Skip to main content
×
Home

Biomolecular electrostatics and solvation: a computational perspective

  • Pengyu Ren (a1), Jaehun Chun (a2), Dennis G. Thomas (a2), Michael J. Schnieders (a1), Marcelo Marucho (a3), Jiajing Zhang (a1) and Nathan A. Baker (a2)...
Abstract
Abstract

An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

Copyright
Corresponding author
*Author for correspondence: Nathan A. Baker, Pacific Northwest National Laboratory, PO Box 999, MSID K7-29, Richland, WA 99352, USA. Tel.: +1-509-375-3997; Email: nathan.baker@pnnl.gov
References
Hide All
Aaqvist J. (1990). Ion–water interaction potentials derived from free energy perturbation simulations. Journal of Physical Chemistry 94, 80218024.
Adams P. L., Stahley M. R., Kosek A. B., Wang J. M. & Strobel S. A. (2004). Crystal structure of a self-splicing group I intron with both exons. Nature 430, 4550.
Alejandre J. & Hansen J. (2007). Ions in water: from ion clustering to crystal nucleation. Physical Review E 76, 061505.
Alexov E., Mehler E. L., Baker N. M., Baptista A., Huang Y., Milletti F., Erik Nielsen J., Farrell D., Carstensen T., Olsson M. H. M., Shen J. K., Warwicker J., Williams S. & Word J. M. (2011). Progress in the prediction of pK a values in proteins. Proteins: Structure, Function, and Bioinformatics 79, 32603275.
Allen T. W., Kuyucak S. & Chung S.-H. (2000). Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. Biophysical Chemistry 86, 114.
Allinger N. L. (1976). Calculation of molecular structure and energy by force-field methods. In Advances in Physical Organic Chemistry, vol. 13 (eds. Gold V. & Bethell D.), pp. 182. Academic Press, San Diego, CA.
Allison S. (2001). Boundary element modeling of biomolecular transport. Biophysical Chemistry 93, 197213.
Alper H. & Levy R. M. (1993). Dielectric and thermodynamic response of a generalized reaction field model for liquid state simulations. Journal of Chemical Physics 99, 98479852.
Altman M. D., Bardhan J. P., White J. K. & Tidor B. (2009). Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson–Boltzmann equation with curved boundary elements. Journal of Computational Chemistry 30, 132153.
Anandakrishnan R., Daga M. & Onufriev A. (2011). An n log n generalized Born approximation. Journal of Chemical Theory and Computation 7, 544559.
Anderson C. F. & Record M. T. (1990). Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annual Review of Biophysics and Biophysical Chemistry 19, 423463.
Anderson C. F. & Record M. T. (1995). Salt-nucleic acid interactions. Annual Review of Physical Chemistry 46, 657700.
Angelini T., Golestanian R., Coridan R., Butler J., Beraud A., Krisch M., Sinn H., Schweizer K. & Wong G. (2006). Counterions between charged polymers exhibit liquid-like organization and dynamics. Proceedings of the National Academy of Sciences of the United States of America 103, 79627967.
Angelini T., Liang H., Wriggers W. & Wong G. (2003). Like-charge attraction between polyelectrolytes induced by counterion charge density waves. Proceedings of the National Academy of Sciences of the United States of America 100, 86348637.
Ansell S., Barnes A. C., Mason P. E., Neilson G. W. & Ramos S. (2006). X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophysical Chemistry 124, 171179.
Antosiewicz J. (2008). Protonation free energy levels in complex molecular systems. Biopolymers 89, 262269.
Antosiewicz J., Briggs J., Elcock A., Gilson M. & Mccammon A. (1996a). Computing ionization states of proteins with a detailed charge model. Journal of Computational Chemistry 17, 16331644.
Antosiewicz J., Mccammon J. A. & Gilson M. K. (1996b). The determinants of pK as in proteins. Biochemistry 35, 78197833.
Applequist J. (1983). Cartesian polytensors. Journal of Mathematical Physics 24, 736741.
Applequist J. (1984). Fundamental relationships in the theory of electric multipole moments and multipole polarizabilities in static fields. Chemical Physics 85, 279290.
Applequist J. (1985). A multipole interaction theory of electric polarization of atomic and molecular assemblies. Journal of Chemical Physics 83, 809826.
Applequist J. (1989). Traceless Cartesian tensor forms for spherical harmonic-functions – new theorems and applications to electrostatics of dielectric media. Journal of Physics A (Mathematical and General) 22, 43034330.
Applequist J. (1993). Atom charge transfer in molecular polarizabilities: application of the Olson–Sundberg model to aliphatic and aromatic hydrocarbons. Journal of Physical Chemistry 97, 60166023.
Applequist J., Carl J. R. & Fung K.-K. (1972). An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. Journal of the American Chemical Society 94, 29522960.
Aqvist J. & Warshel A. (1989). Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A. Biophysical Journal 56, 171182.
Arai S., Chatake T., Ohhara T., Kurihara K., Tanaka I., Suzuki N., Fujimoto Z., Mizuno H. & Niimura N. (2005). Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements. Nucleic Acids Research 33, 30173024.
Arakawa T. & Timasheff S. (1984). Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 59125923.
Aroti A., Leontidis E., Dubois M. & Zemb T. (2007). Effects of monovalent anions of the Hofmeister series on DPPC lipid bilayers part I: swelling and in-plane equations of state. Biophysical Journal 93, 15801590.
Aroti A., Leontidis E., Maltseva E. & Brezesinski G. (2004). Effects of Hofmeister anions on DPPC Langmuir monolayers at the air-water interface. Journal of Physical Chemistry B 108, 1523815245.
Ashbaugh H. (2009). Entropy crossover from molecular to macroscopic cavity hydration. Chemical Physics Letters 477, 109111.
Ashbaugh H. & Paulaitis M. (1998). A molecular/continuum thermodynamic model of hydration. Journal of Physical Chemistry B 102, 50295032.
Ashbaugh H. & Pratt L. (2006). Colloquium: scaled particle theory and the length scales of hydrophobicity. Reviews of Modern Physics 78, 159178.
Ashbaugh H. & Truskett T. (2011). Putting the squeeze on cavities in liquids: quantifying pressure effects on solvation using simulations and scaled-particle theory. Journal of Chemical Physics 134, 014507.
Asthagiri D., Pratt L., Paulaitis M. & Rempe S. (2004). Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals. Journal of the American Chemical Society 126, 12851289.
Åstrand P. O., Linse P. & Karlström G. (1995). Molecular dynamics study of water adopting a potential function with explicit atomic dipole moments and anisotropic polarizabilities. Chemical Physics 191, 195202.
Attard P. (2002). Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation. San Diego, CA: Academic Press.
Auffinger P., Cheatham T. & Vaiana A. (2007). Spontaneous formation of KCl aggregates in biomolecular simulations: a force field issue? Journal of Chemical Theory and Computation 3, 18511859.
Auffinger P. & Hashem Y. (2007). Nucleic acid solvation: from outside to insight. Current Opinion in Structural Biology 17, 325333.
Auffinger P. & Westhof E. (2000a). RNA solvation: a molecular dynamics simulation perspective. Biopolymers 56, 266274.
Auffinger P. & Westhof E. (2000b). Water and ion binding around RNA and DNA (C,G) oligomers1. Journal of Molecular Biology 300, 11131131.
Auffinger P. & Westhof E. (2001). Water and ion binding around r(UpA)12 and d(TpA)12 oligomers – comparison with RNA and DNA (CpG)12 duplexes1. Journal of Molecular Biology 305, 10571072.
Azam S. S., Hofer T. S., Randolf B. R. & Rode B. M. (2009). Hydration of sodium(I) and potassium(I) revisited: a comparative QM/MM and QMCF MD simulation study of weakly hydrated ions. Journal of Physical Chemistry A 113, 18271834.
Azuara C., Orland H., Bon M., Koehl P. & Delarue M. (2008). Incorporating dipolar solvents with variable density in Poisson–Boltzmann electrostatics. Biophysics Journal 95, 55875605.
Bader R. F. W. (1990). Atoms in Molecules – A Quantum Theory. Oxford: Oxford University Press.
Baer M. & Mundy C. (2011). Toward an understanding of the specific ion effect using density functional theory. Journal of Physical Chemistry Letters 2, 10881093.
Bajaj C. (2003). Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics 127, 2351.
Bajaj C., Chen S.-C. & Rand A. (2011). An efficient higher-order fast multipole boundary element solution for Poisson–Boltzmann-based molecular electrostatics. SIAM Journal on Scientific Computing 33, 826.
Baker C. M., Lopes P. E., Zhu X., Roux B. & Mackerell A. D. Jr. (2010). Accurate calculation of hydration free energies using pair-specific Lennard–Jones parameters in the CHARMM drude polarizable force field. Journal of Chemical Theory and Computation 6, 11811198.
Baker N. (2005a). Biomolecular applications of Poisson–Boltzmann methods. Reviews in Computational Chemistry 21, 349379.
Baker N. (2005b). Improving implicit solvent simulations: a Poisson-centric view. Current Opinion in Structural Biology 15, 137143.
Baker N., Bashford D. & Case D. (2006). Implicit solvent electrostatics in biomolecular simulation. In New Algorithms for Macromolecular Simulation, vol. 49 (eds. Barth T., Griebel M., Keyes D., Nieminen R., Roose D., Schlick T., Leimkuhler B., Chipot C., Elber R., Laaksonen A., Mark A., Schütte C. & Skeel R.), pp. 263295. Berlin, Heidelberg: Springer.
Baker N., Holst M. & Wang F. (2000). Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. Journal of Computational Chemistry 21, 13431352.
Baker N., Hünenberger P. & Mccammon A. (1999). Polarization around an ion in a dielectric continuum with truncated electrostatic interactions. Journal of Chemical Physics 110, 1067910692.
Baker N. A. (2004). Poisson–Boltzmann Methods for Biomolecular Electrostatics, vol. 383, pp. 94118. Amsterdam: Elsevier.
Baker N. A., Sept D., Holst M. J. & Mccammon J. A. (2001a). The adaptive multilevel finite element solution of the Poisson–Boltzmann equation on massively parallel computers. IBM Journal of Research and Development 45, 427438.
Baker N. A., Sept D., Joseph S., Holst M. J. & Mccammon J. A. (2001b). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America 98, 1003710041.
Baldwin R. L. (1996). How Hofmeister ion interactions affect protein stability. Biophysical Journal 71, 20562063.
Ballin J., Shkel I. & Record T. (2004). Interactions of the KWK6 cationic peptide with short nucleic acid oligomers: demonstration of large Coulombic end effects on binding at 0.1–0.2 M salt. Nucleic Acids Research 32, 32713281.
Banavali N., Im W. & Roux B. (2002). Electrostatic free energy calculations using the generalized solvent boundary potential method. Journal of Chemical Physics 117, 73817388.
Bank R. & Holst M. (2003). A new paradigm for parallel adaptive meshing algorithms. SIAM Review 45, 291323.
Baran K., Chimenti M., Schlessman J., Fitch C., Herbst K. & Garcia-Moreno B. (2008). Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease. Journal of Molecular Biology 379, 10451062.
Bardhan J. (2011). Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins. Journal of Chemical Physics 135, 104113.
Barducci A., Bonomi M. & Parrinello M. (2011). Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 826843.
Barillari C., Taylor J., Viner R. & Essex J. W. (2007). Classification of water molecules in protein binding sites. Journal of the American Chemical Society 129, 25772587.
Basdevant N., Borgis D. & Ha-Duong T. (2004). A semi-implicit solvent model for the simulation of peptides and proteins. Journal of Computational Chemistry 25, 10151029.
Basdevant N., Borgis D. & Ha-Duong T. (2007). A coarse-grained protein–protein potential derived from an all-atom force field. The Journal of Physical Chemistry B 111, 93909399.
Basdevant N., Ha-Duong T. & Borgis D. (2006). Particle-based implicit solvent model for biosimulations: application to proteins and nucleic acids hydration. Journal of Chemical Theory and Computation 2, 16461656.
Bashford D. (1997). An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules an Experience Report on the MEAD Project Scientific Computing in Object-Oriented Parallel Environments, vol. 1343 (eds. Ishikawa Y., Oldehoeft R., Reynders J. & Tholburn M.), pp. 233240. Berlin/Heidelberg: Springer.
Bashford D. & Case D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry 51, 129152.
Bashford D. & Karplus M. (1990). pK a's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29, 1021910225.
Basilevsky M. & Parsons D. (1998). Nonlocal continuum solvation model with exponential susceptibility kernels. Journal of Chemical Physics 108, 91079113.
Bastos M., Castro V., Mrevlishvili G. & Teixeira J. (2004). Hydration of ds-DNA and ss-DNA by neutron quasielastic scattering. Biophysical Journal 86, 38223827.
Bauer B. A., Lucas T. R., Meninger D. J. & Patel S. (2011). Water permeation through DMPC lipid bilayers using polarizable charge equilibration force fields. Chemical Physics Letters 508, 289294.
Bauer B. A. & Patel S. (2009). Properties of water along the liquid–vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. The Journal of Chemical Physics 131, 084709.
Bayly C., Cieplak P., Cornell W. & Kollman P. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical Chemistry 97, 1026910280.
Beglov D. & Roux B. (1994). Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. Journal of Chemical Physics 100, 90509063.
Beglov D. & Roux B. (1996). Solvation of complex molecules in a polar liquid: an integral equation theory. Journal of Chemical Physics 104, 86788689.
Beglov D. & Roux B. (1997). An integral equation to describe the solvation of polar molecules in liquid water. Journal of Physical Chemistry B 101, 78217826.
Ben-Amotz D. (2005). Global thermodynamics of hydrophobic cavitation, dewetting, and hydration. Journal of Chemical Physics 123, 184504.
Ben-Naim A. (1997). Solvation and solubility of globular proteins. Pure and Applied Chemistry 69, 22392244.
Ben-Naim A. (2006). Molecular Theory of Solutions. Oxford: Oxford University Press.
Ben-Yaakov D., Andelman D., Harries D. & Podgornik R. (2009). Beyond standard Poisson–Boltzmann theory: ion-specific interactions in aqueous solutions. Journal of Physics: Condensed Matter 21, 424106.
Ben-Yaakov D., Andelman D., Podgornik R. & Harries D. (2011). Ion-specific hydration effects: extending the Poisson–Boltzmann theory. Current Opinion in Colloid and Interface Science 16, 542550.
Benanti E. L. & Chivers P. T. (2007). The N-terminal arm of the Helicobacter pylori Ni2+-dependent transcription factor NikR is required for specific DNA binding. Journal of Biological chemistry 282, 2036520375.
Berendsen H. J. C., Grigera J. R. & Straatsma T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry 91, 62696271.
Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F. & Hermans J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular Forces (ed. Pullmann B.), pp. 331342. Dordrecht: D. Reidel Publishing Company.
Berkowitz M. & Vácha R. (2012). Aqueous solutions at the interface with phospholipid bilayers. Accounts of Chemical Research 45, 7482.
Bernal J. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics 1, 515.
Bernardo D. N., Ding Y., Krogh-Jespersen K. & Levy R. M. (1994). An anisotropic polarizable water model: incorporation of all-atom polarizabilities into molecular mechanics force fields. Journal of Physical Chemistry 98, 41804187.
Berne B., Weeks J. & Zhou R. (2009). Dewetting and hydrophobic interaction in physical and biological systems. Annual Review of Physical Chemistry 60, 85103.
Bertini I., Del Bianco C., Gelis I., Katsaros N., Luchinat C., Parigi G., Peana M., Provenzani A. & Zoroddu M. A. (2004). Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proceedings of the National Academy of Sciences of the United States of America 101, 68416846.
Besteman K., Zevenbergen M. A. G., Heering H. A. & Lemay S. G. (2004). Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon. Physical Review Letters 93, 170802.
Besteman K., Zevenbergen M. A. G. & Lemay S. G. (2005). Charge inversion by multivalent ions: dependence on dielectric constant and surface-charge density. Physical Review E 72, 061501.
Bharadwaj R., Windemuth A., Sridharan S., Honig B. & Nicholls A. (1995). The fast multipole boundary element method for molecular electrostatics: an optimal approach for large systems. Journal of Computational Chemistry 16, 898913.
Billeter M. (1996). Hydration and DNA recognition by homeodomains. Cell 85, 10571065.
Birge R. R. (1980). Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion. Journal of Chemical Physics 72, 53125319.
Bombarda E. & Ullmann M. M. (2010). pH-dependent pK a values in proteins – A theoretical analysis of protonation energies with practical consequences for enzymatic reactions. Journal of Physical Chemistry B 114, 19942003.
Bone S. (2006). Dielectric studies of water clusters in cyclodextrins: relevance to the transition between slow and fast forms of thrombin. Journal of Physical Chemistry B 110, 2060920614.
Bone S. (2008). Structural flexibility in hydrated proteins. Journal of Physical Chemistry B 112, 1007110075.
Bonvin A., Sunnerhagen M., Otting G. & Van Gunsteren W. (1998). Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator1. Journal of Molecular Biology 282, 859873.
Bordner A. J. & Huber G. A. (2003). Boundary element solution of the linear Poisson–Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution. Journal of Computational Chemistry. 24, 353367.
Born M. (1920). Volume and heat of hydration of ions. Zeitschrift fur Physik 1, 4548.
Borukhov I., Andelman D. & Orland H. (1997). Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Physical Review Letters 79, 435438.
Borukhov I., Andelman D. & Orland H. (2000). Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation. Electrochimica Acta 46, 221229.
Boschitsch A. & Fenley M. (2004). Hybrid boundary element and finite difference method for solving the nonlinear Poisson–Boltzmann equation. Journal of Computational Chemistry 25, 935955.
Boschitsch A., Fenley M. & Zhou H.-X. (2002). Fast boundary element method for the linear Poisson–Boltzmann equation. Journal of Physical Chemistry B 106, 27412754.
Bosio L., Chen S. H. & Teixeira J. (1983). Isochoric temperature differential of the X-ray structure factor and structural rearrangements in low-temperature heavy water. Physical Review A 27, 1468.
Boström M., Kunz W. & Ninham B. W. (2005a). Hofmeister effects in surface tension of aqueous electrolyte solution. Langmuir: the ACS Journal of Surfaces and Colloids 21, 26192623.
Boström M. & Ninham B. W. (2004). Contributions from dispersion and born self-free energies to the solvation energies of salt solutions. Journal of Physical Chemistry B 108, 1259312595.
Boström M. & Ninham B. W. (2005). Energy of an ion crossing a low dielectric membrane: the role of dispersion self-free energy. Biophysical Chemistry 114, 95101.
Boström M., Tavares F. W., Bratko D. & Ninham B. W. (2005b). Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation. Journal of Physical Chemistry B 109, 2448924494.
Boström M., Williams D. R. M. & Ninham B. W. (2003a). Specific ion effects: why the properties of lysozyme in salt solutions follow a hofmeister series. Biophysics Journal 85, 686694.
Boström M., Williams D. R. M., Stewart P. R. & Ninham B. W. (2003b). Hofmeister effects in membrane biology: the role of ionic dispersion potentials. Physical Review E 68, 041902.
Bottcher C. J. F. (1952). Theory of Electrostatic Polarisation. Amsterdam: Elsevier.
Bradley D. F., Lifson S. & Honig B. (1964). Theory of optical and other properties of biopolymers: applicability and elimination of the first-neighbor and dipole-dipole approximations. In Electronic Aspects of Biochemistry. New York: Academic Press.
Bradley M., Chivers P. & Baker N. (2008). Molecular dynamics simulation of the Escherichia coli NikR protein: equilibrium conformational fluctuations reveal interdomain allosteric communication pathways. Journal of Molecular Biology 378, 11551173.
Brdarski S., Astrand P.-O. & Karlstrom G. (2000). The inclusion of electron correlation in intermolecular potentials: applications to the formamide dimer and liquid formamide. Theoretical Chemistry Accounts 105, 714.
Breneman C. & Wiberg K. (1990). Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. Journal of Computational Chemistry 11, 361373.
Brobjer J. T. & Murrell J. N. (1982). A method for calculating the electrostatic energy between small polar molecules. The multipole-fitted point-charge method. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 78, 18531870.
Brooks B. R., Brooks C. L., Mackerell A. D., Nilsson L., Petrella R. J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., Caflisch A., Caves L., Cui Q., Dinner A. R., Feig M., Fischer S., Gao J., Hodoscek M., Im W., Kuczera K., Lazaridis T., Ma J., Ovchinnikov V., Paci E., Pastor R. W., Post C. B., Pu J. Z., Schaefer M., Tidor B., Venable R. M., Woodcock H. L., Wu X., Yang W., York D. M. & Karplus M. (2009). CHARMM: the biomolecular simulation program. Journal of Computational Chemistry 30, 15451614.
Brooks C. (1985). Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. Journal of Chemical Physics 83, 5897.
Brooks C. L. (1987). The influence of long-range force truncation on the thermodynamics of aqueous ionic solutions. Journal of Chemical Physics 86, 51565162.
Brown R. & Case D. (2006). Second derivatives in generalized Born theory. Journal of Computational Chemistry 27, 16621675.
Bryce R. A., Vincent M. A., Malcolm N. O. J., Hillier I. H. & Burton N. A. (1998). Cooperative effects in the structuring of fluoride water clusters: ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent. Journal of Chemical Physics 109, 30773085.
Bucher D., Raugei S., Guidoni L., Dal Peraro M., Rothlisberger U., Carloni P. & Klein M. L. (2006). Polarization effects and charge transfer in the KcsA potassium channel. Biophysical Chemistry 124, 292301.
Buckingham A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics 12, 107142.
Burley D. M., Hutson V. C. L. & Outhwaite C. W. (1974). A treatment of the volume and fluctuation term in Poisson's equation in the Debye–Huckel theory of strong electrolyte solutions. Molecular Physics 27, 225236.
Burnham C. J. & Xantheas S. S. (2002). Development of Transferable interaction models for water. I. prominent features of the water dimer potential energy surface. Journal of Chemical Physics 116, 14791492.
Burykin A., Kato M. & Warshel A. (2003). Exploring the origin of the ion selectivity of the KcsA potassium channel. Proteins: Structure, Function, and Bioinformatics 52, 412426.
Butler J., Angelini T., Tang J. & Wong G. (2003). Ion multivalence and like-charge polyelectrolyte attraction. Physical Review Letters 91, 028301.
Cai W., Deng S. & Jacobs D. (2007). Extending the fast multipole method to charges inside or outside a dielectric sphere. Journal of Computational Physics 223, 846864.
Calimet N. & Simonson T. (2006). Cys(x)His(y)–Zn2+ interactions: possibilities and limitations of a simple pairwise force field. Journal of Molecular Graphics and Modelling 24, 404411.
Carnie S. L. & Torrie G. M. (2007). The statistical mechanics of the electrical double layer. In Advances in Chemical Physics, pp. 141253. Hoboken, NJ: John Wiley and Sons Inc.
Carrington P., Chivers P., Al-Mjeni F., Sauer R. & Maroney M. (2003). Nickel coordination is regulated by the DNA-bound state of NikR. Nature Structural Biology 10(2), 126130.
Carstensen T., Farrell D., Huang Y., Baker N. A. & Nielsen J. E. (2011). On the development of protein pK(a) calculation algorithms. Proteins-Structure Function and Bioinformatics 79, 32873298.
Case D. A., Cheatham T. E., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B. & Woods R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry 26, 16681688.
Castañeda C., Fitch C., Majumdar A., Khangulov V., Schlessman J. & García-Moreno B. (2009). Molecular determinants of the pK a values of Asp and Glu residues in staphylococcal nuclease. Proteins 77, 570588.
Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R. & Doudna J. A. (1996). Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 16781685.
Cerutti D., Baker N. & Mccammon A. (2007). Solvent reaction field potential inside an uncharged globular protein: a bridge between implicit and explicit solvent models? Journal of Chemical Physics 127, 15510.
Chandler D. (1978). Structures of molecular liquids. Annual Review of Physical Chemistry 29, 441471.
Chandler D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature 437, 640647.
Chandler D., Mccoy J. D. & Singer S. J. (1986). Density functional theory of nonuniform polyatomic systems. I. General formulation. Journal of Chemical Physics 85, 59715976.
Chang T.-M. & Dang L. (2006). Recent advances in molecular simulations of ion solvation at liquid interfaces. Chemical Reviews 106, 13051322.
Charles H. B. (1976). Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics 22, 245268.
Chaturvedi U. C. & Shrivastava R. (2005). Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses. FEMS Immunology and Medical Microbiology 43, 105114.
Chaudhry J., Bond S. & Olson L. (2011). Finite element approximation to a finite-size modified Poisson–Boltzmann equation. Journal of Scientific Computing 47, 347364.
Chen A., Draper D. & Pappu R. (2009a). Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop. Journal of Molecular Biology 390, 805819.
Chen A., Marucho M., Baker N. & Pappu R. (2009b). Simulations of RNA Interactions with Monovalent Ions, vol. 469, pp. 411432. Amsterdam: Elsevier.
Chen A. & Pappu R. (2007a). Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. Journal of Physical Chemistry B 111, 1188411887.
Chen A. & Pappu R. (2007b). Quantitative characterization of ion pairing and cluster formation in strong 1:1 electrolytes. Journal of Physical Chemistry B 111, 64696478.
Chen D., Chen Z., Chen C., Geng W. & Wei G.-W. (2011a). MIBPB: a software package for electrostatic analysis. Journal of Computational Chemistry 32, 756770.
Chen J. (2010). Effective approximation of molecular volume using atom-centered dielectric functions in generalized born models. Journal of Chemical Theory and Computation 6, 27902803.
Chen J., Im W. & Brooks C. (2006). Balancing solvation and intramolecular interactions: toward a consistent generalized Born force field. Journal of the American Chemical Society 128, 37283736.
Chen L., Holst M. & Xu J. (2007a). The finite element approximation of the nonlinear Poisson–Boltzmann equation. SIAM Journal on Numerical Analysis 45, 2298.
Chen S.-W. & Honig B. (1997). Monovalent and divalent salt effects on electrostatic free energies defined by the nonlinear Poisson–Boltzmann equation: application to DNA binding reactions. Journal of Physical Chemistry B 101, 91139118.
Chen X., Yang T., Kataoka S. & Cremer P. (2007b). Specific ion effects on interfacial water structure near macromolecules. Journal of the American Chemical Society 129, 1227212279.
Chen Y.-G. & Weeks J. (2006). Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proceedings of the National Academy of Sciences of the United States of America 103, 75607565.
Chen Z., Baker N. & Wei G. (2011b). Differential geometry based solvation model II: lagrangian formulation. Journal of Mathematical Biology 63, 11391200.
Chen Z., Baker N. & Wei G. W. (2010). Differential geometry based solvation model I: Eulerian formulation. Journal of Computational Physics 229, 82318258.
Chessari G., Hunter C. A., Low C. M. R., Packer M. J., Vinter J. G. & Zonta C. (2002). An evaluation of force-field treatments of aromatic interactions. Chemistry – A European Journal 8, 28602867.
Chimenti M. S., Castañeda C. A., Majumdar A. & García-Moreno E. B. (2011). Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein. Journal of Molecular Biology 405, 361377.
Chivers P. T. & Sauer R. T. (2000). Regulation of high affinity nickel uptake in bacteria. Ni2+-dependent interaction of NIKR with wild-type and mutant operator sites. Journal of Biological Chemistry 275, 1973519741.
Chong S.-H. & Hirata F. (1998). Interaction-site-model description of collective excitations in classical molecular fluids. Physical Review E 57, 16911701.
Chothia C. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature 248, 338339.
Choudhury N. & Pettitt B. M. (2007). The dewetting transition and the hydrophobic effect. Journal of the American Chemical Society 129, 48474852.
Chu V., Bai Y., Lipfert J., Herschlag D. & Doniach S. (2007). Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory. Biophysical Journal 93, 32023209.
Chuev G. & Fedorov M. (2004). Wavelet algorithm for solving integral equations of molecular liquids. A test for the reference interaction site model. Journal of Computational Chemistry 25, 13691377.
Cieplak P., Dupradeau F. Y., Duan Y. & Wang J. M. (2009). Polarization effects in molecular mechanical force fields. Journal of Physics-Condensed Matter 21, 333101333121.
Cisneros G. A., Tholander S. N. I., Parisel O., Darden T. A., Elking D., Perera L. & Piquemal J. P. (2008). Simple formulas for improved point-charge electrostatics in classical force fields and hybrid quantum mechanical/molecular mechanical embedding. International Journal of Quantum Chemistry 108, 19051912.
Claessens M., Ferrario M. & Ryckaert J. P. (1983). The structure of liquid benzene. Molecular Physics 50, 217227.
Clark M., Meshkat S. & Wiseman J. (2009). Grand canonical free-energy calculations of protein-ligand binding. Journal of Chemical Information and Modeling 49, 934943.
Clarke R. & Lüpfert C. (1999). Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the hofmeister effect. Biophysics Journal 76, 26142624.
Clough S., Beers Y., Klein G. & Rothman L. (1973). Dipole moment of water from Stark measurements of H2O, HDO, and D2O. Journal of Chemical Physics 59, 2254.
Coalson R., Walsh A., Duncan A. & Tal N. (1995). Statistical mechanics of a Coulomb gas with finite size particles: a lattice field theory approach. Journal of Chemical Physics 102, 45844594.
Coalson R. D. & Duncan A. (1992). Systematic ionic screening theory of macroions. Journal of Chemical Physics 97, 56535653.
Collins K. D. (1995). Sticky ions in biological systems. Proceedings of the National Academy of Sciences of the United States of America 92, 55535557.
Conn G. L., Gittis A. G., Lattman E. E., Misra V. K. & Draper D. E. (2002). A compact RNA tertiary structure contains a buried backbone–K+ complex. Journal of Molecular Biology 318, 963973.
Connolly M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709713.
Connolly M. L. (1985). Computation of molecular volume. Journal of the American Chemical Society 107, 11181124.
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W. & Kollman P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (Vol. 117, Pg 5179, 1995). Journal of the American Chemical Society 118, 23092309.
Cortis C. & Friesner R. (1997a). An automatic three-dimensional finite element mesh generation system for the Poisson–Boltzmann equation. Journal of Computational Chemistry 18, 15701590.
Cortis C. & Friesner R. (1997b). Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite-element meshes. Journal of Computational Chemistry 18, 15911608.
Courtenay E. S., Capp M. W. & Record M. T. (2001). Thermodynamics of interactions of urea and guanidinium salts with protein surface: relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Science 10, 24852497.
Cox S. R. & Williams D. E. (1981). Representation of the molecular electrostatic potential by a net atomic charge model. Journal of Computational Chemistry 2, 304323.
Cramer C. & Truhlar D. (2008). A universal approach to solvation modeling. Accounts of Chemical Research 41, 760768.
Cramer C. J. & Truhlar D. G. (1999). Implicit solvation models: equilibria, structure, spectra, and dynamics. Chemical Reviews 99, 21612200.
Cramer C. J. & Truhlar D. G. (2001). Solvation thermodynamics and the treatment of equilibrium and nonequilibrium solvation effects by models based on collective solvent coordinates. In Free Energy Calculations in Rational Drug Design (eds. Rami Reddy M. & Erion M. D.). New York: Kluwer.
Cukier R. I. & Zhang J. J. (1997). Simulation of proton transfer reaction rates: the role of solvent electronic polarization. Journal of Physical Chemistry B 101, 71807190.
Curutchet C., Orozco M., Luque F. J., Mennucci B. & Tomasi J. (2006). Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model. Journal of Computational Chemistry 27, 17691780.
Damjanović A., García-Moreno B., Lattman E. & García A. (2005a). Molecular dynamics study of water penetration in staphylococcal nuclease. Proteins 60, 433449.
Damjanovic A., Garciamorenoe B., Lattman E. & Garcia A. (2005b). Molecular dynamics study of hydration of the protein interior. Computer Physics Communications 169, 126129.
Damjanović A., Schlessman J., Fitch C., García A. & García-Moreno E. B. (2007). Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins. Biophysical Journal 93, 27912804.
Dang L. X. (1992). Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F? ions in polarizable water. Journal of Chemical Physics 96, 69706977.
Dang L. X. & Chang T.-M. (2001). Molecular mechanism of ion binding to the liquid/vapor interface of water. The Journal of Physical Chemistry B 106, 235238.
Dang L. X., Rice J. E., Caldwell J. & Kollman P. A. (1991). Ion solvation in polarizable water: molecular dynamics simulations. Journal of the American Chemical Society 113, 24812486.
Darden T., York D. & Pedersen L. (1993). Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. Journal of Chemical Physics 98, 1008910092.
Davis M. & Mccammon A. (1990). Electrostatics in biomolecular structure and dynamics. Chemical Reviews 90, 509521.
Davis M. E. (1994). The inducible multipole solvation model: a new model for solvation effects on solute electrostatics. Journal of Chemical Physics 100, 51495159.
Davis M. E. & Mccammon J. A. (1989). Solving the finite difference linearized Poisson–Boltzmann equation: a comparison of relaxation and conjugate gradient methods. Journal of Computational Chemistry 10, 386391.
Della Valle R. G., Venuti E., Brillante A. & Girlando A. (2008). Do computed crystal structures of nonpolar molecules depend on the electrostatic interactions? The case of tetracene. Journal of Physical Chemistry A 112, 10851089.
Deng S. & Cai W. (2007). Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: high-order image approximations for reaction fields. Journal of Computational Physics 227, 12461266.
Deng Y. & Roux B. (2008). Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Journal of Chemical Physics 128, 115103115103.
Denisov V., Schlessman J., García-Moreno E. B. & Halle B. (2004). Stabilization of internal charges in a protein: water penetration or conformational change? Biophysical Journal 87, 39823994.
Di Cera E. (2006). A structural perspective on enzymes activated by monovalent cations. Journal of Biological Chemistry 281, 13051308.
Dill K., Truskett T., Vlachy V. & Hribar-Lee B. (2005). Modeling water, the hydrophobic effect, and ion solvation. Annual Review of Biophysics and Biomolecular Structure 34, 173199.
Ding F. & Dokholyan N. (2008). Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proceedings of the National Academy of Sciences of the United States of America 105, 1969619701.
Dinur U. & Hagler A. T. (1995). Geometry-dependent atomic charges: methodology and application to alkanes, aldehydes, ketones, and amides. Journal of Computational Chemistry 16, 154170.
Dixon R. W. & Kollman P. A. (1997). Advancing beyond the atom-centered model in additive and nonadditive molecular mechanics. Journal of Computational Chemistry 18, 16321646.
Dominy B. & Brooks C. (1999). Development of a generalized Born model parametrization for proteins and nucleic acids. Journal of Physical Chemistry B 103, 37653773.
Donchev A. G. (2006). Ab initio quantum force field for simulations of nanostructures. Physical Review B 74, 235401.
Donchev A. G., Ozrin V. D., Subbotin M. V., Tarasov O. V. & Tarasov V. I. (2005). A quantum mechanical polarizable force field for biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America 102, 78297834.
Dong F., Olsen B. & Baker N. (2008). Computational Methods for Biomolecular Electrostatics, vol. 84, pp. 843870. Amsterdam: Elsevier.
Dong F., Vijayakumar M. & Zhou H.-X. (2003). Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of Barnase and Barstar. Biophysical Journal 85, 4960.
Doxey A. C., Yaish M. W., Griffith M. & Mcconkey B. J. (2006). Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nature Biotechnology 24, 852855.
Draper D. (2008). RNA folding: thermodynamic and molecular descriptions of the roles of ions⋆. Biophysical Journal 95, 54895495.
Draper D. E., Grilley D. & Soto A. M. (2005). Ions and RNA folding. Annual Review of Biophysics and Biomolecular Structure 34, 221243.
Drew H. R., Samson S. & Dickerson R. E. (1982). Structure of a B-DNA dodecamer at 16 K. Proceedings of the National Academy of Sciences of the United States of America 79, 40404044.
Drozdov A., Grossfield A. & Pappu R. (2004). Role of solvent in determining conformational preferences of alanine dipeptide in water. Journal of the American Chemical Society 126, 25742581.
Du Q.-S., Liu P.-J. & Huang R.-B. (2008). Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM. Journal of Molecular Graphics and Modelling 26, 10141019.
Du Q., Beglov D. & Roux B. (2000). Solvation free energy of polar and nonpolar molecules in water: an extended interaction site integral equation theory in three dimensions. Journal of Physical Chemistry B 104, 796805.
Dykstra C. E. (1988). Intermolecular electrical interaction: a key ingredient in hydrogen bonding. Accounts of Chemical Research 21, 355361.
Dykstra C. E. (1993). Electrostatic interaction potentials in molecular force fields. Chemical Reviews 93, 23392353.
Dykstra C. E. (2001). Intermolecular electrical response. Journal of Molecular Structure: THEOCHEM 573, 6371.
Dyshlovenko P. E. (2002). Adaptive numerical method for Poisson–Boltzmann equation and its application. Computer Physics Communications 147, 335338.
Dzubiella J. & Hansen J. P. (2004). Competition of hydrophobic and Coulombic interactions between nanosized solutes. Journal of Chemical Physics 121, 55145530.
Dzubiella J., Swanson J. M. J. & Mccammon J. A. (2006a). Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Physical Review Letters 96, 087802.
Dzubiella J., Swanson J. M. J. & Mccammon J. A. (2006b). Coupling nonpolar and polar solvation free energies in implicit solvent models. Journal of Chemical Physics 124, 084905.
Eisenberg D. & Mclachlan A. D. (1986). Solvation energy in protein folding and binding. Nature 319, 199203.
Elcock A., Sept D. & Mccammon A. (2001). Computer simulation of protein–protein interactions. Journal of Physical Chemistry B 105, 15041518.
Engkvist O., Åstrand P.-O. & Karlström G. (1996). Intermolecular potential for the 1,2-dimethoxyethane–water complex. Journal of Physical Chemistry 100, 69506957.
England J. L., Pande V. S. & Haran G. (2008). Chemical denaturants inhibit the onset of dewetting. Journal of the American Chemical Society 130, 1185411855.
Ensign D. & Webb L. (2011). Factors determining electrostatic fields in molecular dynamics simulations of the ras/effector interface. Proteins-Structure Function and Bioinformatics 79, 35113524.
Evans T. I. A., Hell J. W. & Shea M. A. (2011). Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of CaV1.2. Biophysical Chemistry 159, 172187.
Ewell J., Gibb B. C. & Rick S. W. (2008). Water inside a hydrophobic cavitand molecule. Journal of Physical Chemistry B 112, 1027210279.
Faerman C. H. & Price S. L. (1990). A transferable distributed multipole model for the electrostatic interactions of peptides and amides. Journal of the American Chemical Society 112, 49154926.
Feig M. & Brooks C. (2004). Recent advances in the development and application of implicit solvent models in biomolecule simulations. Current Opinion in Structural Biology 14, 217224.
Feig M., Onufriev A., Lee M., Im W., Case D. & Brooks C. (2004). Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. Journal of Computational Chemistry 25, 265284.
Feig M., Tanizaki S. & Sayadi M. (2008). Chapter 6 implicit solvent simulations of biomolecules in cellular environments. Annual Reports in Computational Chemistry 4, 107121.
Felder C. E. & Applequist J. (1981). Energies of solute molecules from an atom charge-dipole interaction model with a surrounding dielectric: application to Gibbs energies of proton transfer between carboxylic acids in water. Journal of Chemical Physics 75, 23902398.
Fenimore P. W., Frauenfelder H., Mcmahon B. H. & Young R. D. (2004). Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proceedings of the National Academy of Sciences of the United States of America 101, 1440814413.
Fenley A. T., Gordon J. C. & Onufriev A. (2008). An analytical approach to computing biomolecular electrostatic potential. I. Derivation and analysis. Journal of Chemical Physics 129,075102.
Feynman R. P. (1939). Forces in molecules. Physical Review 56, 340343.
Fischer S. & Verma C. (1999). Binding of buried structural water increases the flexibility of proteins. Proceedings of the National Academy of Sciences of the United States of America 96, 96139615.
Fitzkee N. & García-Moreno E. B. (2008). Electrostatic effects in unfolded staphylococcal nuclease. Protein Science 17, 216227.
Fixman M. (1979). The Poisson–Boltzmann equation and its application to polyelectrolytes. Journal of Chemical Physics 70, 4995–4146.
Flanagan M., Ackers G., Matthew J., Hanania G. & Gurd F. (1981). Electrostatic contributions to the energetics of dimer–tetramer assembly in human hemoglobin: pH dependence and effect of specifically bound chloride ions. Biochemistry 20, 74397449.
Fletcher N. H. (1970). The Chemical Physics of Ice. New York: Cambridge University Press.
Florián J. & Warshel A. (1997). Langevin dipoles model for ab initio calculations of chemical processes in solution: parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. Journal of Physical Chemistry B 101, 55835595.
Floris F. & Tomasi J. (1989). Evaluation of the dispersion contribution to the solvation energy a simple computational model in the continuum approximation. Journal of Computational Chemistry 10, 616627.
Floris F. M., Tomasi J. & Ahuir P. (1991). Dispersion and repulsion contributions to the solvation energy: refinements to a simple computational model in the continuum approximation. Journal of Computational Chemistry 12, 784791.
Fogolari F., Brigo A. & Molinari H. (2002). The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. Journal of Molecular Recognition : JMR 15, 377392.
Fowler P. W. & Buckingham A. D. (1983). The long range model of intermolecular forces. Molecular Physics 50, 13491361.
Fowler P. W. & Buckingham A. D. (1991). Central or distributed multipole moments? Electrostatic models of aromatic dimers. Chemical Physics Letters 176, 1118.
Frank H. S. & Evans M. W. (1945). Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. Journal of Chemical Physics 13, 507.
Freedman H. & Truong T. N. (2004). Coupled reference interaction site model/simulation approach for thermochemistry of solvation: theory and prospects. Journal of Chemical Physics 121, 21872198.
Freitag M. A., Gordon M. S., Jensen J. H. & Stevens W. J. (2000). Evaluation of charge penetration between distributed multipolar expansions. Journal of Chemical Physics 112, 73007306.
Fried M. G., Stickle D. F., Smirnakis K. V., Adams C., Macdonald D. & Lu P. (2002). Role of hydration in the binding of lac repressor to DNA. Journal of Biological Chemistry 277, 5067650682.
Friedman H. L. (1975). Image approximation to the reaction field. Molecular Physics 29, 15331543.
Friedman R. (2000). Ions and the protein surface revisited: extensive molecular dynamics simulations and analysis of protein structures in alkali-chloride solutions. Journal of Physical Chemistry B 28, 234242.
Friesner R. A. (2005). Ab initio quantum chemistry: methodology and applications. Proceedings of the National Academy of Sciences of the United States of America 102, 66486653.
Friesner R. A. & Guallar V. (2005). Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annual Review of Physical Chemistry 56, 389427.
Frolov A., Ratkova E., Palmer D. & Fedorov M. (2011). Hydration thermodynamics using the reference interaction site model: speed or accuracy? Journal of Physical Chemistry B 115, 60116022.
Fukuma T., Higgins M. & Jarvis S. (2007). Direct imaging of individual intrinsic hydration layers on lipid bilayers at Angstrom resolution. Biophysical Journal 92, 36033609.
Fuxreiter M., Mezei M., Simon I. & Osman R. (2005). Interfacial water as a ‘hydration fingerprint’ in the noncognate complex of BamHI. Biophysical Journal 89, 903911.
Gagliardi L., Lindh R. & Karlström G. (2004). Local properties of quantum chemical systems: The LoProp approach. Journal of Chemical Physics 121, 44944500.
Gallicchio E., Kubo M. M. & Levy R. M. (2000). Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. Journal of Physical Chemistry B 104, 62716285.
Gallicchio E. & Levy R. (2004). AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. Journal of Computational Chemistry 25, 479499.
Gallicchio E., Paris K. & Levy R. (2009). The AGBNP2 implicit solvation model. Journal of Chemical Theory and Computation 5, 25442564.
Gallicchio E., Zhang L. Y. & Levy R. (2002). The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. Journal of Computational Chemistry 23, 517529.
García-García C. & Draper D. (2003). Electrostatic interactions in a peptide–RNA complex. Journal of Molecular Biology 331, 7588.
Garcia-Viloca M., Gao J., Karplus M. & Truhlar D. G. (2004). How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186195.
Garde S., Hummer G., García A. E., Paulaitis M. E. & Pratt L. R. (1996). Origin of entropy convergence in hydrophobic hydration and protein folding. Physical Review Letters 77, 4966.
Gavryushov S. (2008). Electrostatics of B-DNA in NaCl and CaCl2 solutions: ion size, interionic correlation, and solvent dielectric saturation effects. The Journal of Physical Chemistry B 112, 89558965.
Gavryushov S. (2009). Mediating role of multivalent cations in DNA electrostatics: an epsilon-modified Poisson–Boltzmann study of B-DNA–B-DNA interactions in mixture of NaCl and MgCl2 solutions. Journal of Physical Chemistry B 113, 21602169.
Geng W. & Wei G. W. (2011). Multiscale molecular dynamics using the matched interface and boundary method. Journal of Computational Physics 230, 435457.
Georgescu R., Alexov E. & Gunner M. (2002). Combining conformational flexibility and continuum electrostatics for calculating pK as in proteins. Biophysical Journal 83, 17311748.
Gillespie D., Nonner W. & Eisenberg R. (2002). Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. Journal of Physics: Condensed Matter 14, 1212912145.
Gilson M., Davis M., Luty B. & Mccammon A. (1993). Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. Journal of Physical Chemistry 97, 35913600.
Gilson M. K. (1995). Theory of electrostatic interactions in macromolecules. Current Opinion in Structural Biology 5, 216223.
Gilson M. K. & Honig B. (1988). Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4, 718.
Gilson M. K. & Honig B. H. (1987). Calculation of electrostatic potentials in an enzyme active site. Nature 330, 8486.
Goel T., Patra C., Ghosh S. & Mukherjee T. (2008). Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Journal of Chemical Physics 129, 154707.
Gohara D. & Di Cera E. (2011). Allostery in trypsin-like proteases suggests new therapeutic strategies. Trends in Biotechnology 29, 577585.
Grant A., Pickup B. & Nicholls A. (2001). A smooth permittivity function for Poisson–Boltzmann solvation methods. Journal of Computational Chemistry 22, 608640.
Grant J. A. & Pickup B. T. (1995). A Gaussian description of molecular shape. Journal of Physical Chemistry 99, 35033510.
Grant J. A., Pickup B. T., Sykes M. J., Kitchen C. A. & Nicholls A. (2007). The Gaussian generalized Born model: application to small molecules. Physical Chemistry Chemical Physics 9, 49134922.
Gresh N. (1997). Inter- and intramolecular interactions. Inception and refinements of the SIBFA, molecular mechanics (SMM) procedure, a separable, polarizable methodology grounded on ab initio SCF/MP2 computations. Examples of applications to molecular recognition problems. Journal De Chimie Physique et de Physico-Chimie Biologique 94, 13651416.
Grilley D., Misra V., Caliskan G. & Draper D. (2007). Importance of partially unfolded conformations for Mg(2+)-induced folding of RNA tertiary structure: structural models and free energies of Mg2+ interactions. Biochemistry 46, 1026610278.
Grilley D., Soto A. M. & Draper D. (2006). Mg2+–RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proceedings of the National Academy of Sciences of the United States of America 103, 1400314008.
Grochowski P. & Trylska J. (2008). Continuum molecular electrostatics, salt effects, and counterion binding–a review of the Poisson–Boltzmann theory and its modifications. Biopolymers 89, 93113.
Grossfield A., Ren P. & Ponder J. (2003). Ion solvation thermodynamics from simulation with a polarizable force field. Journal of the American Chemical Society 125, 1567115682.
Grycuk T. (2003). Deficiency of the Coulomb-field approximation in the generalized Born model: an improved formula for Born radii evaluation. Journal of Chemical Physics 119, 48174826.
Gu W., Rahi S. & Helms V. (2004). Solvation free energies and transfer free energies for amino acids from hydrophobic solution to water solution from a very simple residue model. Journal of Physical Chemistry B 108, 58065814.
Guillot B. (2002). A reappraisal of what we have learnt during three decades of computer simulations on water. Journal of Molecular Liquids 101, 219260.
Guinto E. R. & Di Cera E. (1996). Large heat capacity change in a protein-monovalent cation interaction. Biochemistry 35, 88008804.
Gurau M., Lim S.-M., Castellana E., Albertorio F., Kataoka S. & Cremer P. (2004). On the mechanism of the Hofmeister effect. Journal of the American Chemical Society 126, 1052210523.
Ha-Duong T., Basdevant N. & Borgis D. (2009). A polarizable coarse-grained water model for coarse-grained proteins simulations. Chemical Physics Letters 468, 7982.
Haduong T., Phan S., Marchi M. & Borgis D. (2002). Electrostatics on particles: phenomenological and orientational density functional theory approach. Journal of Chemical Physics 117, 541556.
Hagberg D., Karlstrom G., Roos B. O. & Gagliardi L. (2005). The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. Journal of the American Chemical Society 127, 1425014256.
Halgren T. A. (1992). The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. Journal of the American Chemical Society 114, 78277843.
Halgren T. A. & Damm W. (2001). Polarizable force fields. Current Opinion in Structural Biology 11, 236242.
Hamelberg D. & Mccammon J. A. (2004). Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. Journal of the American Chemical Society 126, 76837689.
Hansen J. P. & Mcdonald I. R. (2000). Theory of Simple Liquids. New York, NY: Academic Press.
Harano Y., Imai T., Kovalenko A., Kinoshita M. & Hirata F. (2001). Theoretical study for partial molar volume of amino acids and polypeptides by the three-dimensional reference interaction site model. Journal of Chemical Physics 114, 95069511.
Harder E., Anisimov V. M., Whitfield T., Mackerell A. D. Jr. & Roux B. (2008). Understanding the dielectric properties of liquid amides from a polarizable force field. Journal of Physical Chemistry B 112, 35093521.
Harder E. & Roux B. (2008). On the origin of the electrostatic potential difference at a liquid–vacuum interface. Journal of Chemical Physics 129, 234706234706.
Harms M. J., Castañeda C. A., Schlessman J. L., Sue G. R., Isom D. G., Cannon B. R. & García-Moreno E. B. (2009). The pKa values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. Journal of Molecular Biology 389, 3447.
Harms M. J., Schlessman J. L., Chimenti M. S., Sue G. R., Damjanović A. & García-Moreno B. (2008). A buried lysine that titrates with a normal pK a: role of conformational flexibility at the protein–water interface as a determinant of pK a values. Protein Science 17, 833845.
Harries D. & Rosgen J. (2008). A practical guide on how osmolytes modulate macromolecular properties. Methods in Cell Biology 84, 679735.
Hedstrom L., Szilagyi L. & Rutter W. J. (1992). Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 12491253.
Hirata F. (2003). Molecular Theory of Solvation. Boston, MA: Kluwer Academic Publishers.
Hirschfelder J. O., Curtiss C. F. & Bird R. B. (1954). Molecular Theory of Gases and Liquids. New York: Wiley.
Hofmeister F. (1888). Zur Lehre von der Wirkung der Salze. II. Archives of Experimental Pathology and Pharmakology 24, 247260.
Holm C., Kekicheff P. & Podgornik R. (2001). Electrostatic Effects in Soft Matter and Biophysics; NATO Science Series. Dordrecht, Netherlands: Kluwer Academic Publishers.
Holst M. (2001). Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational Mathematics 15, 139191.
Holst M., Baker N. & Wang F. (2000). Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples. Journal of Computational Chemistry 21, 13191342.
Holst M. & Saied F. (1993). Multigrid solution of the Poisson–Boltzmann equation. Journal of Computational Chemistry 14, 105113.
Holst M. J. & Saied F. (1995). Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. Journal of Computational Chemistry 16, 337364.
Holt A. & Karlström G. (2008). An intramolecular induction correction model of the molecular dipole moment. Journal of Computational Chemistry 29, 10841091.
Holt A. & Karlström G. (2009). Improvement of the NEMO potential by inclusion of intramolecular polarization. International Journal of Quantum Chemistry 109, 12551266.
Hong J., Capp M. W., Anderson C. F., Saecker R. M., Felitsky D. J., Anderson M. W. & Record M. T. Jr. (2004). Preferential interactions of glycine betaine and of urea with DNA: implications for DNA hydration and for effects of these solutes on DNA stability. Biochemistry 43, 1474414758.
Honig B. & Nicholls A. (1995). Classical electrostatics in biology and chemistry. Science 268, 11441149.
Honig B. H., Hubbell W. L. & Flewelling R. F. (1986). Electrostatic interactions in membranes and proteins. Annual Review of Biophysics and Biophysical Chemistry 15, 163193.
Horn H. W., Swope W. C., Pitera J. W., Madura J. D., Dick T. J., Hura G. L. & Head-Gordon T. (2004). Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. Journal of Chemical Physics 120, 96659678.
Howard J. J., Perkyns J. S., Choudhury N. & Pettitt B. M. (2008). An integral equation study of the hydrophobic interaction between graphene plates. Journal of Chemical Theory and Computation 4, 19281939.
Hribar B., Southall N. T., Vlachy V. & Dill K. A. (2002). How ions affect the structure of water. Journal of the American Chemical Society 124, 1230212311.
Hu H. & Yang W. (2008). Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annual Review of Physical Chemistry 59, 573601.
Hu W. & Webb L. (2000). Direct measurement of the membrane dipole field in bicelles using vibrational stark effect spectroscopy. Journal of Physical Chemistry Letters 2, 19251930.
Huang D., Geissler P. & Chandler D. (2001). Scaling of hydrophobic solvation free energies†. Journal of Physical Chemistry B 105, 67046709.
Huang D. M. & Chandler D. (2002). The hydrophobic effect and the influence of solute-solvent attractions. Journal of Physical Chemistry B 106, 20472053.
Hummer G. (1999). Hydrophobic force field as a molecular alternative to surface-area models. Journal of the American Chemical Society 121, 62996305.
Hummer G. & Garde S. (1998). Cavity expulsion and weak dewetting of hydrophobic solutes in water. Physical Review Letters 80(19), 41934196.
Hummer G., Garde S., García A. E., Pohorille A. & Pratt L. R. (1996). An information theory model of hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America 93, 89518955.
Hummer G., Garde S., Garcia A. E. & Pratt L. R. (2000). New perspectives on hydrophobic effects. Chemical Physics 258, 349370.
Hünenberger P. H. & Gunsteren W. F. V. (1998). Alternative schemes for the inclusion of a reaction-field correction into molecular dynamics simulations: Influence on the simulated energetic, structural, and dielectric properties of liquid water. Journal of Chemical Physics 108, 61176134.
Ichikawa K., Kameda Y., Yamaguchi T., Wakita H. & Misawa M. (1991). Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures. Molecular Physics 73, 7986.
Ikura T., Urakubo Y. & Ito N. (2004). Water-mediated interaction at a protein-protein interface. Chemical Physics 307, 111119.
Illingworth C. J. & Domene C. (2009). Many-body effects and simulations of potassium channels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 465, 17011716.
Im W. (1998). Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Computer Physics Communications 111, 5975.
Im W., Berneche S. & Roux B. (2001). Generalized solvent boundary potential for computer simulations. Journal of Chemical Physics 114, 29242937.
Im W., Feig M. & Brooks C. L. III (2003a). An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophysical Journal 85, 29002918.
Im W., Lee M. S. & Brooks C. L. III, (2003b). Generalized born model with a simple smoothing function. Journal of Computational Chemistry 24, 16911702.
Imai T., Harano Y., Kovalenko A. & Hirata F. (2001). Theoretical study for volume changes associated with the helix–coil transition of peptides. Biopolymers 59, 512519.
Imai T., Hiraoka R., Kovalenko A. & Hirata F. (2005). Water molecules in a protein cavity detected by a statistical–mechanical theory. Journal of the American Chemical Society 127, 1533415335.
Imai T., Hiraoka R., Kovalenko A. & Hirata F. (2007a). Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Proteins 66, 804813.
Imai T., Hiraoka R., Seto T., Kovalenko A. & Hirata F. (2007b). Three-dimensional distribution function theory for the prediction of protein-ligand binding sites and affinities: application to the binding of noble gases to hen egg-white lysozyme in aqueous solution. Journal of Physical Chemistry B 111, 1158511591.
Imai T., Kovalenko A. & Hirata F. (2004). Solvation thermodynamics of protein studied by the 3D-RISM theory. Chemical Physics Letters 395, 16.
Imai T., Miyashita N., Sugita Y., Kovalenko A., Hirata F. & Kidera A. (2000). Functionality mapping on internal surfaces of multidrug transporter AcrB based on molecular theory of solvation: implications for drug efflux pathway. Journal of Physical Chemistry B 134, 16417.
Isom D. G., Cannon B. R., Castañeda C. A., Robinson A. & García-Moreno E. B. (2008). High tolerance for ionizable residues in the hydrophobic interior of proteins. Proceedings of the National Academy of Sciences of the United States of America 105, 1778417788.
Isom D. G., Castañeda C. A., Cannon B. R. & García-Moreno E. B. (2011). Large shifts in pK a values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America 108, 52605265.
Isom D. G., Castañeda C. A., Cannon B. R., Velu P. D., García-Moreno E. B. & García M. (2010). Charges in the hydrophobic interior of proteins. Proceedings of the National Academy of Sciences of the United States of America 107, 1609616100.
Jackson J. D. (1975). Classical Electrodynamics. New York: John Wiley and Sons.
Jakalian A., Bush B. L., Jack D. B. & Bayly C. I. (2000). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. Journal of Computational Chemistry 21, 132146.
Jakalian A., Jack D. B. & Bayly C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 23, 16231641.
Jancovici B. (2006). A van der Waals free energy in electrolytes revisited. European Physical Journal E: Soft Matter 19, 14.
Jedlovszky P. (2001). Thermodynamic and structural properties of liquid water around the temperature of maximum density in a wide range of pressures: a computer simulation study with a polarizable potential model. Journal of Chemical Physics 115, 3750.
Jedlovszky P. & Vallauri R. (1999). Temperature dependence of thermodynamic properties of a polarizable potential model of water. Molecular Physics 97, 11571163.
Jho Y., Kanduč M., Naji A., Podgornik R., Kim M. & Pincus P. (2008). Strong-coupling electrostatics in the presence of dielectric inhomogeneities. Physical Review Letters 101, 188101.
Jiang W., Hardy D. J., Phillips J. C., Mackerell A. D. Jr., Schulten K. & Roux B. (2011). High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. Journal of Physical Chemistry Letters 2, 8792.
Jiao D., Golubkov P. A., Darden T. A. & Ren P. (2008). Calculation of protein-ligand binding free energy by using a polarizable potential. Proceedings of the National Academy of Sciences of the United States of America 105, 62906295.
Jiao D., King C., Grossfield A., Darden T. A. & Ren P. (2006). Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. Journal of Physical Chemistry B 110, 1855318559.
Jiao D., Zhang J., Duke R. E., Li G., Schnieders M. J. & Ren P. (2009). Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. Journal of Computational Chemistry 30, 17011711.
Jorgensen W. (1985). Monte Carlo simulation of differences in free energies of hydration. The Journal of Chemical Physics 83, 3050.
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. & Klein M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics 79, 926.
Jorgensen W. L. & Swenson C. J. (1985). Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. Journal of the American Chemical Society 107, 569578.
Jorgensen W. L., Ulmschneider J. P. & Rives J. T. (2004). Free energies of hydration from a generalized Born model and an all-atom force field. Journal of Physical Chemistry B 108, 1626416270.
Jorov A., Zhorov B. S. & Yang D. S. C. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science 13, 15241537.
Joubert L. & Popelier P. L. A. (2002). Improved convergence of the ‘atoms in molecules’ multipole expansion of electrostatic interaction. Molecular Physics 100, 33573365.
Joung I. S. & Cheatham T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Journal of Physical Chemistry B 112, 90209041.
Juffer A., Botta E., Vankeulen B., Vanderploeg A. & Berendsen H. (1991). The electric potential of a macromolecule in a solvent: a fundamental approach. Journal of Computational Physics 97, 144171.
Kamerlin S. C. L., Haranczyk M. & Warshel A. (2009) Progress in ab Initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pK a, redox reactions and solvation free energies. Journal of Physical Chemistry B 113, 12531272.
Kaminski G., Friesner R. A., Rives J. T. & Jorgensen W. L. (2001). Evaluation and reparameterization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B 105, 64746487.
Kaminski G. A., Stern H. A., Berne B. J., Friesner R. A., Cao Y. X., Murphy R. B., Zhou R. & Halgren T. A. (2002). Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests. Journal of Computational Chemistry 23, 15151531.
Kanduč M., Trulsson M., Naji A., Burak Y., Forsman J. & Podgornik R. (2008). Weak- and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Physical Review E 78, 22702270.
Karp D. A., Gittis A. G., Stahley M. R., Fitch C. A., Stites W. E. & Garcia-Moreno E. B. (2007). High apparent dielectric constant Inside a protein reflects structural reorganization coupled to the ionization of an internal Asp. Biophysical Journal 92, 20412053.
Karp D. A., Stahley M. R. & García-Moreno B. (2010). Conformational consequences of ionization of Lys, Asp, and Glu buried at position 66 in staphylococcal nuclease. Biochemistry 49, 41384146.
Kauzmann W. (1959). Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry 14, 163.
Khandogin J. & Brooks C. L. (2006). Toward the accurate first-principles prediction of ionization equilibria in proteins. Biochemistry 45, 93639373.
Kielland J. (1937). Individual activity coefficients of ions in aqueous solutions. Journal of the American Chemical Society 59, 16751678.
Kim Y. W. & Sung W. (2005). Charge inversion on membranes induced by multivalent-counterion fluctuations. Journal of Physics: Condensed Matter 17, S2943S2949.
Kim Y. W., Yi J. & Pincus P. A. (2008). Attractions between like-charged surfaces with dumbbell-shaped counterions. Physical Review Letters 101, 208305.
Kimel S. (1964). Intermolecular potential in solid methane. I. Cohesive energy and crystal structure. Journal of Chemical Physics 40, 3351.
Kinoshita M., Okamoto Y. & Hirata F. (1999). Analysis on conformational stability of C-peptide of ribonuclease A in water using the reference interaction site model theory and Monte Carlo simulated annealing. Journal of Chemical Physics 110, 40904100.
Kirkwood J. (1934). Theory of solutions of molecules containing widely separated charges with special application to zwitterions. Journal of Chemical Physics 2, 351361.
Kirkwood J. (1938). The electrostatic influence of substituents on the dissociation constants of organic acids. I. Journal of Chemical Physics 6, 506.
Kiyota Y., Hiraoka R., Yoshida N., Maruyama Y., Imai T. & Hirata F. (2009). Theoretical study of CO escaping pathway in myoglobin with the 3D-RISM theory. Journal of the American Chemical Society 131, 38523853.
Kiyota Y., Yoshida N. & Hirata F. (2011). A new approach for investigating the molecular recognition of protein: toward structure-based drug design based on the 3D-RISM theory. Journal of Chemical Theory and Computation 7, 38033815.
Klapper I., Hagstrom R., Fine R., Sharp K. & Honig B. (1986). Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins 1, 4759.
Klopper W., Van Duijneveldt-Van De Rijdt J. G. C. M. & Van Duijneveldt F. B. (2000). Computational determination of equilibrium geometry and dissociation energy of the water dimer. Physical Chemistry Chemical Physics 2, 22272234.
Kollman P., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W., Donini O., Cieplak P., Srinivasan J., Case D. & Cheatham T. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research 33, 889897.
Kong X. & Brooks C. L. III (1996). Lambda-dynamics: a new approach to free energy calculations. Journal of Chemical Physics 105, 24142423.
Kong Y. (1997). Calculation of the reaction field due to off-center point multipoles. Journal of Chemical Physics 107, 481.
Kovalenko A. & Hirata F. (1998). Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chemical Physics Letters 290, 237244.
Kovalenko A. & Hirata F. (1999). Potential of mean force between two molecular ions in a polar molecular solvent: a study by the three-dimensional reference interaction site model. Journal of Physical Chemistry B 103, 79427957.
Kovalenko A. & Hirata F. (2000a). Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method. Journal of Chemical Physics 113, 27932793.
Kovalenko A. & Hirata F. (2000b). Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach. Journal of Chemical Physics 112, 1039110391.
Kovalenko A. & Hirata F. (2000c). Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations. Journal of Chemical Physics 112, 1040310403.
Kozlov A. G. & Lohman T. M. (1998). Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy. Journal of Molecular Biology 278, 9991014.
Kraayenhof R. (1996). Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering. Biochimica et Biophysica Acta–Biomembranes 1282, 293302.
Krem M. & Di Cera E. (1998). Conserved water molecules in the specificity pocket of serine proteases and the molecular mechanism of Na+ binding. Proteins: Structure, Function, and Genetics 30, 3442.
Kuhn L. A., Siani M. A., Pique M. E., Fisher C. L., Getzoff E. D. & Tainer J. A. (1992). The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. Journal of Molecular Biology 228, 1322.
Kumar R., Wang F. F., Jenness G. R. & Jordan K. D. (2010). A second generation distributed point polarizable water model. Journal of Chemical Physics 132, 014309.
Labute P. (2008). The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. Journal of Computational Chemistry 94, 31373149.
Laio A. & Parrinello M. (2002). Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America 99, 1256212566.
Lamm G. (2003). Reviews in Computational Chemistry; The Poisson–Boltzmann Equation, pp. 147366. New York, NY: John Wiley and Sons Inc.
Lamm G. & Pack G. (2010). Counterion condensation and shape within Poisson–Boltzmann theory. Biopolymers 93, 619639.
Lamoureux G., Mackerell A. D. & Roux B. (2003). A simple polarizable model of water based on classical Drude oscillators. Journal of Chemical Physics 119, 51855197.
Lamoureux G. & Roux B. (2006). Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. Journal of Physical Chemistry B 110, 33083322.
Landau L. D., Lifshitz E. M. & Pitaevskii L. P. (1982). Electrodynamics of Continous Media; Landau and Lifshitz Course of Theoretical Physics. Oxford: Butterworth-Heinenann.
Lau K. F., Alper H. E., Thacher T. S. & Stouch T. R. (1994). Effects of switching functions on the behavior of liquid water in molecular dynamics simulations. Journal of Physical Chemistry 98, 87858792.
Laurents D., Huyghues-Despointes B., Bruix M., Thurlkill R., Schell D., Newsom S., Grimsley G., Shaw K., Treviño S., Rico M., Briggs J., Antosiewicz J., Scholtz M. & Pace N. (2003). Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI = 3.5) and a basic variant (pI = 10.2). Journal of Molecular Biology 325, 10771092.
Lazaridis T. & Karplus M. (1999). Effective energy function for proteins in solution. Proteins: Structure, Function, and Bioinformatics 35, 133152.
Leach A. R. (2001). Molecular Modelling: Principles and Applications. Harlow, England; New York: Prentice Hall.
Lee M. S., Salsbury F. R. Jr. & Brooks C. L. III (2002). Novel generalized Born methods. Journal of Chemical Physics 116, 1060610614.
Lee M. S., Salsbury F. R. & Olson M. A. (2004). An efficient hybrid explicit/implicit solvent method for biomolecular simulations. Journal of Computational Chemistry 25, 19671978.
Leipply D. & Draper D. (2000). Effects of Mg2+ on the free energy landscape for folding a purine Riboswitch RNA. Biochemistry 50, 27902799.
Leontidis E., Aroti A., Belloni L., Dubois M. & Zemb T. (2007). Effects of monovalent anions of the Hofmeister series on DPPC lipid bilayers Part II: modeling the perpendicular and lateral equation-of-state. Biophysical Journal 93, 15911607.
Levy R. M., Zhang L. Y., Gallicchio E. & Felts A. K. (2003). On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute–solvent interaction energy. Journal of the American Chemical Society 125, 95239530.
Li H., Hains A. W., Everts J. E., Robertson A. D. & Jensen J. H. (2002). The prediction of protein pKa's using QM/MM: the pK a of lysine 55 in turkey ovomucoid third domain. Journal of Physical Chemistry B 106, 34863494.
Li H., Robertson A. D. & Jensen J. H. (2004). The determinants of carboxyl pK a values in turkey ovomucoid third domain. Proteins 55, 689704.
Li H., Robertson A. D. & Jensen J. H. (2005). Very fast empirical prediction and rationalization of protein pK a values. Proteins 61, 704721.
Li J., Hawkins G. D., Cramer C. J. & Truhlar D. G. (1998a). Universal reaction field model based on ab initio Hartree–Fock theory. Chemical Physics Letters 288, 293298.
Li J., Zhu T., Cramer C. J. & Truhlar D. G. (1998b). New class IV charge model for extracting accurate partial charges from wave functions. Journal of Physical Chemistry A 102, 18201831.
Li W., Zhang J., Wang J. & Wang W. (2008). Metal-coupled folding of Cys2His2 zinc-finger. Journal of the American Chemical Society 130, 892900.
Li X., Li J., Eleftheriou M. & Zhou R. (2006). Hydration and dewetting near fluorinated superhydrophobic plates. Journal of the American Chemical Society 128, 1243912447.
Licata V. J. & Allewell N. M. (1997). Functionally linked hydration changes in Escherichia coli aspartate transcarbamylase and its catalytic subunit. Biochemistry 36, 1016110167.
Lifson S. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-Alkane molecules. Journal of Chemical Physics 49, 5116.
Lin H. & Truhlar D. (2007). QM/MM: what have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 117, 185199.
Lindell I. V. (1992). Electrostatic image theory for the dielectric sphere. Radio Science 27, 18.
Linse P. (1984). Thermodynamic and structural aspects of liquid and solid benzene. Monte Carlo study. Journal of the American Chemical Society 106, 54255430.
Liu K., Jia Z., Chen G., Tung C. & Liu R. (2005). Systematic size study of an insect antifreeze protein and its interaction with ice. Biophysical Journal 88, 953958.
Lopes P. E. M., Lamoureux G., Roux B. & Mackerell A. D. (2007). Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. Journal of Physical Chemistry B 111, 28732885.
Lopes P. E. M., Roux B. & Mackerell A. D. (2009). Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theoretical Chemistry Accounts 124, 1128.
Lu B., Cheng X., Huang J. & Mccammon A. (2010). AFMPB: an adaptive fast multipole Poisson–Boltzmann solver for calculating electrostatics in biomolecular systems. Computer Physics Communications 181, 11501160.
Luan B. & Aksimentiev A. (2010). Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter 6, 243246.
Lubchenko V., Wolynes P. G. & Frauenfelder H. (2005). Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. Journal of Physical Chemistry B 109, 74887499.
Lucent D., Vishal V. & Pande V. S. (2007). Protein folding under confinement: a role for solvent. Proceedings of the National Academy of Sciences of the United States of America 104, 1043010434.
Lum K., Chandler D. & Weeks J. D. (1999). Hydrophobicity at small and large length scales. Journal of Physical Chemistry B 103, 45704577.
Lund M., Jungwirth P. & Woodward C. E. (2008a). Ion specific protein assembly and hydrophobic surface forces. Physical Review Letters 100, 258105258109.
Lund M., Vacha R. & Jungwirth P. (2008b). Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing. Langmuir 27, 33873391.
Luo R., David L. & Gilson M. (2002). Accelerated Poisson–Boltzmann calculations for static and dynamic systems. Journal of Computational Chemistry 23, 12441253.
Luzhkov V. B. & Åqvist J. (2000). A computational study of ion binding and protonation states in the KcsA potassium channel. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1481, 360370.
Lynden-Bell R. & Rasaiah J. C. (1997). From hydrophobic to hydrophilic behaviour: a simulation study of solvation entropy and free energy of simple solutes. Journal of Chemical Physics 107, 1981.
Maccallum J. L., Moghaddam M. S., Chan H. S. & Tieleman D. P. (2007). Hydrophobic association of alpha-helices, steric dewetting, and enthalpic barriers to protein folding. Proceedings of the National Academy of Sciences of the United States of America 104, 62066210.
Mackerell A. D., Bashford D., Dunbrack R. L., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-Mccarthy D., Kuchnir L., Kuczera K., Lau F. T. K., Mattos C., Michnick S., Ngo T., Nguyen D. T., Prodhom B., Reiher W. E., Roux B., Schlenkrich M., Smith J. C., Stote R., Straub J., Watanabe M., Wiórkiewicz-Kuczera J., Yin D. & Karplus M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins†. Journal of Physical Chemistry B 102, 35863616.
Madan B. & Sharp K. (2001). Heat capacity changes accompanying hydrophobic and ionic solvation: a Monte-Carlo and random network model study. Bhupinder Madan and Kim Sharp: 1996, volume 100. Journal of Physical Chemistry B, 105, 2256.
Madura J. D., Briggs J. M., Wade R. C., Davis M. E., Luty B. A., Ilin A., Antosiewicz J., Gilson M. K., Bagheri B., Scott L. R. & Mccammon J. A. (1995). Electrostatics and diffusion of molecules in solution – simulations with the University of Houston Brownian Dynamics program. Computer Physics Communications 91, 5795.
Mahoney M. W. & Jorgensen W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics 112, 89108910.
Marcus R. A. (1956). Electrostatic Free Energy and Other Properties of States Having Nonequilibrium Polarization. Journal of Chemical Physics 24, 979989.
Marcus R. A. & Sutin N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta 811, 265322.
Marcus Y. (2006). Ionic volumes in solution. Biophysical Chemistry 124, 200207.
Marenich A. V., Cramer C. J. & Truhlar D. G. (2008). Perspective on foundations of solvation modeling: the electrostatic contribution to the free energy of solvation. Journal of Chemical Theory and Computation 4, 877887.
Marincola F. C., Denisov V. P. & Halle B. (2004). Competitive Na+ and Rb+ binding in the minor groove of DNA. Journal of the American Chemical Society 126, 67396750.
Martick M., Lee T.-S., York D. M. & Scott W. G. (2008). Solvent structure and hammerhead ribozyme catalysis. Chemistry and Biology 15, 332342.
Martin-Molina A., Calero C., Faraudo J., Quesada-Perez M., Travesset A. & Hidalgo-Alvarez R. (2009). The hydrophobic effect as a driving force for charge inversion in colloids. Soft Matter.
Martin D., Friesen A. & Matyushov D. (2011). Electric field inside a “Rossky cavity”' in uniformly polarized water. Journal of Chemical Physics 135, 084514.
Martin F. & Zipse H. (2005). Charge distribution in the water molecule: a comparison of methods. Journal of Computational Chemistry 26, 97105.
Marucho M., Kelley C. T. & Pettitt B. M. (2008). Solutions of the optimized closure integral equation theory: heteronuclear polyatomic fluids. Journal of Chemical Theory and Computation 4, 385396.
Marucho M. & Pettitt B. M. (2007). Optimized theory for simple and molecular fluids. Journal of Chemical Physics 126, 124107.
Maruyama Y., Yoshida N. & Hirata F. (2010). Revisiting the salt-induced conformational change of DNA with 3D-RISM theory. Journal of Physical Chemistry B 114, 64646471.
Masamura M. (2000). Error of atomic charges derived from electrostatic potential. Structural Chemistry 11, 4145.
Mascagni M. & Simonov N. (2004). Monte Carlo methods for calculating some physical properties of large molecules. SIAM Journal on Scientific Computing 26, 339.
Massova I. & Kollman P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design 18, 113135.
Mauro S. A. & Koudelka G. B. (2004). Monovalent cations regulate DNA sequence recognition by 434 repressor. Journal of Molecular Biology 340, 445457.
Mccammon J. A., Gelin B. R. & Karplus M. (1977). Dynamics of folded proteins. Nature 267, 585590.
Mclaughlin S. (1989). The electrostatic properties of membranes. Annual Review of Biophysics and Biophysical Chemistry 18, 113136.
Mehler E. & Guarnieri F. (1999). A self-consistent, microenvironment modulated screened Coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophysical Journal 77, 322.
Merzel F. & Smith J. C. (2002). Is the first hydration shell of lysozyme of higher density than bulk water? Proceedings of the National Academy of Sciences of the United States of America 99, 53785383.
Micu A. M., Bagheri B., Ilin A. V., Scott L. R. & Pettitt B. M. (1997). Numerical considerations in the computation of the electrostatic free energy of interaction within the Poisson–Boltzmann theory. Journal of Computational Physics 136, 263271.
Mikulecky P. J. & Feig A. L. (2006). Heat capacity changes associated with nucleic acid folding. Biopolymers 82, 3858.
Misra V. K. & Draper D. E. (1999). The interpretation of Mg(2+) binding isotherms for nucleic acids using Poisson–Boltzmann theory. Journal of Molecular Biology 294, 11351147.
Misra V. K. & Draper D. E. (2000). Mg(2+) binding to tRNA revisited: the nonlinear Poisson–Boltzmann model. Journal of Molecular Biology 299, 813825.
Misra V. K. & Draper D. E. (2001). A thermodynamic framework for Mg2+ binding to RNA. Proceedings of the National Academy of Sciences of the United States of America 98, 1245612461.
Misra V. K. & Draper D. E. (2002). The linkage between magnesium binding and RNA folding. Journal of Molecular Biology 317, 507521.
Misra V. K., Shiman R. & Draper D. E. (2003). A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69, 118136.
Mitra R., Zhang Z. & Alexov E. (2011). In silico modeling of pH-optimum of protein-protein binding. Proteins 79, 925936.
Miyata T. & Hirata F. (2008). Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution. Journal of Computational Chemistry 29, 871882.
Mizuno K., Oda K., Maeda S., Shindo Y. & Okumura A. (1995). 1H-NMR study on water structure in halogenoalcohol–water mixtures. Journal of Physical Chemistry 99, 30563059.
Mobley D. L., Barber A. E., Fennell C. J. & Dill K. A. (2008). Charge asymmetries in hydration of polar solutes. Journal of Physical Chemistry B 112, 24052414.
Momany F. A. (1978). Determination of partial atomic charges from ab initio molecular electrostatic potentials – application to formamide, methanol, and formic acid. Journal of Physical Chemistry 82, 592601.
Mongan J., Simmerling C., Mccammon A., Case D. & Onufriev A. (2007). Generalized Born model with a simple, robust molecular volume correction. Journal of Chemical Theory and Computation 3, 156169.
Moore Plummer P. & Chen T. S. (1987). Investigation of structure and stability of small clusters: molecular dynamics studies of water pentamers. Journal of Chemical Physics 86, 7149.
Mori M., Erickson M. & Yue D. (2004). Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304, 432435.
Moser C. C., Keske J. M., Warncke K., Farid R. S. & Dutton P. S. (1992). Nature of biological electron-transfer. Nature 355, 796802.
Mukherjee A. K. (2004). The attraction between like-charged macroions—the crucial roles of macroion geometry and charge distribution. Journal of Physics: Condensed Matter 16, 29072930.
Nada H. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. Journal of Chemical Physics 118, 7401.
Nayal M. & Di Cera E. (1996). Valence screening of water in protein crystals reveals potential Na + binding sites. Journal of Molecular Biology 256, 228234.
Netz R. R. & Naji A. (2004). Attraction of like-charged macroions in the strong-coupling limit. European Physical Journal E: Soft Matter and Biological Physics 13, 4359.
Neumann C. (1883). Hydrodynamische Untersuchungen: Nebst Einem Anhange über die Probleme der Elektrostatik und der Magnetischen Induction. Leipzig: B. G. Teubner.
Nguyen T. T., Grosberg A. Y. & Shlovskii B. I. (2000). Screening of a charged particle by multivalent counterions in salty water: strong charge inversion. Journal of Chemical Physics 113, 11101125.
Ni H., Anderson C. F. & Record M. T. (1999). Quantifying the thermodynamic consequences of cation (M2+, M+) accumulation and Anion (X−) Exclusion in mixed salt solutions of polyanionic DNA using Monte Carlo and Poisson–Boltzmann calculations of Ion-polyion preferential interaction coefficients. Journal of Physical Chemistry B 103, 34893504.
Nicholls A. & Honig B. (1991). A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. Journal of Computational Chemistry 12, 435445.
Nicol M. F. (1974). Solvent effects on electronic spectra. Applied Spectroscopy Reviews 8, 183227.
Nielsen J., Gunner M. R. & Bertrand García-Moreno E. (2011). The pK a cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins-Structure Function and Bioinformatics 79, 32493259.
Nielsen J. E. (2009). Analysing enzymatic pH activity profiles and protein titration curves using structure-based pKa calculations and titration curve fitting. In Methods in Enzymology, vol. 454 (eds. Michael L. J. & Ludwig B.), pp. 233258. Academic Press, New York.
Nielsen J. E. (2009). Chapter 9. Analyzing enzymatic ph activity profiles and protein titration curves using structure-based pK a calculations and titration curve fitting, vol. 454, pp. 233258.
Nielsen J. E. & Mccammon J. A. (2003). On the evaluation and optimization of protein X-ray structures for pKa calculations. Protein Science 12, 313326.
Nielsen J. E. & Vriend G. (2001). Optimizing the hydrogen-bond network in Poisson–Boltzmann equation-based pK(a) calculations. Proteins – Structure Function and Genetics 43, 403412.
Nightingale E. R. (1959). Phenomenological theory of ion solvation. effective radii of hydrated ions. Journal of Physical Chemistry 63, 13811387.
Nina M., Im W. & Roux B. (1999). Optimized atomic radii for protein continuum electrostatics solvation forces. Biophysical Chemistry 78, 8996.
Ninham B. W. & Yaminsky V. (1997). Ion binding and ion specificity: the Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13, 20972108.
Nishiyama K., Yamaguchi T. & Hirata F. (2009). Solvation dynamics in polar solvents studied by means of RISM/mode-coupling theory. Journal of Physical Chemistry B 113, 28002804.
Niu W., Chen Z., Bush-Pelc L. A., Bah A., Gandhi P. S. & Di Cera E. (2009). Mutant N143P reveals how Na+ activates thrombin. Journal of Biological Chemistry 284, 3617536185.
Norris W. T. (1995). Charge images in a dielectric sphere. IEE Proceedings–Science, Measurement and Technology 142, 142150.
Noskov S. Y., Im W. & Roux B. (2004). Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson–Nernst–Plank electrodiffusion theory. Biophysical Journal 87, 22992309.
Nymand T. M. & Linse P. (2000). Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. Journal of Chemical Physics 112, 61526160.
Okur A., Wickstrom L., Layten M., Geney R., Song K., Hornak V. & Simmerling C. (2006). Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. Journal of Chemical Theory and Computation 2, 420433.
Okur A., Wickstrom L. & Simmerling C. (2008). Evaluation of salt bridge structure and energetics in peptides using explicit, implicit, and hybrid solvation models. Journal of Chemical Theory and Computation 4, 488498.
Olmsted M. C., Anderson C. F. & Record M. T. (1991). Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis. Biopolymers 31, 15931604.
Onsager L. (1936). Electric moments of molecules in liquids. Journal of the American Chemical Society 58, 14861493.
Onufriev A., Bashford D. & Case D. (2000). Modification of the generalized Born model suitable for macromolecules. The Journal of Physical Chemistry B 104, 37123720.
Onufriev A., Case D. A. & Bashford D. (2002). Effective Born radii in the generalized Born approximation: the importance of being perfect. Journal of Computational Chemistry 23, 12971304.
Orttung W. H. (1978). Extension of the Kirkwood-Westheimer model of substituent effects to general shapes, charges, and polarizabilities. Application to the substituted bicyclo[2.2.2]octanes. Journal of the American Chemical Society 100, 43694375.
Osapay K., Young W. S., Bashford D., Brooks C. L. III & Case D. A. (1996). Dielectric continuum models for hydration effects on peptide conformational transitions. Journal of Physical Chemistry 100, 26982705.
Overman L. B. & Lohman T. M. (1994). Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Journal of Molecular Biology 236, 165178.
Page M. J., Bleackley M. R., Wong S., Macgillivray R. T. A. & Di Cera E. (2006). Conversion of trypsin into a Na(+)-activated enzyme. Biochemistry 45, 29872993.
Paliwal A., Asthagiri D., Pratt L. R., Ashbaugh H. S. & Paulaitis M. E. (2006). An analysis of molecular packing and chemical association in liquid water using quasichemical theory. Journal of Chemical Physics 124, 224502.
Palmo K., Mannfors B., Mirkin N. G. & Krimm S. (2006). Inclusion of charge and polarizability fluxes provides needed physical accuracy in molecular mechanics force fields. Chemical Physics Letters 429, 628632.
Papazyan A. & Warshel A. (1997). Continuum and dipole-lattice models of solvation. Journal of Physical Chemistry B 101, 1125411264.
Papazyan A. & Warshel A. (1998). Effect of solvent discreteness on solvation. Journal of Physical Chemistry B 102, 53485357.
Parsegian V. A., Rand R. P. & Rau D. C. (2000). Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proceedings of the National Academy of Sciences of the United States of America 97, 39873992.
Parsegian V. A. & Rau D. C. (1984). Water near intracellular surfaces. Journal of Cell Biology 99, 196200.
Parsons D., Boström M., Nostro P. & Ninham B. (2011). Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Physical Chemistry and Chemical Physics 13, 1235212367.
Parsons D. F., Boström M., Maceina T. J., Salis A. & Ninham B. W. (2010). Why direct or reversed Hofmeister series? Interplay of hydration, non-electrostatic potentials, and ion size. Langmuir: the ACS Journal of Surfaces and Colloids 26, 33233328.
Patel S. & Brooks C. L. (2004). CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. Journal of Computational Chemistry 25, 116.
Patel S., Davis J. E. & Bauer B. A. (2009). Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. Journal of the American Chemical Society 131, 1389013891.
Patel S., Mackerell A. D. & Brooks C. L. (2004). CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Journal of Computational Chemistry 25, 15041514.
Patra M. & Karttunen M. (2004). Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties. Journal of Computational Chemistry 25, 678689.
Pegram L. M. & Record M. T. (2006). Partitioning of atmospherically relevant ions between bulk water and the water/vapor interface. Proceedings of the National Academy of Sciences of the United States of America 103, 1427814281.
Pegram L. M. & Record M. T. (2007). Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air–water interface. The Journal of Physical Chemistry B 111, 54115417.
Pegram L. M. & Record M. T. (2008). Thermodynamic origin of Hofmeister ion effects. Journal of Physical Chemistry B 112, 94289436.
Pegram L. M., Wendorff T., Erdmann R., Shkel I., Bellissimo D., Felitsky D. J. & Record M. T. (2010). Why Hofmeister effects of many salts favor protein folding but not DNA helix formation. Proceedings of the National Academy of Sciences of the United States of America 107, 77167721.
Perkyns J. & Pettitt B. M. (1994). Integral equation approaches to structure and thermodynamics of aqueous salt solutions. Biophysical Chemistry 51, 129146.
Perkyns J. & Pettitt B. M. (1992). A site–site theory for finite concentration saline solutions. Journal of Chemical Physics 97, 76567656.
Perkyns J. & Pettitt B. M. (1996). Dependence of hydration free energy on solute size. Journal of Physical Chemistry 100, 13231329.
Perkyns J. S. & Pettitt B. M. (1995). Peptide conformations are restricted by solution stability. Journal of Physical Chemistry 99, 12.
Petrache H. I., Zemb T., Belloni L. & Parsegian V. A. (2006). Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences of the United States of America 103, 79827987.
Petrone P. M. & Garcia A. E. (2004). MHC-peptide binding is assisted by bound water molecules. Journal of Molecular Biology 338, 419435.
Pietronave S., Arcesi L., D'Arrigo C. & Perico A. (2008). Attraction between like-charged polyelectrolytes in the extended condensation theory†. Journal of Physical Chemistry B 112, 1599115998.
Pincus D. L., Hyeon C. & Thirumalai D. (2008). Effects of trimethylamine N-Oxide (TMAO) and crowding agents on the stability of RNA hairpins. Journal of the American Chemical Society 130, 73647372.
Piquemal J.-P., Williams-Hubbard B., Fey N., Deeth R. J., Gresh N. & Giessner-Prettre C. (2003). Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA-LF. Journal of Computational Chemistry 24, 19631970.
Pitera J. W. & Van Gunsteren W. F. (2001). The importance of solute-solvent van der Waals interactions with interior atoms of biopolymers. Journal of the American Chemical Society 123, 31633164.
Podgornik R. & Dobnikar J. (2001). Casimir and pseudo-Casimir interactions in confined polyelectrolytes. Journal of Chemical Physics 115, 19511959.
Ponder J. W. & Case D. A. (2003). Force fields for protein simulations. Advances in Protein Chemistry 66, 2785.
Popelier P. L. A., Joubert L. & Kosov D. S. (2001). Convergence of the electrostatic interaction based on topological atoms. Journal of Physical Chemistry A 105, 82548261.
Postma J. P. M., Berendsen H. J. C. & Haak J. R. (1982). Thermodynamics of cavity formation in water. A molecular dynamics study. Faraday Symposia of the Chemical Society 17, 5567.
Prabhu N. & Sharp K. (2006). Protein-solvent interactions. Chemical Reviews 106, 16161623.
Pratt L. R. (2002). Molecular theory of hydrophobic effects: ‘She is too mean to have her name repeated.’. Annual Review of Physical Chemistry 53, 409436.
Pratt L. R. & Chandler D. (1977). Theory of the hydrophobic effect. Journal of Chemical Physics 67, 36833683.
Pratt L. R. & Chandler D. (1980). Effects of solute–solvent attractive forces on hydrophobic correlations. The Journal of Chemical Physics 73, 3430.
Pratt L. R. & Laviolette R. A. (1998). Quasi-chemical theories of associated liquids. Molecular Physics 94, 909915.
Pratt L. R., Laviolette R. A., Gomez M. A. & Gentile M. E. (2001). Quasi-chemical theory for the statistical thermodynamics of the hard-sphere fluid†. Journal of Physical Chemistry B 105, 1166211668.
Pratt L. R. & Pohorille A. (1992). Theory of hydrophobicity: transient cavities in molecular liquid. Proceedings of the National Academy of Sciences of the United States of America 89, 29952999.
Pratt L. R. & Pohorille A. U. (2002). Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chemical Reviews 102, 26712691.
Price S. L. (1985). A distributed multipole analysis of the charge densities of some aromatic hydrocarbons. Chemical Physics Letters 114, 359364.
Price S. L., Stone A. J. & Alderton M. (1984). Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Molecular Physics 52, 9871001.
Qiao R. & Aluru N. R. (2004). Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Physical Review Letters 92.
Qiu X., Parsegian A. & Rau D. (2010). Divalent counterion-induced condensation of triple-strand DNA. Proceedings of the National Academy of Sciences of the United States of America 107, 2148221486.
Rahman A. (1971). Molecular dynamics study of liquid water. Journal of Chemical Physics 55, 3336.
Rajamani S., Truskett T. M. & Garde S. (2005). Hydrophobic hydration from small to large lengthscales: understanding and manipulating the crossover. Proceedings of the National Academy of Sciences of the United States of America 102, 94759480.
Ramirez R. & Borgis D. (2005). Density functional theory of solvation and its relation to implicit solvent models. Journal of Physical Chemistry B 109, 67546763.
Rappe A. K. & Goddard W. A. (1991). Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry 95, 33583363.
Record M. T., Anderson C. F. & Lohman T. M. (1978). Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Quarterly Reviews of Biophysics 11, 103178.
Record M. T., Olmsted M. C., Bond J. P., Anderson C. F. & Record M. T. Jr. (1995). Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. Biophysical Journal 68, 634647.
Reed A. E., Curtiss L. A. & Weinhold F. (1988). Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chemical Reviews 88, 899926.
Rempe S. B., Asthagiri D. & Pratt L. R. (2004). Inner shell definition and absolute hydration free energy of K + (aq) on the basis of quasi-chemical theory and ab initio molecular dynamics. Physical Chemistry Chemical Physics 6, 19661969.
Ren P. & Ponder J. W. (2002). Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. Journal of Computational Chemistry 23, 14971506.
Ren P. & Ponder J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. Journal of Physical Chemistry B 107, 59335947.
Ren P., Wu C. & Ponder J. W. (2011). Polarizable atomic multipole-based molecular mechanics for organic molecules. Journal of Chemical Theory and Computation 7, 31433161.
Reyes-Caballero H., Campanello G. & Giedroc D. (2011). Metalloregulatory proteins: metal selectivity and allosteric switching. Biophysical Chemistry.
Reynolds C. A., Essex J. W. & Graham Richards W. (1992a). Errors in free-energy perturbation calculations due to neglecting the conformational variation of atomic charges. Chemical Physics Letters 199, 257260.
Reynolds C. A., Essex J. W. & Richards W. G. (1992b). Atomic charges for variable molecular conformations. Journal of the American Chemical Society 114, 90759079.
Rhodes M. M., Réblová K., Sponer J. & Walter N. G. (2006). Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proceedings of the National Academy of Sciences of the United States of America 103, 1338013385.
Ribeiro M. (1999). Fluctuating charge model for polyatomic ionic systems: a test case with diatomic anions. Journal of Chemical Physics 110, 11445.
Riccardi D., Schaefer P., Yang Yu H., Ghosh N., Prat-Resina X., König P., Li G., Xu D., Guo H., Elstner M. & Cui Q. (2006). Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. Journal of Physical Chemistry B 110, 64586469.
Rick S. W. (2001). Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model. Journal of Chemical Physics 114, 22762283.
Robinson G., Cho C. H. & Urquidi J. (1999). Isosbestic points in liquid water: further strong evidence for the two-state mixture model. Journal of Chemical Physics 111, 698.
Robinson R. A. & Stokes R. H. (2002). Electrolyte Solutions: Second Revised Edition. Mineola, NY: Dover.
Rocchia W., Sridharan S., Nicholls A., Alexov E., Chiabrera A. & Honig B. (2002). Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. Journal of Computational Chemistry 23, 128137.
Rode B., Hofer T., Randolf B., Schwenk C., Xenides D. & Vchirawongkwin V. (2006). Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a QM/MM – MD procedure for accurate simulations of ions and complexes. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 115, 7785.
Root J. H., Egelstaff P. A. & Hime A. (1986). Quantum effects in the structure of water measured by gamma ray diffraction. Chemical Physics 109, 437453.
Rösgen J., Pettitt B. M. & Bolen D. W. (2005). Protein folding, stability, and solvation structure in osmolyte solutions. Biophysical Journal 89, 29882997.
Rösgen J., Pettitt B. M. & Bolen D. W. (2007). An analysis of the molecular origin of osmolyte-dependent protein stability. Protein Science 16, 733743.
Rossky P. J., Pettitt B. M. & Stell G. (1983). The coupling of long and short range correlations in ISM liquids. Molecular Physics 50, 12631271.
Rottler J. & Krayenhoff B. (2009). Numerical studies of nonlocal electrostatic effects on the sub-nanoscale. Journal of Physics: Condensed Matter 21, 255901.
Roux B. (1999). Implicit solvent models. Biophysical Chemistry 78, 120.
Roux B., Allen T., Bernèche S. & Im W. (2004). Theoretical and computational models of biological ion channels. Quarterly Reviews of Biophysics 37, 15103.
Roux C., Bhatt F., Foret J., De Courcy B., Gresh N., Piquemal J. P., Jeffery C. J. & Salmon L. (2011). The reaction mechanism of type I phosphomannose isomerases: new information from inhibition and polarizable molecular mechanics studies. Proteins 79, 203220.
Royer W. E., Pardanani A., Gibson Q. H., Peterson E. S. & Friedman J. M. (1996). Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proceedings of the National Academy of Sciences of the United States of America 93, 1452614531.
Sachs J. N. & Woolf T. B. (2003). Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. Journal of the American Chemical Society 125, 87428743.
Sagui C., Pedersen L. G. & Darden T. A. (2004). Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. Journal of Chemical Physics 120, 7387.
Samsonov S., Teyra J. & Pisabarro M. T. (2008). A molecular dynamics approach to study the importance of solvent in protein interactions. Proteins: Structure, Function, and Bioinformatics 73, 515525.
Savelyev A. & Papoian G. (2007). Inter-DNA electrostatics from explicit solvent molecular dynamics simulations. Journal of the American Chemical Society 129, 60606061.
Savelyev A. & Papoian G. A. (2006). Electrostatic, steric, and hydration interactions favor Na+ condensation around DNA compared with K+. Journal of the American Chemical Society 128, 1450614518.
Schaefer M. & Karplus M. (1996). A comprehensive analytical treatment of continuum electrostatics. Journal of Physical Chemistry 100, 15781599.
Schaefer P., Riccardi D. & Cui Q. (2005). Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. Journal of Chemical Physics 123.
Schlick T. (2002). Molecular Modeling and Simulation: An Interdisciplinary Guide. New York, NY: Springer-Verlag.
Schmid B., Michalsky J. J., Slater D. W., Barnard J. C., Halthore R. N., Liljegren J. C., Holben B. N., Eck T. F., Livingston J. M., Russell P. B., Ingold T. & Slutsker I. (2001). Comparison of columnar water–vapor measurements from solar transmittance methods. Applied Optics 40, 18861896.
Schnieders M., Baker N., Ren P. & Ponder J. (2007). Polarizable atomic multipole solutes in a Poisson–Boltzmann continuum. Journal of Chemical Physics 126, 124114.
Schnieders M. J. & Ponder J. W. (2007). Polarizable atomic multipole solutes in a generalized Kirkwood continuum. Journal of Chemical Theory and Computation 3, 20832097.
Schreiber H. & Steinhauser O. (1992a). Molecular dynamics studies of solvated polypeptides: why the cut-off scheme does not work. Chemical Physics 168, 7589.
Schreiber H. & Steinhauser O. (1992b). Taming cut-off induced artifacts in molecular dynamics studies of solvated polypeptides: the reaction field method. Journal of Molecular Biology 228, 909923.
Schutz C. N. & Warshel A. (2001). What are the dielectric ‘constants’ of proteins and how to validate electrostatic models? Proteins 44, 400417.
Sciortino F., Geiger A. & Stanley H. E. (1990). Isochoric differential scattering functions in liquid water: the fifth neighbor as a network defect. Physical Review Letters 65, 3452.
Senn H. M. & Thiel W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition 48, 11981229.
Sham Y. Y., Muegge I. & Warshel A. (1998). The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophysical Journal 74, 17441753.
Shan J. & Mehler E. L. (2011). Calculation of pKa in proteins with the microenvironment modulated-screened Coulomb potential (MM-SCP). Proteins-Structure Function and Bioinformatics 79, 33463355.
Sharp K. A. & Honig B. (1990a). Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation. Journal of Physical Chemistry 94, 76847692.
Sharp K. A. & Honig B. (1990b). Electrostatic interactions in macromolecules – theory and applications. Annual Review of Biophysics and Biophysical Chemistry 19, 301332.
Sharp K. A., Nicholls A., Fine R. F. & Honig B. (1991a). Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106109.
Sharp K. A., Nicholls A., Friedman R. & Honig B. (1991b). Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry 30, 96869697.
Sheinerman F. B., Norel R. & Honig B. (2000). Electrostatic aspects of protein-protein interactions. Current Opinion in Structural Biology 10, 153159.
Shi Y., Wu C. J., Ponder J. W. & Ren P. Y. (2011). Multipole electrostatics in hydration free energy calculations. Journal of Computational Chemistry 32, 967977.
Shimizu S. (2004a). Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proceedings of the National Academy of Sciences of the United States of America 101, 11951199.
Shimizu S. (2004b). Estimation of excess solvation numbers of water and cosolvents from preferential interaction and volumetric experiments. Journal of Chemical Physics 120, 49894990.
Shimizu S., Mclaren W. M. & Matubayasi N. (2006). The Hofmeister series and protein-salt interactions. Journal of Chemical Physics 124, 234905.
Shimizu S. & Smith D. J. (2004). Preferential hydration and the exclusion of cosolvents from protein surfaces. Journal of Chemical Physics 121, 11481154.
Shults M., Pearce D. & Imperiali B. (2003). Modular and tunable chemosensor scaffold for divalent zinc. Journal of the American Chemical Society 125, 1059110597.
Sigalov G., Fenley A. & Onufriev A. (2006). Analytical electrostatics for biomolecules: beyond the generalized Born approximation. Journal of Chemical Physics 124, 124902.
Silveston R. & Kronberg B. (1989). Water structuring around nonpolar molecules as determined by HPLC. Journal of Physical Chemistry 93, 62416246.
Silvestrelli P. L. & Parrinello M. (1999). Water molecule dipole in the gas and in the liquid phase. Physical Review Letters 82, 3308.
Simonov N., Mascagni M. & Fenley M. (2007). Monte Carlo-based linear Poisson–Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible. Journal of Chemical Physics 127, 185105.
Simonson T. (1999). Dielectric relaxation in proteins: microscopic and macroscopic models. International Journal of Quantum Chemistry 73, 4557.
Simonson T. (2001). Macromolecular electrostatics: continuum models and their growing pains. Current Opinion in Structural Biology 11, 243252.
Simonson T. (2003). Electrostatics and dynamics of proteins. Reports on Progress in Physics 66, 737787.
Simonson T. (2008). Dielectric relaxation in proteins: the computational perspective. Photosynthesis Research 97, 2132.
Simonson T. & Brunger A. T. (1994). Solvation free energies estimated from macroscopic continuum theory: an accuracy assessment. Journal of Physical Chemistry 98, 46834694.
Sitkoff D., Sharp K. & Honig B. (1994a). Accurate calculation of hydration free energies using macroscopic solvent models. Journal of Physical Chemistry 98, 19781988.
Sitkoff D., Sharp K. A. & Honig B. (1994b). Correlating solvation free energies and surface tensions of hydrocarbon solutes. Biophysical Chemistry 51, 397409.
Smolin N. & Winter R. (2004). Molecular dynamics simulations of staphylococcal nuclease: properties of water at the protein surface. Journal of Physical Chemistry B 108, 1592815937.
Söderhjelm P., Krogh J. W., Karlström G., Ryde U. & Lindh R. (2007). Accuracy of distributed multipoles and polarizabilities: comparison between the LoProp and MpProp models. Journal of Computational Chemistry 28, 10831090.
Sokalski W. A., Keller D. A., Ornstein R. L. & Rein R. (1993). Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides. Journal of Computational Chemistry 14, 970976.
Soper A. (2000). The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chemical Physics 258, 121137.
Soper A. K. & Phillips M. G. (1986). A new determination of the structure of water at 25 °C. Chemical Physics 107, 4760.
Sorenson J. M., Hura G., Glaeser R. M. & Gordon T. H. (2000). What can X-ray scattering tell us about the radial distribution functions of water? Journal of Chemical Physics 113, 91499161.
Soto A. M., Misra V. & Draper D. E. (2007). Tertiary structure of an RNA pseudoknot is stabilized by ‘diffuse’ Mg2+ ions. Biochemistry 46, 29732983.
Stafford A., Ensign D. & Webb L. (2000). Vibrational stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction. Journal of Physical Chemistry B 114, 1533115344.
Steinbach P. J. & Brooks B. R. (1994). New spherical-cutoff methods for long-range forces in macromolecular simulation. Journal of Computational Chemistry 15, 667683.
Stern H. A., Rittner F., Berne B. J. & Friesner R. A. (2001). Combined fluctuating charge and polarizable dipole models: application to a five-site water potential function. Journal of Chemical Physics 115, 22372251.
Still C., Tempczyk A., Hawley R. & Hendrickson T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society 112, 61276129.
Stone A. J. (1981). Distributed multipole analysis, or how to describe a molecular charge distribution. Chemical Physics Letters 83, 233239.
Stone A. J. (1996). The Theory of Intermolecular Forces. Oxford: Oxford University Press.
Stone A. J. (2005). Distributed multipole analysis: stability for large basis sets. Journal of Chemical Theory and Computation 1, 11281132.
Stone A. J. & Alderton M. (2002). Distributed multipole analysis methods and applications. Molecular Physics 100, 221233.
Stout J. M. & Dykstra C. E. (1995). Static dipole polarizabilities of organic molecules. Ab initio calculations and a predictive model. Journal of the American Chemical Society 117, 51275132.
Stout J. M. & Dykstra C. E. (1998). A distributed model of the electrical response of organic molecules. Journal of Physical Chemistry A 102, 15761582.
Stuart S. J. & Berne B. J. (1996). Effects of polarizability on the hydration of the chloride ion. Journal of Physical Chemistry 100, 1193411943.
Stumpe M., Blinov N., Wishart D., Kovalenko A. & Pande V. (2011). Calculation of local water densities in biological systems: a comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation. Journal of Physical Chemistry B 115, 319328.
Su Y. & Gallicchio E. (2004). The non-polar solvent potential of mean force for the dimerization of alanine dipeptide: the role of solute-solvent van der Waals interactions. Biophysical Chemistry 109, 251260.
Sun H. (1998). COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. Journal of Physical Chemistry B 102, 73387364.
Svishchev I. M., Kusalik P. G., Wang J. & Boyd R. J. (1996). Polarizable point-charge model for water: results under normal and extreme conditions. Journal of Chemical Physics 105, 47424750.
Swanson J. M. J., Mongan J. & Mccammon J. A. (2005). Limitations of atom-centered dielectric functions in implicit solvent models. Journal of Physical Chemistry B 109, 1476914772.
Swanson J. M. J., Wagoner J. A., Baker N. A. & Mccammon J. A. (2007). Optimizing the Poisson dielectric boundary with explicit solvent forces and energies: lessons learned with atom-centered dielectric functions. Journal of Chemical Theory and Computation 3, 170183.
Tafipolsky M. & Engels B. (2011). Accurate intermolecular potentials with physically grounded electrostatics. Journal of Chemical Theory and Computation 7, 17911803.
Taheri-Araghi S. & Ha B.-Y. (2005). Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations. Physical Review E 72, 021508.
Tan C., Tan Y. H. & Luo R. (2007). Implicit nonpolar solvent models. Journal of Physical Chemistry B 111, 1226312274.
Tan Z.-J. & Chen S.-J. (2005). Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. Journal of Chemical Physics 122, 4490344903.
Tang C. L., Alexov E., Pyle A. M. & Honig B. (2007). Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. Journal of Molecular Biology 366, 14751496.
Tang K. E. S. & Bloomfield V. A. (2002). Assessing accumulated solvent near a macromolecular solute by preferential interaction coefficients. Biophysical Journal 82, 28762891.
Tanizaki S. & Feig M. (2005). A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. Journal of Chemical Physics 122, 124706.
Teixeira V. H., Cunha C. A., Machuqueiro M., Oliveira A. S. F., Victor B. L., Soares C. M. & Baptista A. M. (2005). On the use of different dielectric constants for computing individual and pairwise terms in Poisson–Boltzmann studies of protein ionization equilibrium. Journal of Physical Chemistry B 109, 1469114706.
Thilagavathi R. & Mancera R. L. (2010). Ligand-protein cross-docking with water molecules. Journal of Chemical Information and Modeling 50, 415421.
Thirumalai D. & Hyeon C. (2005). RNA and protein folding: common themes and variations. Biochemistry 44, 49574970.
Thole B. T. (1981). Molecular polarizabilities calculated with a modified dipole interaction. Chemical Physics 59, 341350.
Tikhomirova A. & Chalikian T. V. (2004). Probing hydration of monovalent cations condensed around polymeric nucleic acids. Journal of Molecular Biology 341, 551563.
Timasheff S. N. (1992). Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry 31, 98579864.
Timasheff S. N. (1998). In disperse solution, ‘osmotic stress’ is a restricted case of preferential interactions. Proceedings of the National Academy of Sciences of the United States of America 95, 73637367.
Timasheff S. N. (2002). Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proceedings of the National Academy of Sciences of the United States of America 99, 97219726.
Tironi I. G., Sperb R., Smith P. E. & Gunsteren W. F. V. (1995). A generalized reaction field method for molecular dynamics simulations. Journal of Chemical Physics 102, 54515459.
Tjong H. & Zhou H. X. (2007a). GBr6: a parameterization-free, accurate, analytical generalized born method. Journal of Physical Chemistry B 111, 30553061.
Tjong H. & Zhou H. X. (2007b). GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson–Boltzmann equation. Journal of Chemical Physics, 126.
Tjong H. & Zhou H. X. (2008). On the dielectric boundary in Poisson–Boltzmann calculations. Journal of Chemical Theory and Computation 4, 507514.
Tobias D. J. & Hemminger J. C. (2008). Chemistry: getting specific about specific ion effects. Science 319, 11971198.
Todd B. A., Parsegian V. A., Shirahata A., Thomas T. J. & Rau D. C. (2008). Attractive forces between cation condensed DNA double helices. Biophysical Journal 94, 47754782.
Todd B. A. & Rau D. C. (2008). Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Research 36, 501510.
Torrie G. M. & Valleau J. P. (1974). Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 28, 578581.
Tran H. T., Pappu R. V. & Mao A. (2008). Role of backbone-solvent interactions in determining conformational equilibria of intrinsically disordered proteins. Journal of the American Chemical Society 130, 73807392.
Tsui V. & Case D. (2000). Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 56, 275291.
Tynan-Connolly B. M. & Nielsen J. E. (2006). pKD: re-designing protein pK a values. Nucleic Acids Research 34 (Web Server issue), W48W51.
Vácha R., Siu S. W., Petrov M., Böckmann R. A., Barucha-Kraszewska J., Jurkiewicz P., Hof M., Berkowitz M. L. & Jungwirth P. (2009). Effects of alkali cations and halide anions on the DOPC lipid membrane. Journal of Physical Chemistry A 113, 72357243.
Van Dijk A. D. J. & Bonvin A. M. J. J. (2006). Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22, 23402347.
Van Duijnen P. T. & De Vries A. H. (1996). Direct reaction field force field: a consistent way to connect and combine quantum-chemical and classical descriptions of molecules. International Journal of Quantum Chemistry 60, 11111132.
Van Duijnen P. T. & Swart M. (1998). Molecular and atomic polarizabilities: Thole's model revisited. The Journal of Physical Chemistry A 102, 23992407.
Vesely F. J. (1977). N-particle dynamics of polarizable stockmayer-type molecules. Journal of Computational Physics 24, 361371.
Villacanas O., Madurga S., Giralt E. & Belda I. (2009). Explicit treatment of water molecules in protein-ligand docking. Current Computer-Aided Drug Design 5, 145154.
Vinter J. G. (1996). Extended electron distributions applied to the molecular mechanics of some intermolecular interactions. II. Organic complexes. Journal of Computer-Aided Molecular Design 10, 417426.
Vitalis A. & Pappu R. (2009). ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. Journal of Computational Chemistry 30, 673699.
Vrbka L., Jungwirth P., Bauduin P., Touraud D. & Kunz W. (2006). Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions. Journal of Physical Chemistry B 110, 70367043.
Wagoner J. & Baker N. (2004). Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson–Boltzmann models. Journal of Computational Chemistry 25, 16231629.
Wagoner J. & Baker N. (2006). Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proceedings of the National Academy of Sciences of the United States of America 103, 83318336.
Wagoner J. A. & Pande V. S. (2011). A smoothly decoupled particle interface: new methods for coupling explicit and implicit solvent. Journal of Chemical Physics 134, 214103.
Waldron K. J. & Robinson N. J. (2009). How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiology 7, 2535.
Wallace J. & Shen J. (2011). Continuous constant pH molecular dynamics in explicit solvent with pH-based replica exchange. Journal of Chemical Theory and Computation 7, 26172629.
Wang J., Cieplak P., Li J., Cai Q., Hsieh M., Lei H., Luo R. & Duan Y. (2011a). Development of polarizable models for molecular mechanical calculations II: induced dipole models significantly improve accuracy of intermolecular interaction energies. Journal of Physical Chemistry B 115, 31003111.
Wang J., Cieplak P., Li J., Hou T., Luo R. & Duan Y. (2011b). Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability. Journal of Physical Chemistry B 115, 30913099.
Wang K., Yu Y.-X. & Gao G.-H. (2004). Density functional study on the structures and thermodynamic properties of small ions around polyanionic DNA. Physical Review E 70, 011912.
Wang L. & Hermans J. (1995). Reaction field molecular dynamics simulation with Friedman's image charge method. Journal of Physical Chemistry 99, 1200112007.
Wang Z. X., Zhang W., Wu C., Lei H., Cieplak P. & Duan Y. (2006). Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. Journal of Computational Chemistry 27, 781790.
Warren G. L. & Patel S. (2007). Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: An assessment of simulation methodology and force field performance and transferability. Journal of Chemical Physics 127, 064509.
Warshel A. (1976). Bicycle-pedal model for the first step in the vision process. Nature 260, 679683.
Warshel A. (1979). Calculations of chemical processes in solutions. Journal of Physical Chemistry 83, 16401652.
Warshel A. & Dryga A. (2011). Simulating electrostatic energies in proteins: perspectives and some recent studies of pKas, redox, and other crucial functional properties. Proteins-Structure Function and Bioinformatics 79, 34693484.
Warshel A., Kato M. & Pisliakov A. V. (2007). Polarizable force fields: history, test cases, and prospects. Journal of Chemical Theory and Computation 3, 20342045.
Warshel A. & Papazyan A. (1998). Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Current Opinion in Structural Biology 8, 211217.
Warwicker J. & Watson H. C. (1982). Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. Journal of Molecular Biology 157, 671679.
Webb H., Tynan-Connolly B., Lee G., Farrell D., O'Meara F., Søndergaard C., Teilum K., Hewage C., Mcintosh L. & Nielsen J. (2011). Remeasuring HEWL pK a values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pK a calculations. Proteins 79, 685702.
Wells C. M. & Di Cera E. (1992). Thrombin is a Na(+)-activated enzyme. Biochemistry 31, 1172111730.
Wen Q. & Tang J. X. (2004). Absence of charge inversion on rodlike polyelectrolytes with excess divalent counterions. Journal of Chemical Physics 121, 1266612670.
Wesson L. & Eisenberg D. (1992). Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Science 1, 227235.
Wheatley R. J. & Mitchell J. B. O. (1994). Gaussian multipoles in practice: electrostatic energies for intermolecular potentials. Journal of Computational Chemistry 15, 11871198.
Whitfield T. W., Varma S., Harder E., Lamoureux G., Rempe S. B. & Roux B. (2007). Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. Journal of Chemical Theory and Computation 3, 20682082.
Wiberg K. B. & Rablen P. R. (1993). Comparison of atomic charges derived via different procedures. Journal of Computational Chemistry 14, 15041518.
Williams D. E. (1988). Representation of the molecular electrostatic potential by atomic multipole and bond dipole models. Journal of Computational Chemistry 9, 745763.
Wimley W. C., Creamer T. P. & White S. H. (1996). Solvation energies of amino acid side chains and backbone in a family of host–guest pentapeptides. Biochemistry 35, 51095124.
Witham S., Talley K., Wang L., Zhang Z., Sarkar S., Gao D., Yang W. & Alexov E. (2011). Developing hybrid approaches to predict pK a values of ionizable groups. Proteins-Structure Function and Bioinformatics 79, 33893399.
Woelki S., Kohler H. H., Krienke H. & Schmeer G. (2008). Improvements of DRISM calculations: symmetry reduction and hybrid algorithms. Physical Chemistry and Chemical Physics 10, 896910.
Wong G. C. L. & Pollack L. (2010). Electrostatics of strongly charged biological polymers: ion-mediated interactions and self-organization in nucleic acids and proteins. Annual Review of Physical Chemistry 61, 171189.
Wu J. C., Piquemal J. P., Chaudret R., Reinhardt P. & Ren P. Y. (2010). Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. Journal of Chemical Theory and Computation 6, 20592070.
Xantheas S., Burnham C. J. & Harrison R. J. (2002). Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. Journal of Chemical Physics 116, 1493.
Xantheas S. S. & Dunning T. H. (1994). Structures and energetics of F-(H2O)n, n = 1–3 clusters from ab Initio calculations. Journal of Physical Chemistry 98, 1348913497.
Xia K., Zhan M. & Wei G.-W. (2011). MIB method for elliptic equations with multi-material interfaces. Journal of Computational Physics 230, 45884615.
Xu Z., Cheng X. & Yang H. (2011). Treecode-based generalized Born method. Journal of Chemical Physics 134, 064107.
Yang C. & Sharp K. (2004). The mechanism of the type III antifreeze protein action: a computational study. Biophysical Chemistry 109, 137148.
Yang T., Wu J. C., Yan C., Wang Y., Luo R., Gonzales M. B., Dalby K. N. & Ren P. (2011). Virtual screening using molecular simulations. Proteins: Structure Function and Genetics 79, 19401951.
Yeagle P. L. (2004). The Structure of Biological Membranes. Boca Raton, FL: CRC Press.
Yonetani Y., Maruyama Y., Hirata F. & Kono H. (2008). Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynamics simulation and three-dimensional reference interaction site model theory. Journal of Chemical Physics 128, 185102185102.
Yoon B. & Lenhoff A. M. (1990). A boundary element method for molecular electrostatics with electrolyte effects. Journal of Computational Chemistry 11, 10801086.
Yoshida N., Phongphanphanee S., Maruyama Y., Imai T. & Hirata F. (2006). Selective ion-binding by protein probed with the 3D-RISM theory. Journal of the American Chemical Society 128, 1204212043.
Yu H., Whitfield T. W., Harder E., Lamoureux G., Vorobyov I., Anisimov V. M., Mackerell A. D. Jr. & Roux B. (2010). Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. Journal of Chemical Theory and Computation 6, 774786.
Yu S., Geng W. & Wei G. W. (2007a). Treatment of geometric singularities in implicit solvent models. The Journal of Chemical Physics 126, 944954.
Yu S. & Wei G. (2007). Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. Journal of Computational Physics 227, 602632.
Yu S., Zhou Y. & Wei G. (2007b). Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. Journal of Computational Physics 224, 729756.
Zangi R., Hagen M. & Berne B. J. (2007). Effect of ions on the hydrophobic interaction between two plates. Journal of the American Chemical Society 129, 46784686.
Zauhar R. J. (1995). SMART: a solvent-accessible triangulated surface generator for molecular graphics and boundary element applications. Journal of Computer-Aided Molecular Design 9, 149159.
Zauhar R. J. & Morgan R. S. (1985). A new method for computing the macromolecular electric potential. Journal of Molecular Biology 186, 815820.
Zauhar R. J. & Morgan R. S. (1988). The rigorous computation of the molecular electric potential. Journal of Computational Chemistry 9, 171187.
Zelko J., Iglič A., Iglič V. & Kumar S. (2010). Effects of counterion size on the attraction between similarly charged surfaces. Journal of Chemical Physics 133, 204901.
Zhang W., Ni H., Capp M. W., Anderson C. F., Lohman T. M. & Record M. T. (1999). The importance of coulombic end effects: experimental characterization of the effects of oligonucleotide flanking charges on the strength and salt dependence of oligocation (L8+) binding to single-stranded DNA oligomers. Biophysical Journal 76, 10081017.
Zhang Y., Xu G. & Bajaj C. (2006). Quality meshing of implicit solvation models of biomolecular structures. Computer-Aided Geometric Design 23, 510530.
Zheng L., Chen M. & Yang W. (2008). Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proceedings of the National Academy of Sciences of the United States of America 105, 2022720232.
Zheng L., Chen M. & Yang W. (2009). Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling. Journal of Chemical Physics 130, 234105.
Zhou H. X. (1993). Boundary element solution of macromolecular electrostatics: interaction energy between two proteins. Biophysical Journal 65, 955963.
Zhou H. X. (2005). Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect. Proteins 61, 6978.
Zhou R., Huang X., Margulis C. J. & Berne B. J. (2004). Hydrophobic collapse in multidomain protein folding. Science 305, 16051609.
Zhou Y. & Wei G. (2006). On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. Journal of Computational Physics 219, 228246.
Zhu J., Alexov E. & Honig B. (2005). Comparative study of generalized Born models: born radii and peptide folding. Journal of Physical Chemistry B 109, 30083022.