Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-03T02:12:33.667Z Has data issue: false hasContentIssue false

Biosynthetic Incorporation of 15N and 13C for Assignment and Interpretation of Nuclear Magnetic Resonance Spectra of Proteins

Published online by Cambridge University Press:  17 March 2009

Lawrence P. McIntosh
Affiliation:
Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
Frederick W. Dahlquist
Affiliation:
Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA

Extract

The use of isotopic substitution is a time-honoured method for simplifying the nuclear magnetic resonance spectra of biological macromolecules. For example, the biosynthetic incorporation of a heteronucleus such as 15N or 13C into a specific amino acid residue in a protein followed by direct observation of the 15N or 13C NMR spectrum could provide a means to specifically observe a given amino acid type in that protein. By observation of the chemical shift or relaxation properties as a function of pH, ligand concentration, etc. a number of important conclusions concerning the pKa values of specific residues, the affinity of the protein for various ligands, or dynamic properties of the protein can be deduced. (See Henry et al. 1986 a, b; 1987 for an elegant modern example). In such situations, direct observation of the heteronucleus is a powerful means to observe environmental changes (Niu et al. 1979) but often these measurements are not readily interpretable in terms of alterations of protein structure. Although proton-proton dipolar interactions (NOEs) typically provide the richest source of such structural information, these interactions are not monitored in most experiments which directly observe the heteronucleus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. E., Becktel, W. J. & Dahlquist, F. W. (1990). pH induced denaturation of proteins: A single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry (in press).CrossRefGoogle Scholar
Bachmann, B. J. (1983). Linkage map of Eschericia coli K-12, Edition 7. Microbiol. Rev. 47, 180230.CrossRefGoogle Scholar
Bachovchin, W. M. (1985). Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labelled enzyme. Proc. Natl. Acad. Sci. 82, 79487951.CrossRefGoogle Scholar
Bachovchin, W. M. (1986). 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serin proteases: evidence for a moving histidine mechanism. Biochemistry 25, 77517759.CrossRefGoogle ScholarPubMed
Bachovchin, W. M. & Roberts, J. D. (1978). Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of α-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases. J. Am. Chem. Soc. 100, 80418046.CrossRefGoogle Scholar
Bax, A. (1982). Two Dimensional Nuclear magnetic Resonance in Liquids. Boston: Delft University Press.Google Scholar
Bax, A. & Summers, M. F. (1986) 1H and 13C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108, 20932094.CrossRefGoogle Scholar
Bax, A. & Weiss, M. A. (1987). Simplification of two-dimensional NOE spectra of proteins by 13C labelling. J. Magn. Reson. 71, 571575.Google Scholar
Bax, A., Griffey, R. H. & Hawkins, B. L. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson. 55, 301315.Google Scholar
Bax, A., Sparks, S. W. &Torchia, D. A. (1988). Long-range heteronuclear correlation: a powerful tool for the NMR analysis of medium-size proteins. J. Am. Chem. Soc. 110, 79267927.CrossRefGoogle Scholar
Bax, A., Kay, L. E., Sparks, S. W. & Torchia, D. A. (1989). Line narrowing of amide proton resonances in 2D NMR spectra of proteins. J. Am. Chem. Soc. 111, 408409.CrossRefGoogle Scholar
Bender, D. A. (1985). Amino Acid Metabolism, 2nd edn.New York: John Wiley & Sons.Google Scholar
Bodenhausen, G. & Freeman, R. (1977). Correlation of proton and carbon-13 NMR spectra by heteronuclear two-dimensional spectroscopy. J. Magn. Reson. 28, 471.Google Scholar
Bodenhausen, G. & Ruben, D. J. (1980). Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69 185199.CrossRefGoogle Scholar
Bogusky, M. J., Tsang, P. & Opella, S. J. (1985). One- and two-dimensional nitrogen-15 proton NMR of filamentous phage coat proteins in solution. Biophys. biochem. Res. Comm. 127, 540545.CrossRefGoogle Scholar
Bogusky, M. J., Schiksnis, R. A., Leo, G. C. & Opella, S. J. (1987). Protein backbone dynamics by solid-state and solution 15N NMR spectroscopy. J. Magn. Res. 72, 186190.Google Scholar
Bolton, P. H. (1984). Heteronuclear zero-quantum two-dimensional nuclear magnetic resonance as a conformational probe. J. Magn. Reson. 57, 427446.Google Scholar
Bolton, P. H. (1985). Heteronuclear relay transfer spectroscopy with proton detection. J. Magn. Reson. 62, 143146.Google Scholar
Brühwiler, D. & Wagner, G. (1986). Selective excitation of proton resonances coupled to carbon-13. Hetero COSY and RELAY experiments with proton detection for a protein. J. Magn. Reson. 69, 546551.Google Scholar
Bystrov, V. F. (1976). Spin-spin coupling and the conformational states of peptide systems. Prog. NMR Spectroscopy 10, 4181.CrossRefGoogle Scholar
Campbell Burk, S., Papastavros, M. Z., McCormick, F. & Redfield, A. G. (1989). Identification of resonances from an oncogenic activating locus of human N-ras P21 protein using isotope edited NMR. Proc. Natn. Acad. Sci. USA 86, 817820.CrossRefGoogle Scholar
Clore, G. M., Bax, A., Wingfield, P. & Gronenborn, A. M. (1988). Long-range nitrogen-15-proton correlation as an aid to sequential proton resonance assignment of proteins. Application to the DNA-binding protein Ner from phage Mu. FEES Lett. 238, 1721.CrossRefGoogle Scholar
Cross, T. A. & Opella, S. J. (1985). Protein structure by solid state nuclear magnetic resonance. Residues 40 to 45 of bacteriophage fd coat protein. J. Molec. Biol. 182, 367381.CrossRefGoogle ScholarPubMed
Dahlquist, F. W., Griffey, R. H., Mclntosh, L. P., Muchmore, D. C., Oas, T. G. & Redfield, A. G. (1985). Synthesis and Applications of Isotopically Labeled Compounds (ed. Muccino, R. R.), pp. 533538. Elsevier Science Publishers.Google Scholar
Dalvit, C. & Wright, P. E. (1987 a). Assignment of Resonances in the 1H nuclear magnetic resonance spectrum of the carbon nomoxide complex of sperm whale myoglobin by phase sensitive two-dimensional techniques. J. Molec. Biol. 194, 313327.CrossRefGoogle ScholarPubMed
Dalvit, C. & Wright, P. E. (1987 b). Assignment of resonances in the 1H nuclear magnetic resonance spectrum of the carbon monoxide complex of human hemoglobin a-chains. J. Molec. Biol. 194, 329339.CrossRefGoogle Scholar
Dellwo, M. J. & Wand, A. J. (1989). J. Am. Chem. Soc. 111, 45714578.CrossRefGoogle Scholar
Doddrell, D. M., Pegg, D. T. & Bendall, M. R. (1982). Distortionless enhancement of NMR signals by polarization transfer. J. Magn. Reson. 48, 323327.Google Scholar
Emshwiller, M., Hahn, E. L. & Kaplan, D. (1960). Pulsed nuclear resonance spectroscopy. Phys. Rev. 118, 414424.CrossRefGoogle Scholar
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Principles of Nuclear magnetic Resonance in One- and Two-Dimensions. Clarendon Press, Oxford.Google Scholar
Feng, Y., Roder, M., Englander, S. W., Wand, A. J. & Distafano, D. L. (1989). Proton resonance assignment of horse ferricytochrome c. Biochemistry 28, 195203.CrossRefGoogle ScholarPubMed
Fesik, S. W. & Zuiderweg, E. R. P. (1988). Heteronuclear three-dimensional NMR spectroscopy; A strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson. 78, 588593.Google Scholar
Fesik, S. W., Gampe, R. T. Jr., & Rockway, T. W. (1987). Application of isotope-filtered 2D NOE experiments in the conformational analysis of atrial natriuretic factor (7–23). J. Magn. Res. 74, 366371.Google Scholar
Fesik, S. W., Luly, J. R., Erickson, J. W. & Abad-Zapatero, C. (1988). Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex. Biochemistry 27, 82978301.CrossRefGoogle Scholar
Fesik, S. W., Gampe, R. T., Zuiderweg, E. R. P., Kohlbrenner, W. E. & Weigl, D. (1989). Heteronuclear three-dimensional NMR spectroscopy applied to CMP-KDO synthetase (27·5 kD). Biochem. Biophys. Res. Comm. 159, 842845.CrossRefGoogle ScholarPubMed
Gelfand, D. H. & Steinberg, R. A. (1977). Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacterial. 130, 429440.CrossRefGoogle ScholarPubMed
Glushka, J. & Cowburn, D. (1987). Assignment of 15N NMR signals in bovine pancreatic trypsin inhibitor. J. Am. chem. Soc. 109, 78797881.CrossRefGoogle Scholar
Greisinger, C., Sørensen, O. W. & Ernst, R. R. (1989). Three-dimensional Fourier spectroscopy. Application to high-resolution NMR. J. Magn. Reson. 84, 1468.Google Scholar
Griffey, R. H. & Redfield, A. G. (1987). Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution. Quart. Rev. Biophys. 19, 51.CrossRefGoogle ScholarPubMed
Griffey, R. H., Jarema, M. A., Kunz, S., Rosevear, P. R., & Redfield, A. G. (1985 a). Isotopic-label-directed observation of the nuclear overhauser effect in poorly resolved proton NMR spectra. J. Am. Chem. Soc. 107, 711712.CrossRefGoogle Scholar
Griffey, R. H., Redfield, A. G., Loomis, R. E. & Dahlquist, F. W. (1985 b). Nuclear magnetic resonance observation and dynamics of specific amide protons in T4 lysozyme. Biochemistry 24, 817822.CrossRefGoogle ScholarPubMed
Gronenborn, A. M., Bax, A., Wingfield, P. T. & Clore, G. M. (1989 a). A powerful method of sequential proton resonance assignment in proteins using relayed 15N-1H multiple quantum coherence spectroscopy. FEBS Lett. 243, 9398.CrossRefGoogle ScholarPubMed
Gronenborn, A. M., Wingfield, P. T., Clore, G. & Marius, G. (1989 b). Determination of the secondary structure of the DNA binding protein Ner from phage mu using proton homonuclear and nitrogen-15-proton heteronuclear NMR spectroscopy. Biochemistry 28, 50815089.CrossRefGoogle ScholarPubMed
Gust, D., Moon, R. B. & Roberts, J. D. (1975). Applications of natural-abundance nitrogen-15 nuclear magnetic resonance to large biochemically important molecules. Proc. Natn. Acad. Sci. USA 72, 46964700.CrossRefGoogle ScholarPubMed
Halvorson, H. (1972). Utilization of single L-amino acids as sole source of carbon and nitrogen by bacteria. C. J. Microbiol. 18, 16471650.CrossRefGoogle ScholarPubMed
Henry, G. D., O'Neil, J. D., Weiner, J. H. & Sykes, B. D. (1986). Hydrogen exchange in the hydrophillic regions of detergent-solubilized M13 coat protein detected by carbon-13 nuclear magnetic resonance isotope shifts. Biophys. J. 49, 329331.CrossRefGoogle Scholar
Henry, G. D., Weiner, J. H. & Sykes, B. D., (1986). Backbone dynamics of a model membrane protein: Carbon-13 NMR spectroscopy of alanine methyl groups in detergent-solubilized M13 coat protein. Biochemistry 25, 590598.CrossRefGoogle Scholar
Henry, G. D., Weiner, J. H. & Sykes, B. D. (1987). Backbone dynamics of a model membrane protein: Assignment of the carbonyl carbon-13 NMR resonance in detergent-solubilized M13 coat protein. Biochemistry 26, 36193626.CrossRefGoogle Scholar
Jensen, R. A. & Calhoun, D. H. (1981). Intracellular roles of microbial amino-transferases: Overlap enzymes across different biochemical pathways. Crit. Rev. Microbiol. 8, 229.CrossRefGoogle Scholar
Kainosho, M. & Tsuji, T. (1982). Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 62736279.CrossRefGoogle ScholarPubMed
Kay, L. E., Torchia, D. A. & Bax, A. (1989 a). Biochemistry 28, 89728979.CrossRefGoogle Scholar
Kay, L. E., Marion, D. & Bax, A. (1989 b). Practical aspects of 3D heteronuclear NMR of proteins. J. Magn. Reson. 84, 7284.Google Scholar
Kricheldorf, H. R. (1982). 15N-NMR spectroscopic characterization of copolyamides and polypeptides. Pure and Appl. Chem. 54, 467481.CrossRefGoogle Scholar
Lapidot, A. & Irving, C. S. (1977). 15N nuclear magnetic resonance as a probe of residual structure in the backbone of unfolded hemoglobin. J. Am. Chem. Soc. 99, 5488.CrossRefGoogle ScholarPubMed
Lee-Peng, F. C., Hermondson, M. A. & Kohlhaw, G. B. (1979). Transaminase B from Escherichia coli: Quaternary structure, amino-terminal sequence, substrate specificity and absence of a separate valine-α-ketoglutarate activity. J. Bact. 139, 339345.CrossRefGoogle ScholarPubMed
Leighton, P. & Lu, P. (1987). λ cro represser complex with OR3 DNA: 15N NMR observations. Biochemistry 26, 72627271.CrossRefGoogle Scholar
LeMaster, D. M. & JrCronan, J. E. (1982). Biosynthetic production of 13C-labelled amino acids with site-specific enrichment. J. Biol. Chem. 257, 12241230.CrossRefGoogle Scholar
LeMaster, D. L. & Richards, F. M. (1982). Preparative-scale isolation of isotopically labeled amino acids. Anal. Biochem. 122, 238247.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1985). 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labelled by residue type. Biochemistry 24, 72637268.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1988). NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27, 142150.CrossRefGoogle ScholarPubMed
Lerner, L. & Bax, A. (1986). Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy. J. Magn. Reson. 69, 375380.Google Scholar
Levitt, M. B. & Ernst, R. R. (1985). Multiple-quantum excitation and spin topology filtration in high-resolution NMR. J. Chem. Phys. 83, 32973310.CrossRefGoogle Scholar
Levy, G. C. & Lighter, R. L. (1979). In: Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. (1979). New York: John Wiley & Sons.Google Scholar
Lowry, D. F., Redfield, A. G., McIntosh, L. P. & Dahlquist, F. W., (1988). One-dimensional nuclear Overhauser effect with two-dimensional heteronuclear multiple quantum coherence detection: proton-proton nitrogen-15 correlation in T4 lysozyme. J. Am. Chem. Soc. 110, 68856886.CrossRefGoogle Scholar
Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. (1989 a). Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. chem. Soc. 111, 11515–1517.CrossRefGoogle Scholar
Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M. & Clore, G. M. (1989 b). Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1β. Biochemistry 28, 61506156.CrossRefGoogle Scholar
Maudsley, A. A. & Ernst, R. R. (1977). Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy. Chem. Phys. Lett. 50, 368372.CrossRefGoogle Scholar
McIntosh, L. P., Dahlquist, F. W. & Redfield, A. G. (1987 a). Proton NMR and NOE structural and dynamic studies of large proteins and nucleic acids aided by isotope labels: T4 lysozyme. J. Biomol Struct. Dyn. 5, 2134.CrossRefGoogle ScholarPubMed
McIntosh, L. P., Griffey, R. H., Muchmore, D. C., Nielson, C. P., Redfield, A. G. & Dahlquist, F. W. (1987 b). Proton NMR measurements of bacteriophage T4 lysozyme aided by nitrogen-15 isotopic labeling: Structural and dynamic studies of large proteins. Proc. Natn. Acad. Sci. USA 84, 12441248.CrossRefGoogle Scholar
McIntosh, L. P., Wand, A. J., Lowry, D. F., Redfield, A. G. & Dahlquist, F. W. (1990); (in preparation).Google Scholar
Miller, J. H. (1972). In Experiments in Molecular Genetics. Cold Spring Harbor Laboratory.Google Scholar
Montelione, G. T. & Wagner, G. (1989). 2D chemical exchange NMR spectroscopy by pro ton-detected heteronuclear correlation. J. Am. chem. Soc. 111, 30963098.CrossRefGoogle Scholar
Montelione, G. T., Wionkler, M. E., Rauenbuehler, P. & Wagner, G. (1989). Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins. J. Magn. Res. 82, 198204.Google Scholar
Morris, G. A. & Freeman, R. (1979). Enhancement of nuclear resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760762.CrossRefGoogle Scholar
Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, E. E. & Dahlquist, F. W. (1990). Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Meth. Enzymol. 77, (in the press).Google Scholar
Müller, L. (1979). Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. Chem. Soc. 101, 44814484.CrossRefGoogle Scholar
Neidhardt, F. C., (ED.) (1987). Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, vol. 1. Washington, D.C: Amer. Soc. Microbiol.Google Scholar
Nirmala, N. R., Wagner, G. (1988). Measurement of 13C relaxation times in proteins by two-dimensional heteronuclear 1H-13C correlation spectroscopy. J. Am. Chem. Soc. 110, 75577558.CrossRefGoogle Scholar
Nirmala, N. R. & Wagner, G. (1989). Measurement of 13C spin-spin relaxation times by two-dimensional heteronuclear 1H-13C correlation spectroscopy. J. Magn. Res. 82, 649661.Google Scholar
Niu, C.-H., Matsuura, S., Shindo, H. & Cohen, J. S. (1979). Specific peptide-protein interactions in the ribonuclease S′ system studied by carbon-13 nuclear magnetic resonance spectroscopy with selectively carbon-13 enriched peptides. J. Biol. Chem. 254, 37883798.CrossRefGoogle Scholar
Oas, T. G., Hartzell, C. J., Dahlquist, F. W. & Drobny, G. P. (1987). The amide 15N chemical shift tensors of four peptides determined from 13C dipole-coupled chemical shirt powder patterns. J. Am. Chem. Soc. 109, 5962.CrossRefGoogle Scholar
Oh, B. H., Westler, W. M., Darba, P. & Markley, J. L. (1988). Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment. Science 240, 908911.CrossRefGoogle ScholarPubMed
Oh, B. H., Westler, W. M., Darba, P. & Markley, J. L. (1989). Carbon-13 spin system directed strategy for assigning crosspeaks in the COSY fingerprint region of a protein. J. Am. Chem. Soc. 111, 30833085.CrossRefGoogle Scholar
Opella, S. J., Stewart, P. L. & Valentine, K. G. (1987). Quart. Rev. Biophys. 19, 7.CrossRefGoogle Scholar
Oschikinat, H., Griesinger, C., Kaulis, P. J., Sorensen, O. W., Ernst, R. R., Gronenborn, A. M., Gore, G. M. (1988). Three-dimensional NMR spectroscopy of a protein in solution. Nature 332, 374376.CrossRefGoogle Scholar
Otting, G., Senn, H., Wagner, G. & Wüthrich, K. (1986). Editing of 2D 1H NMR spectra using X half-filters. Combined use with residue-selective 15N labeling of proteins. J. Mag. Reson. 70, 500505.Google Scholar
Pegg, D. T., Doddrell, D. M. & Bendall, M. R. (1982). Proton-polarization transfer enhancement of a heteronuclear spin multiplet with preservation of phase coherence and relative component intensities. J. Chem. Phys. 77, 27452756.CrossRefGoogle Scholar
Piantini, V., Sorensen, O. W. & Ernst, R. R. (1982). Multiple quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc. 104, 68006801.CrossRefGoogle Scholar
Rance, M. & Wright, P. E. (1986). Analysis of 1H NMR spectra of proteins using multiple quantum coherence. J. Magn. Reson. 66, 372378.Google Scholar
Rance, M., Wright, P. E., Messerle, B. A. & Field, L. D. (1987). Site-selective observation of nuclear Overhauser effects in proteins via isotopic labeling. J. Am. Chem. Soc. 109, 15911593.CrossRefGoogle Scholar
Redfield, A. G. (1983). Stimulated echo NMR spectra and their use for heteronuclear two-dimensional shift correlation. Chem. Phys. Lett. 96, 537540.CrossRefGoogle Scholar
Redfield, C. & Dobson, C. M. (1988). Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27, 122136.CrossRefGoogle ScholarPubMed
Robertson, A. D., Purisima, E. O., Eastman, M. A. & Scheraga, H. A. (1989). Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution. Biochemistry 28, 59305938.CrossRefGoogle ScholarPubMed
Roy, S., Papastravos, M. Z., Sanchez, V. & Redfield, A. G. (1984). Nitrogen-15-labeled yeast tRNAphe. Difference and two-dimensional heteronuclear NMR of guanosine and uracil ring NH groups. Biochemistry 23, 4395.CrossRefGoogle ScholarPubMed
Rudman, D. & Meister, A. (1953). Transamination in Escherichia coli. J. Biol. Chem. 200, 591604.CrossRefGoogle ScholarPubMed
Schiksnis, R. A., Bogusky, M. J., Tsang, P. & Opella, S. J. (1989). Structure and dynamics of Pf1 filamentous bacteriophage coat protein in micelles. Biochemistry 26, 13731381.CrossRefGoogle Scholar
Senn, H., Otting, G. & Wüthrich, K. (1987 a). Protein structure and interactions by combined use of sequential NMR assignments and isotope labeling. J. Am. Chem. Soc. 109, 10901092.CrossRefGoogle Scholar
Senn, H., Euguster, A., Otting, G., Suter, F. & Wüthrich, K. (1987 b). Nitrogen-15-labeled P22 C2 represser for nuclear magnetic resonance studies of protein DNA interactions. Eur. Biophys.J. 14, 301.CrossRefGoogle Scholar
Shon, K. & Opella, S. J. (1989). Detection of 1H homonuclear NOE between amide sites in proteins with H/15N heteronuclear correlation spectroscopy. J. Magn. Res. 82, 193197.Google Scholar
Smith, G. M., Yu, L. P. & Domingues, D. J. (1987). Directly observed nitrogen-15 NMR spectra of uniformly enriched proteins. Biochemistry 26, 22022207.CrossRefGoogle Scholar
Stockman, B. J., Westler, W. M., Darba, P. & Markley, J. L. (1988 a). Detailed analysis of carbon-14 NMR spin systems in a uniformly carbon-13 enriched protein: flavodoxin from Anabaena 7120. J. Am. Chem. Soc. 110, 40954096.CrossRefGoogle Scholar
Stockman, B. J., Westler, W. M., Mooberry, E. S. & Markley, J. L. (1988 b). Flavodoxin from Anabaena 7120: uniform nitrogen-15 enrichment and hydrogen-1, nitrogen-15, and phosphorus-31 NMR investigations of the flavin mononucleotide binding site in the reduced and oxidized states. Biochemistry 27, 136142.CrossRefGoogle ScholarPubMed
Stockman, B. J., Reily, M. D., Westler, W. M., Ulrich, E. L. & Markley, J. L. (1989). Concerted two-dimensional NMR approaches to Hydrogen-1, carbon-13, and nitrogen-15 resonance assignments in proteins. Biochemistry 28, 230236.CrossRefGoogle ScholarPubMed
Torchia, D. A., Sparks, S. W. & Bax, A. (1988 a). Delineation of a-helical domains in deuteriated staphylococcal nuclease by 2D NOE NMR spectroscopy. J. Am. Chem. Soc. 110, 23202321.CrossRefGoogle Scholar
Torchia, D. A., Sparks, S. W., & Bax, A. (1988 b). NMR signal assignments of amide proton in the α-helical domains of staphylococcal nuclease. Biochemistry 27, 51355141.CrossRefGoogle ScholarPubMed
Torchia, D. A., Sparks, S. W. & Bax, A. (1989). Staphylococcal nuclease: sequential assignments and solution structure. Biochemistry 28, 55095524.CrossRefGoogle ScholarPubMed
Tsang, P. & Wright, P. E. (1988). Isotope edited NMR studies of Fab peptide complexes. Peptide Res. 1, 8792.Google ScholarPubMed
Tyler, B. (1978). Regulation of the assimilation of nitrogen compounds. Ann. Rev. Biochem. 47, 11271162.CrossRefGoogle ScholarPubMed
Neidhardt, F. C., (ED.) (1987). Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, vol. 1. Washington, D.C.: Amer. Soc. Microbiol.Google Scholar
Umbarger, H. E. (1978). Amino acid biosynthesis and its regulation. Ann. Rev. Biochem. 47, 533606.CrossRefGoogle ScholarPubMed
Von Philipsborn, W. & Mueller, R. (1986). 15N-NMR spectroscopy - new methods and applications. Angewandte Chemie 25, 383413.CrossRefGoogle Scholar
Vuister, G. W., Bodens, R. & Kaptein, R. (1988). J. magn. Reson. 850, 176185.Google Scholar
Wand, A. J., Di Stefano, D. L., Feng, Y., Roder, H. & Englander, S. W. (1989). Proton resonance assignments of horse ferrocytochrome c. Biochemistry 28, 186194.CrossRefGoogle ScholarPubMed
Wang, J., LeMaster, D. M. & Markley, J. L. (1990 a). Biochemistry, in press.Google Scholar
Wang, J., Hinck, A. P., Loh, S. N. & Markley, J. L. (1990 b). Biochemistry, in press.Google Scholar
Weber, P. L. & Müller, L. (1989). Use of 15N labeling for automated three-dimensional sorting of cross peaks in protein D2 NMR spectra. J. Magn. Res. 81, 430434.Google Scholar
Weiss, M. A., Redfield, A. G. & Griffey, R. H. (1986). Isotope-detected 1H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application of phage λ represser. Proc. Natn. Acad. Sci. USA 83, 13251329.CrossRefGoogle Scholar
Westler, W. M., Kainosho, M., Nagao, H., Tomonaga, N. & Majrkley, J. L. (1988 a). Two-dimensional NMR strategies for carbon-carbon correlations and sequence specific assignments in carbon-13 labeled proteins. J. Am. Chem. Soc. 110, 40934095.CrossRefGoogle Scholar
Westler, W. M., Stockman, B. J., Markley, J. L., Hosoya, Y., Miyake, Y. & Kainosho, M. (1988 b). Correlation of Carbon-13 and Nitrogen-15 chemical shifts in selectively and uniformly labeled proteins by heteronuclear two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 110, 62566258.CrossRefGoogle ScholarPubMed
Whalen, W. A. & Berg, C. N. (1984). Gratuitous repression of avtA in Escherichia coli and Salmonella typhimurium. J. Bact. 158, 571.CrossRefGoogle ScholarPubMed
Witanowski, M., Stefaniak, L. & Webb, G. A. (1985). Ann. Rep. NMR Spect. 18, 1.Google Scholar
Wörgötter, E., Wagner, G., Vasak, M., Kagi, J. H. R. & Wüthrich, K. (1988). Heteronuclear filters for two-dimensional 1H NMR identification of the metal-bound amino acids in metallothionein and observation of small heteronuclear long-range couplings. J. Am. Chem. Soc. 110, 23882393.CrossRefGoogle Scholar
Wörgötter, E., Wagner, G. & Wüthrich, K. (1986). Simplification of two-dimensional 1H NMR spectra using an X-filter. J. Am. Chem. Soc. 108, 61626167.CrossRefGoogle Scholar
Wüthrich, K. (1986). NMR of proteins and nucleic acids. New York: J. Wiley & Sons.CrossRefGoogle Scholar
Yu, L. P., Smith, G. M. (1988). 15N and 1H NMR studies of Rhodospirillum rubrum cytochrome c2. Biochemistry 27, 19491956.CrossRefGoogle ScholarPubMed
Zuiderweg, E. R. P. (1990). A proton detected heteronuclear chemical shift correlation experiment with improved resolution and sensitivity. J. Magn. Reson. (in the press).CrossRefGoogle Scholar
Zuiderweg, E. R. P. & Fesik, S. W. (1989). Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C53. Biochemistry 28, 23872391.CrossRefGoogle Scholar
Zuiderweg, E. R. P., McIntosh, L. P., Dahlquist, F. W. & Fesik, S. W. (1990). Three dimensional 13C-resolved NOE spectroscopy of uniformly 13C labeled proteins for the structure determination of larger molecules, J. Magn. Reson. (submitted).Google Scholar