., Wang, J. M., Breaker, R. R. & Strobel, S. A. (2009). Structural basis of ligand binding by a c-di-GMP riboswitch. Nature Structural and Molecular Biology 16, 1218U1227.
Solomatin, S. V., Greenfeld, M., Chu, S. & Herschlag, D. (2010). Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463, 681686.
Sudarsan, N., Lee, E. R., Weinberg, Z., Moy, R. H., Kim, J. N., Link, K. H. & Breaker, R. R. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411413.
Szewczak, A. A., Podell, E. R., Bevilacqua, P. C. & Cech, T. R. (1998). Thermodynamic stability of the P4-P6 domain RNA tertiary structure measured by temperature gradient gel electrophoresis. Biochemistry 37, 1116211170.
Tamura, M. & Holbrook, S. R. (2002). Sequence and structural conservation in RNA ribose zippers. Journal of Molecular Biology 320, 455474.
Tan, E., Wilson, T. J., Nahas, M. K., Clegg, R. M., Lilley, D. M. J. & Ha, T. (2003). A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proceedings of the National Academy of Sciences, USA 100, 93089313.
Tinoco, I. & Bustamante, C. (1999). How RNA folds. Journal of Molecular Biology 293, 271281.
Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. (2008). Crystal structure of a self-spliced group II intron. Science 320, 7782.
Torres-Larios, A., Swinger, K. K., Pan, T. & Mondragon, A. (2006). Structure of ribonuclease P – a universal ribozyme. Current Opinion in Structural Biology 16, 327335.
Treiber, D. K. & Williamson, J. R. (2001). Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction. Journal of Molecular Biology 305, 1121.
Vander Meulen, K. A. & Butcher, S. E. (2012). Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Research 40, 21402151.
Vander Meulen, K. A., Davis, J. H., Foster, T. R., Record, T. & Butcher, S. E. (2008). Thermodynamics and folding pathway of tetraloop receptor-mediated RNA helical packing. Journal of Molecular Biology 384, 702717.
Venditti, V., Clos, L., Niccolai, N. & Butcher, S. E. (2009). Minimum-energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. Journal of Molecular Biology 391, 894905.
Wang, Y. X., Zuo, X. B., Wang, J. B., Yu, P. & Butcher, S. E. (2010). Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods 52, 180191.
Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., Kim, J. N., Gore, J., Wang, J. X., Lee, E. R., Block, K. F., Sudarsan, N., Neph, S., Tompa, M., Ruzzo, W. L. & Breaker, R. R. (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Research 35, 48094819.
Westhof, E., Jaeger, L., Lehnert, V., Massire, C. & Michel, F. (1998a). The modular assembly of large RNAs: 3-D models of self-splicing introns and bacterial RNase P. FASEB Journal 12, 50.
Westhof, E., Masquida, B. & Jaeger, L. (1996). RNA tectonics: towards RNA design. Folding and Design 1, R78R88.
Westhof, E., Masquida, B. & Jaeger, L. (1998b). RNA tectonics and modular modeling of RNA. In Molecular Modeling of Nucleic Acids. Washington, DC: American Chemical Society, vol. 682, pp. 346358.
Winkler, W. C. & Breaker, R. R. (2005). Regulation of bacterial gene expression by riboswitches. Annual Review of Microbiology 59, 487517.
Woese, C. R., Winker, S. & Gutell, R. R. (1990). Architecture of ribosomal-RNA: constraints on the sequence of Tetra-loops. Proceedings of the National Academy of Sciences, USA 87, 84678471.
Xie, Z., Srividya, N., Sosnick, T. R., Pan, T. & Scherer, N. F. (2004). Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. Proceedings of the National Academy of Sciences, USA 101, 534539.
Xin, Y. R., Laing, C., Leontis, N. B. & Schlick, T. (2008). Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA 14, 24652477.
Young, B. T. & Silverman, S. K. (2002). The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain. Biochemistry 41, 1227112276.
Zhao, Q., Huang, H. C., Nagaswamy, U., Xia, Y., Gao, X. & Fox, G. E. (2012). UNAC tetraloops: to what extent do they mimic GNRA tetraloops?. Biopolymers 97 617628.
Zhou, H. X. (2010). Rate theories for biologists. Quarterly Reviews of Biophysics 43, 219293.
Zhuang, X. W., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T. J., Herschlag, D. & Chu, S. (2000). A single-molecule study of RNA catalysis and folding. Science 288, 20482051.
Zhuang, X. W., Kim, H., Pereira, M. J. B., Babcock, H. P., Walter, N. G. & Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. Science 296, 14731476.
Zuo, X. B., Wang, J. B., Foster, T. R., Schwieters, C. D., Tiede, D. M., Butcher, S. E. & Wang, Y. X. (2008). Global molecular structure and interfaces: refining an RNA: RNA complex structure using solution X-ray scattering data. Journal of the American Chemical Society 130, 32923293.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 24
Total number of PDF views: 198 *
Loading metrics...

Abstract views

Total abstract views: 1037 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2018. This data will be updated every 24 hours.