Skip to main content Accessibility help
×
Home

Control of muscle contraction

  • Setsuro Ebashi (a1), Makoto Endo (a1) and Iwao Ohtsuki (a1)

Extract

As is well known, the memorable discovery of Galvani (1791) was followed by the development of two new fields of science, electrochemistry and electrophysiology. During the course of this development, the most remarkable feature of the original finding, i.e. ‘contraction of muscle induced by a piece of metal’, gradually came to be ignored. As a consequence, the simple question as to how electrical stimulation might induce muscle contraction was left unanswered until the middle of this century, when several physiologists became aware of the crucial nature of the problem and tried to attack it from various directions. This resulted in a marked progress of physiological and morphological studies which were intentionally or unintentionally concerned with the mechanism of the link between excitation, that is the electrical phenomenon at the surface membrane, and the contractile process.

Copyright

References

Hide All
Baker, P. F., Blaustein, M. P., Hodgkin, A. L. & Steinhardt, R. A. (1969). The influence of calcium on sodium efflux in squid axons. J. Physiol., Lond. 200, 431–58.
Bárány, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol. 50, no. 6, part 2, 197216.
Bendall, I. R. (1953). Further observations on a factor (the ‘Marsh’ factor) effecting relaxation of ATP-shortened muscle-fibre models, and the effect of Ca and Mg ions upon it. J. Physiol., Lond. 121, 232–54.
Buller, A. J., Eccles, J. C. & Eccles, R. M. (1960). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol., Lond. 150, 417–39.
Buller, A. I. & Mommaerts, W. F. H. M. (1969). Myofibrillar ATPase as a determining factor for contraction velocity, and its changes upon experimental cross-innervation. J. Physiol., Lond. 201, 46 P.
Cohen, C. & Longley, W. (1966). Tropomyosin paracrystals formed by divalent cations. Science 152, 794–6.
Conway, D. & Sakai, T. (1960). Caffein contracture. Proc. natn. Acad. Sci. U.S.A. 46, 897.
Costantin, L. L. (1968). The effect of calcium on contraction and conductance thresholds in frog skeletal muscle. J. Physiol., Lond. 195, 119–32.
Davies, R. E., Kushmerick, M. J. & Larson, R. E. (1967). ATP, activation, and the heat of shortening of muscle. Nature, Lond. 214, 148–51.
Douglas, W. W. (1968). Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–74.
Ebashi, S. & Endo, M. (1968). Calcium ions and muscle contraction. Progr. Biophys. Mol. Biol. 18, 123–83.
Ebashi, S., Iwakura, H., Nakajima, H., Nakamura, R. & Ooi, Y. (1966). New structural proteins from dog heart and chicken gizzard. Biochem. Z. 345, 201–11.
Ebashi, S., Kodama, A. & Ebashi, F. (1968). Troponin I. Preparation and physiological function. J. Biochem., Tokyo 64, 465–77.
Endo, M. (1967). Regulation of contraction–relaxation cycle (in Japanese). Proc. XVII Gen. Ass. Japan Med. Congr. I, 193–7.
Endo, M., Nonomura, Y., Masaki, T., Ohtsuki, I. & Ebashi, S. (1966). Localization of native tropomyosin in relation to striation patterns. J. Biochem., Tokyo 60, 605–8.
Endo, M., Tanaka, M. & Ebashi, S. (1968). Release of calcium from sarcoplasmic reticulum in skinned fibers of the frog. Proc. XXIV Int. Congr. Physiol. Sci. 7, 126.
Ford, L. E. & Podolsky, R. J. (1968). Force development and calcium movements in skinned muscle fibers. Fedn Proc. 27, 375.
Fujino, M., Yamaguchi, T. & Suzuki, K. (1961). Glycerol effect and the mechanism linking excitation of the plasma membrane with contraction. Nature, Lond. 192, 1159–61.
Fujita, K. (1954). Action of adenosine derivatives on muscle activity. II. Glycerol treated muscle and ‘relaxing factor’ (in Japanese). Folia pharmac. jap. 50, 183–92.
Gage, P. W. & Eisenberg, R. S. (1967). Action potentials without contraction in frog skeletal muscle fibers with disrupted transverse tubules. Science 158, 1702–3.
Galvani, L. (1791). Le viribus electricitatis in motu musculari commentarius. Istituto scienze orti liberali Bologna 7, 363418.
Hanson, J. (1968). Recent X-ray diffraction studies of muscle. Q. Rev. Biophys. I, 177216.
Hasselbach, W. (1964). Relaxing factor and relaxation of muscle. Progr. Biophys. Mol. Biol. 14, 167222.
Heilbrunn, L. V. & Wiercinski, F. J. (1947). The action of various cations on muscle protoplasm. J. cell. comp. Physiol. 29, 1532.
Heistracher, P. & Hunt, C. C. (1969 a). The relation of membrane changes to contraction in twitch muscle fibres. J. Physiol., Lond. 201, 589611.
Heistracher, P. & Hunt, C. C. (1969b). Contractile repriming in snake twitch muscle fibres. J. Physiol., Lond. 201, 613–26.
Hellam, D. C. & Podolsky, R. J. (1966). The relation between calcium concentration and isometric force in skinned frog muscle fibers. Fedn Proc. 25, 466.
Hellam, D. C. & Podolsky, R. J. (1969). Force measurements in skinned muscle fibres. J. Physiol., Lond. 200, 807–19.
Higashi, S. & Ooi, T. (1968). Crystals of tropomyosin and native tropomyosin. J. mol. Biol. 34, 699701.
Howell, J. N. (1969). A lesion of the transverse tubule of skeletal muscle. J. Physiol., Lond. 201, 515–33.
Huxley, A. F. (1957). Muscle structure and theories of contraction. Progr. Biophys. biophys. Chem. 7, 255318.
Huxley, H. E. (1969). The mechanism of muscular contraction. Science 164, 1356–66.
Ikemoto, N., Kitagawa, S. & Gergely, J. (1966). Electron microscopic investigation of the actin and myosin. Biochem. Z. 345, 410–26.
Jöbsis, F. F. & O'Connor, M. J. (1966). Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. biophys. Res. Commun. 25, 246–52.
Julian, F. J. (1969). Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Biophys. J. 9, 547–70.
Kamada, T. & Kinosita, H. (1943). Disturbances initiated from naked surface of muscle protoplasm. Jap. J. Zool. 10, 469–93.
Kao, C. Y. & Stanfield, P. R. (1968). Action of some anions on electrical properties and mechanical threshold of frog twitch muscle. J. Physiol., Lond. 198, 291309.
Kelly, R. E. & Rice, R. V. (1968). Localization of myosin filaments in smooth muscle. J. cell Biol. 37, 105–16.
Laki, K., Maruyama, K. & Kominz, D. R. (1962). Evidence for the interaction between tropomyosin and actin. Archs Biochem. Biophys. 98, 323–30.
Lüttgau, H. C. & Oetliker, H. (1968). The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J. Physiol., Lond. 194, 5174.
Marsh, B. B. (1952). The effects of adenosine triphosphate on the fibre volume of a muscle homogenate. Biochim. biophys. Acta 9, 247–60.
Maruyama, K. (1965). Some physico–chemical properties of β-actinin, ‘actin-factor’, isolated from striated muscle. Biochim. biophys. Acta 102, 542–8.
Masaki, T., Endo, M. & Ebashi, S. (1967). Localization of 6S component of α-actinin at Z-band. J. Biochem., Tokyo 62, 630–32.
Masaki, T., Takaiti, O. & Ebashi, S. (1968). ‘M-substance’, a new protein constituting the M-line of myofibrils. J. Biochem., Tokyo 64, 909–10.
Natori, R. (1954). The property and contraction process of isolated myofibrils. Jikeikai med. J. I, 119–26.
Natori, R. (1955). Repeated contraction and conductive contraction observed in isolated myofibrils. Jikeikai med. J. 2, 15.
Nayler, W. G. (1963). Effect of nicotine on cardiac muscle contractions and radiocalcium movement. Am. J. Physiol. 205, 890–6.
Niedergerice, R. (1963a). Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol., Lond. 167, 515–50.
Niedergerke, R. (1963b). Movements of Ca in beating ventricles of the frog heart. J. Physiol., Lond. 167, 551–80.
Niedergerke, R., Page, S. & Talbot, M. S. (1969). Calcium fluxes in frog heart ventricles. Pflügers Arch. ges. Physiol. 306, 357–60.
Nonomura, Y. (1968). Myofilaments in smooth muscle of guinea pig's taenia coli. J. cell Biol. 39, 741–5.
Nonomura, Y., Drabikowski, W. & Ebashi, S. (1968). The localization of troponin in tropomyosin paracrystals. J. Biochem., Tokyo 64, 419–22.
Ogawa, Y. (1968). The apparent binding constant of glycoletherdiaminetetraacetic acid for calcium at neutral pH. J. Biochem., Tokyo 64, 255–7.
Ogawa, Y. (1969). Some properties of frog's fragmented sarcoplasmic reticulum with particular reference to its response to drugs. J. Biochem., Tokyo (in press).
Ohtsuki, I. (1969). ATP-dependent Ca uptake of brain microsomes. J. Biochem., Tokyo 66, 645–50.
Ohtsuki, I., Masaki, T., Nonomura, Y. & Ebashi, S. (1967). Periodic distribution of troponin along the thin filament. J. Biochem., Tokyo 61, 817–19.
Oiucand, T. K. (1968). Facilitation of heart muscle contraction and its dependence on external calcium and sodium. J. Physiol., Lond. 196, 311–25.
Peachey, L. D. (1965). The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. cell Biol. 25, no. 3, part 2, 209–31.
Reiter, M. (1964). Electrolytes and myocardial contractility. In Pharmacology of cardiac function, ed. Krayer, O. and Kovaĩikovä, A., pp. 2542. Oxford: Pergamon Press.
Reuter, H. & Beeler, G. W. Jr. (1969). Calcium current and activation of contraction in ventricular myocardial fibers. Science 163, 399401.
Reuter, H. & Seitz, N. (1968). The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol., Lond. 195, 451–70.
Ridgway, E. B. & Ashley, C. C. (1967). Calcium transients in single muscle fibers. Biochem. biophys. Res. Commun. 29, 229–34.
Sakai, T. (1965). The effects of temperature and caffeine on activation of the contractile mechanism in the striated muscle fibres. Jikeikai med. J. 12, 88102.
Sandow, A. (1965). Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17, 265320.
Schädler, M. (1967). Proportionale Aktivierung von ATP-ase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten kontraktilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol. 7090.
Szent-Györgyi, A. (1949). Free-energy relations and contraction of actomyosin. Biol. Bull. mar. biol. Lab. Woods Hole 96, 140–61.
Szent-Györgyi, A. (1951). Chemistry of muscular contraction, 2nd ed.New York: Academic Press.
Tonomura, Y., Watanabe, S. & Morales, M. (1969). Conformational changes in the molecular control of muscle contraction. Biochemistry, N.Y. 8, 2171–6.
Wakabayashi, T. & Ebashi, S. (1968). Reversible change in physical state of troponin induced by calcium ion. J. Biochem., Tokyo 64, 731–2.
Weber, A. (1966). Energized calcium transport and relaxing factors. In Current topics in bioenergetics, ed. Sanadi, D. R., pp. 203–54. New York: Academic Press.
Weber, A. (1968). The mechanism of the action of caffeine on sarcoplasmic reticulum. J. gen. Physiol. 52, 760–72.
Weber, A. & Herz, R. (1968). The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. gen. Physiol. 52, 750–9.
Winegrad, S. (1968). Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. gen. Physiol. 51, 6583.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed