Skip to main content Accessibility help
×
Home

Cross-saturation and transferred cross-saturation experiments

  • Takumi Ueda (a1) (a2), Koh Takeuchi (a3), Noritaka Nishida (a1), Pavlos Stampoulis (a1), Yutaka Kofuku (a1), Masanori Osawa (a1) and Ichio Shimada (a1)...

Abstract

Structural analyses of protein–protein interactions are required to reveal their functional mechanisms, and accurate protein–protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein–protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s−1). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein–protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.

Copyright

Corresponding author

*Author for Correspondence: Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Tel: +(81) (3) 3815 6540; Fax: +(81) (3) 3815 6540; Email: shimada@iw-nmr.f.u-tokyo.ac.jp

References

Hide All
Ago, T., Takeya, R., Hiroaki, H., Kuribayashi, F., Ito, T., Kohda, D. & Sumimoto, H. (2001). The PX domain as a novel phosphoinositide-binding module. Biochemical and Biophysical Research Communication 287(3), 733738.
Ago, T., Kuribayashi, F., Hiroaki, H., Takeya, R., Ito, T., Kohda, D. & Sumimoto, H. (2003). Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proceedings of the National Academy of Sciences United States of America 100(8), 44744479.
Akasaka, K. (1981). Longitudinal relaxation of protons under cross saturation and spin diffusion. Journal of Magnetic Resonance 45(2), 337343.
Appay, V., Brown, A., Cribbes, S., Randle, E. & Czaplewski, L. G. (1999). Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants. Journal of Biological Chemistry 274(39), 2750527512.
Balla, T. (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 93(3), 10191137.
Battiste, J. L. & Wagner, G. (2000). Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18), 53555365.
Bayburt, T. H., Grinkova, Y. V. & Sligar, S. G. (2002). Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Letters 2(8), 853856.
Benians, A., Leaney, J. L., Milligan, G. & Tinker, A. (2003). The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. Journal of Biological Chemistry 278(12), 1085110858.
Berg, T. (2008). Small-molecule inhibitors of protein–protein interactions. Current Opinion in Drug Discovery & Development 11(5), 666674.
Berger, E. A., Murphy, P. M. & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 17, 657700.
Berlin, S., Tsemakhovich, V. A., Castel, R., Ivanina, T., Dessauer, C. W., Keren-Raifman, T. & Dascal, N. (2011). Two distinct aspects of coupling between Gα(i) protein and G protein-activated K+ channel (GIRK) revealed by fluorescently labeled Gα(i3) protein subunits. Journal of Biological Chemistry 286(38), 3322333235.
Bravo, J., Karathanassis, D., Pacold, C. M., Pacold, M. E., Ellson, C. D., Anderson, K. E., Butler, P. J., Lavenir, I., Perisic, O., Hawkins, P. T., Stephens, L. & Williams, R. L. (2001). The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Molecular Cell 8(4), 829839.
Busch, A. & Hippler, M. (2011). The structure and function of eukaryotic photosystem I. Biochimica et Biophysica Acta 1807(8), 864877.
Campanella, G. S., Grimm, J., Manice, L. A., Colvin, R. A., Medoff, B. D., Wojtkiewicz, G. R., Weissleder, R. & Luster, A. D. (2006). Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity. Journal of Immunology 177(10), 69916998.
Chatani, E., Ohnishi, R., Konuma, T., Sakurai, K., Naiki, H. & Goto, Y. (2010). Pre-steady-state kinetic analysis of the elongation of amyloid fibrils of beta(2)-microglobulin with tryptophan mutagenesis. Journal of Molecular Biology 400(5), 10571066.
Chida, H., Nakazawa, A., Akazaki, H., Hirano, T., Suruga, K., Ogawa, M., Satoh, T., Kadokura, K., Yamada, S., Hakamata, W., Isobe, K., Ito, T., Ishii, R., Nishio, T., Sonoike, K. & Oku, T. (2007). Expression of the algal cytochrome c 6 gene in Arabidopsis enhances photosynthesis and growth. Plant and Cell Physiology 48(7), 948957.
Clore, G. M. (2011). Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Science 20(2), 229246.
Clore, G. M. & Iwahara, J. (2009). Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chemical Reviews 109(9), 41084139.
Crump, M. P., Gong, J. H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J. L., Baggiolini, M., Sykes, B. D. & Clark-Lewis, I. (1997). Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO Journal 16(23), 69967007.
Cullen, P. J., Cozier, G. E., Banting, G. & Mellor, H. (2001). Modular phosphoinositide-binding domains – their role in signalling and membrane trafficking. Current Biology 11(21), R882R893.
Dogan, J., Gianni, S. & Jemth, P. (2013). The binding mechanisms of intrinsically disordered proteins. Physical Chemistry Chemical Physics 16(14), 63236331.
Gerlach, L. O., Skerlj, R. T., Bridger, G. J. & Schwartz, T. W. (2001). Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. Journal of Biological Chemistry 276(17), 1415314160.
Gluck, J. M., Wittlich, M., Feuerstein, S., Hoffmann, S., Willbold, D. & Koenig, B. W. (2009). Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. Journal of American Chemical Society 131(34), 1206012061.
Glueck, J. M., Wittlich, M., Feuerstein, S., Hoffmann, S., Willbold, D. & Koenig, B. W. (2009). Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. Journal of American Chemical Society 131(34), 1206012061.
Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C. & Kay, L. E. (1999). A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. Journal of Biomolecular NMR 13(4), 369374.
Gozansky, E. K., Louis, J. M., Caffrey, M. C. & Clore, G. M. (2005). Mapping the binding of the tail of the CXCR4 receptor N-terminal extracellular to stromal cell-derived factor-1 alpha. Journal of Molecular Biology 345(4), 651658.
Hagn, F., Etzkorn, M., Raschle, T. & Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. Journal of American Chemical Society 135(5), 19191925.
Hajduk, P., Augeri, D., Mack, J., Mendoza, R., Yang, J., Betz, S. & Fesik, S. (2000). NMR-based screening of proteins containing C-13-labeled methyl groups. Journal of American Chemical Society 122(33), 78987904.
Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M. & Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968), 803809.
Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I. & Kurachi, Y. (2010). Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiological Reviews 90(1), 291366.
Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. (2001). Solution structure of the PX domain, a target of the SH3 domain. Natural Structural Biology 8(6), 526530.
Hope, A. B. (2000). Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochimica et Biophysica Acta 1456(1), 526.
Hurley, J. H. & Meyer, T. (2001). Subcellular targeting by membrane lipids. Current Opinion in Cell Biology 13(2), 146152.
Igarashi, S., Osawa, M., Takeuchi, K., Ozawa, S. & Shimada, I. (2008). Amino acid selective cross-saturation method for identification of proximal residue pairs in a protein–protein complex. Journal of American Chemical Society 130(36), 1216812176.
Ito, Y. & Selenko, P. (2010). Cellular structural biology. Current Opinion in Structural Biology 20(5), 640648.
James, A. W. & Christopher, L. M. (2007). Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172), 10011009.
Jayalakshmi, V. & Krishna, N. R. (2002). Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. Journal of Magnetic Resonance 155(1), 106118.
Johnston, S. C., Riddle, S. M., Cohen, R. E. & Hill, C. P. (1999). Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO Journal 18(14), 38773887.
Kalk, A. & Berendsen, H. (1976). Proton magnetic-relaxation and spin diffusion in proteins. Journal of Magnetic Resonance 24(3), 343366.
Kanaba, T., Maesaki, R., Mori, T., Ito, Y., Hakoshima, T. & Mishima, M. (2013). Microtubule-binding sites of the CH domain of EB1 and its autoinhibition revealed by NMR. Biochimica et Biophysica Acta 1834(2), 499507.
Kanamori, E., Igarashi, S., Osawa, M., Fukunishi, Y., Shimada, I. & Nakamura, H. (2011). Structure determination of a protein assembly by amino acid selective cross-saturation. Proteins 79(1), 179190.
Karathanassis, D., Stahelin, R., Bravo, J., Perisic, O., Pacold, C., Cho, W. & Williams, R. (2002). Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO Journal 21(19), 50575068.
Kawano, M., Kumagai, K., Nishijima, M. & Hanada, K. (2006). Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. Journal of Biological Chemistry 281(40), 3027930288.
Kofuku, Y., Yoshiura, C., Ueda, T., Terasawa, H., Hirai, T., Tominaga, S., Hirose, M., Maeda, Y., Takahashi, H., Terashima, Y., Matsushima, K. & Shimada, I. (2009). Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. Journal of Biological Chemistry 284(50), 3524035250.
Kubo, S., Nishida, N., Udagawa, Y., Takarada, O., Ogino, S. & Shimada, I. (2013). A gel-encapsulated bioreactor system for NMR studies of protein–protein interactions in living mammalian cells. Angewandte Chemie International Edition in English 52(4), 12081211.
Kumar, S. & Nussinov, R. (2002). Relationship between ion pair geometries and electrostatic strengths in proteins. Biophysical Journal 83(3), 15951612.
Laurence, J. S., Blanpain, C., Burgner, J. W., Parmentier, M. & Liwang, P. J. (2000). CC chemokine MIP-1 beta can function as a monomer and depends on Phe13 for receptor binding. Biochemistry 39(12), 34013409.
Lemmon, M. (2008). Membrane recognition by phospholipid-binding domains. Nature Reviews Molecular Cell Biology 9(2), 99111.
Lenoir, M., Coskun, U., Grzybek, M., Cao, X., Buschhorn, S., James, J., Simons, K. & Overduin, M. (2010). Structural basis of wedging the Golgi membrane by FAPP pleckstrin homology domains. EMBO Reports 11(4), 279284.
Lyukmanova, E. N., Shenkarev, Z. O., Paramonov, A. S., Sobol, A. G., Ovchinnikova, T. V., Chupin, V. V., Kirpichnikov, M. P., Blommers, M. J. J. & Arseniev, A. S. (2008). Lipid-protein nanoscale bilayers: A versatile medium for NMR investigations of membrane proteins and membrane-active peptides. Journal of American Chemical Society 130(7), 21402141.
Mase, Y., Yokogawa, M., Osawa, M. & Shimada, I. (2012). Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein α subunit (Gαi/o). Journal of Biological Chemistry 287(23), 1953719549.
Matsuda, T., Ikegami, T., Nakajima, N., Yamazaki, T. & Nakamura, H. (2004). Model building of a protein–protein complexed structure using saturation transfer and residual dipolar coupling without paired intermolecular NOE. Journal of Biomolecular NMR 29(3), 325338.
Matsumoto, M., Ueda, T. & Shimada, I. (2010). Theoretical analyses of the transferred cross-saturation method. Journal of Magnetic Resonance 205(1), 114124.
Matsuo, H., Walters, K. J., Teruya, K., Tanaka, T., Gassner, G. T., Lippard, S. J., Kyogoku, Y. & Wagner, G. (1999). Identification by NMR spectroscopy of residues at contact surfaces in large, slowly exchanging macromolecular complexes. Journal of American Chemical Society 121(42), 99039904.
Mishima, M., Maesaki, R., Kasa, M., Watanabe, T., Fukata, M., Kaibuchi, K. & Hakoshima, T. (2007). Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proceedings of the National Academy of Sciences United States of America 104(25), 1034610351.
Modi, W. S., Lautenberger, J., An, P., Scott, K., Goedert, J. J., Kirk, G. D., Buchbinder, S., Phair, J., Donfield, S., O'BRIEN, S. J. & Winkler, C. (2006). Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. American Journal of Human Genetics 79(1), 120128.
Mulder, F. A., Schipper, D., Bott, R. & Boelens, R. (1999). Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. Journal of Molecular Biology 292(1), 111123.
Nagasawa, T., Tachibana, K. & Kawabata, K. (1999). A CXC chemokine SDF-1/PBSF: a ligand for a HIV coreceptor, CXCR4. Advances in Immunology 71, 211228.
Nakamura, T., Takahashi, H., Takeuchi, K., Kohno, T., Wakamatsu, K. & Shimada, I. (2005). Direct determination of a membrane-peptide interface using the nuclear magnetic resonance cross-saturation method. Biophysical Journal 89, 40514055.
Nakanishi, T., Miyazawa, M., Sakakura, M., Terasawa, H., Takahashi, H. & Shimada, I. (2002). Determination of the interface of a large protein complex by transferred cross-saturation measurements. Journal of Molecular Biology 318(2), 245249.
Nath, A., Atkins, W. M. & Sligar, S. G. (2007). Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46(8), 20592069.
Ogino, S., Kubo, S., Umemoto, R., Huang, S. X., Nishida, N. & Shimada, I. (2009). Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. Journal of American Chemical Society 131(31), 1083410835.
Osawa, M., Yokogawa, M., Muramatsu, T., Kimura, T., Mase, Y. & Shimada, I. (2009). Evidence for the direct interaction of spermine with the inwardly rectifying potassium channel. Journal of Biological Chemistry 284(38), 2611726126.
Papayannopoulos, V., Co, C., Prehoda, K. E., Snapper, S., Taunton, J. & Lim, W. A. (2005). A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Molecular Cell 17(2), 181191.
Paximadis, M., Mohanlal, N., Gray, G. E., Kuhn, L. & Tiemessen, C. T. (2009). Identification of new variants within the two functional genes CCL3 and CCL3L encoding the CCL3 (MIP-1 alpha) chemokine: implications for HIV-1 infection. International Journal of Immunology 36(1), 2132.
Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proceedings of the National Academy of Sciences United States of America 94(23), 1236612371.
Pervushin, K. V., Wider, G. & Wüthrich, K. (1998). Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY. Journal of Biomolecular NMR 12(2), 345348.
Rajagopalan, L. & Rajarathnam, K. (2006). Structural basis of chemokine receptor function – A model for binding affinity and ligand selectivity. Bioscience Reports 26(5), 325339.
Raschle, T., Hiller, S., Yu, T.-Y., Rice, A. J., Walz, T. & Wagner, G. (2009). Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. Journal of American Chemical Society 131(49), 1777717779.
Rask-Andersen, M., Almén, M. S. & Schiöth, H. B. (2011). Trends in the exploitation of novel drug targets. Nature Reviews Drug Discovery 10(8), 579590.
Ritchie, T. K., Grinkova, Y. V., Bayburt, T. H., Denisov, I. G., Zolnerciks, J. K., Atkins, W. M. & Sligar, S. G. (2009). Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods in Enzymology 464, 211231.
Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T. & Kay, L. E. (1996). Selective methyl group protonation of perdeuterated proteins. Journal of Molecular Biology 263(5), 627636.
Sato, T. K., Overduin, M. & Emr, S. D. (2001). Location, location, location: membrane targeting directed by PX domains. Science 294(5548), 18811885.
Schols, D., Struyf, S., Van Damme, J., Este, J. A., Henson, G. & De Clercq, E. (1997). Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. Journal of Experimental Medicine 186(8), 13831388.
Shenkarev, Z. O., Lyukmanova, E. N., Paramonov, A. S., Shingarova, L. N., Chupin, V. V., Kirpichnikov, M. P., Blommers, M. J. & Arseniev, A. S. (2010). Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. Journal of American Chemical Society 132(16), 56285629.
Shimada, I. (2005). NMR techniques for identifying the interface of a larger protein–protein complex: cross-saturation and transferred cross-saturation experiments. Methods in Enzymology 394, 483506.
Shimada, I., Ueda, T., Matsumoto, M., Sakakura, M., Osawa, M., Takeuchi, K., Nishida, N. & Takahashi, H. (2009). Cross-saturation and transferred cross-saturation experiments. Progress in Nuclear Magnetic Resonance Spectroscopy 54(2), 123140.
Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. (2001). The role of phosphoinositides in membrane transport. Current Opinion in Cell Biology 13(4), 485492.
Stampoulis, P., Ueda, T., Matsumoto, M., Terasawa, H., Miyano, K., Sumimoto, H. & Shimada, I. (2012). Atypical membrane-embedded phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2)-binding site on p47(phox) Phox homology (PX) domain revealed by NMR. Journal of Biological Chemistry 287(21), 1784817859.
Sugiki, T., Takeuchi, K., Yamaji, T., Takano, T., Tokunaga, Y., Kumagai, K., Hanada, K., Takahashi, H. & Shimada, I. (2012). Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). Journal of Biological Chemistry 287(40), 3370633718.
Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. & Shimada, I. (2000). A novel NMR method for determining the interfaces of large protein–protein complexes. Natural Structural Biology 7(3), 220223.
Takahashi, H., Miyazawa, M., Ina, Y., Fukunishi, Y., Mizukoshi, Y., Nakamura, H. & Shimada, I. (2006). Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein–protein complexes. Journal of Biomolecular NMR 34(3), 167177.
Takeda, M., Terasawa, H., Sakakura, M., Yamaguchi, Y., Kajiwara, M., Kawashima, H., Miyasaka, M. & Shimada, I. (2003). Hyaluronan recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments. Journal of Biological Chemistry 278(44), 4355043555.
Takeuchi, K., Takahashi, H., Sugai, M., Iwai, H., Kohno, T., Sekimizu, K., Natori, S. & Shimada, I. (2004). Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. Journal of Biological Chemistry 279(6), 49814987.
Ueda, T., Nomoto, N., Koga, M., Ogasa, H., Ogawa, Y., Matsumoto, M., Stampoulis, P., Sode, K., Terasawa, H. & Shimada, I. (2012). Structural basis of efficient electron transport between photosynthetic membrane proteins and plastocyanin in spinach revealed using nuclear magnetic resonance. Plant Cell 24(10), 41734186.
Wang, X., Watson, C., Sharp, J. S., Handel, T. M. & Prestegard, J. H. (2011). Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure 19(8), 11381148.
Whorton, M. R. & Mackinnon, R. (2011). Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147(1), 199208.
Wright, P. E. & Dyson, H. J. (2009). Linking folding and binding. Current Opinion in Structural Biology 19(1), 3138.
Wu, B., Chien, E. Y., Mol, C. D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F. C., Hamel, D. J., Kuhn, P., Handel, T. M., Cherezov, V. & Stevens, R. C. (2010). Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007), 10661071.
Yamamoto, S., Hasegawa, K., Yamaguchi, I., Goto, Y., Gejyo, F. & Naiki, H. (2005). Kinetic analysis of the polymerization and depolymerization of beta(2)-microglobulin-related amyloid fibrils in vitro. Biochimica et Biophysica Acta 1753(1), 3443.
Yanagi, K., Sakurai, K., Yoshimura, Y., Konuma, T., Lee, Y. H., Sugase, K., Ikegami, T., Naiki, H. & Goto, Y. (2012). The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques. Journal of Molecular Biology 422(3), 390402.
Yokogawa, M., Osawa, M., Takeuchi, K., Mase, Y. & Shimada, I. (2011). NMR analyses of the Gβγ binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). Journal of Biological Chemistry 286(3), 22152223.
Yokogawa, M., Kobashigawa, Y., Yoshida, N., Ogura, K., Harada, K. & Inagaki, F. (2012). NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. Journal of Biological Chemistry 287(42), 3493634945.
Yoshiura, C., Kofuku, Y., Ueda, T. Y. M., Yokogawa, M., Osawa, M., Terashima, Y., Matsushima, K. & Shimada, I. (2010). NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers. Journal of American Chemical Society 132(19), 67686777.
Zhou, H. X. & Cross, T. A. (2013). Influences of membrane mimetic environments on membrane protein structures. Annual Review of Biophysics 42, 361392.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed