Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T22:36:10.442Z Has data issue: false hasContentIssue false

Electronic detectors for electron microscopy

Published online by Cambridge University Press:  28 April 2011

A. R. Faruqi*
Affiliation:
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
G. McMullan
Affiliation:
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
*
*Author for correspondence: A. R. Faruqi, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. Tel.: (44)-1223-248011; Email: arf@mrc-lmb.cam.ac.uk

Abstract

Electron microscopy (EM) is an important tool for high-resolution structure determination in applications ranging from condensed matter to biology. Electronic detectors are now used in most applications in EM as they offer convenience and immediate feedback that is not possible with film or image plates. The earliest forms of electronic detector used routinely in transmission electron microscopy (TEM) were charge coupled devices (CCDs) and for many applications these remain perfectly adequate. There are however applications, such as the study of radiation-sensitive biological samples, where film is still used and improved detectors would be of great value. The emphasis in this review is therefore on detectors for use in such applications. Two of the most promising candidates for improved detection are: monolithic active pixel sensors (MAPS) and hybrid pixel detectors (of which Medipix2 was chosen for this study). From the studies described in this review, a back-thinned MAPS detector appears well suited to replace film in for the study of radiation-sensitive samples at 300 keV, while Medipix2 is suited to use at lower energies and especially in situations with very low count rates.

The performance of a detector depends on the energy of electrons to be recorded, which in turn is dependent on the application it is being used for; results are described for a wide range of electron energies ranging from 40 to 300 keV. The basic properties of detectors are discussed in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE) as a function of spatial frequency.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allinson, N., Anaxagoras, T., Aveyard, J., Arvanitis, C., Bates, R., Blue, A., Bohndiek, S., Cabello, J., Chen, L., Chen, S., Clark, A., Clayton, C., Cook, E., Cossins, A., Crooks, J., El-Gomati, M., Evans, P. M., Faruqi, W., French, M., Gow, J., Greenshaw, T., Greig, T., Guerrini, N., Harris, E. J., Henderson, R., Holland, A., Jeyasundra, G., Karadaglic, D., Konstantinidis, A., Liang, H. X., Maini, K. M. S., Mcmullen, G., Olivo, A., O'Shea, V., Osmond, J., Ott, R. J., Prydderch, M., Qiang, L., Riley, G., Royle, G., Segneri, G., Speller, R., Symonds-Tayler, J. R. N., Triger, S., Turchetta, R., Venanzi, C., Wells, K., Zha, X. & Zin, H. (2009). The multidimensional integrated intelligent imaging project (MI-3). Nuclear instruments and methods in physics research section A: accelerators, spectrometers. Detectors and Associated Equipment 604, 196198.CrossRefGoogle Scholar
Baker, T. S. & Henderson, R. (2002). Electron cryomicroscopy. In International Tables for Crystallography Volume F, pp. 451479.Google Scholar
Baldwin, J. & Henderson, R. (1984). Measurement and evaluation of electron diffraction patterns from two-dimensional crystals. Ultramicroscopy 14, 319336.CrossRefGoogle Scholar
Battaglia, M., Contarato, D., Denes, P., Doering, D., Giubilato, P., Kim, T. S., Mattiazzo, S., Radmilovic, V. & Zalusky, S. (2009a). A rad-hard CMOS active pixel sensor for electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 598, 642649.CrossRefGoogle Scholar
Battaglia, M., Contarato, D., Denes, P. & Giubilato, P. (2009b). Cluster imaging with a direct detection CMOS pixel sensor in transmission electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, 363365.CrossRefGoogle Scholar
Bauer, E. (1994). Low energy electron microscopy. Reports on Progress in Physics 57, 895938.CrossRefGoogle Scholar
Bauer, E. (2009). Cathode lens electron microscopy: past and future. Journal of Physics: Condensed Matter 31, 314001.Google Scholar
Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Current Opinion in Structural Biology 12, 679684.CrossRefGoogle ScholarPubMed
Baumeister, W., Grimm, R. & Walz, J. (1999). Electron tomography of molecules and cells. Trends in Cell Biology 9, 8185.CrossRefGoogle ScholarPubMed
Bethe, H. & Ashkin, J. (1953). Passage of radiation through matter, chapter 2. In Experimental Nuclear Physics, vol. 1 (ed. Segré, E.), pp. 166357. New York: John Wiley.Google Scholar
Bichsel, H. (1988). Straggling in thin silicon detectors. Reviews of Modern Physics 60, 663699.CrossRefGoogle Scholar
Boettcher, B., Wynne, S. A. & Crowther, R. A. (1997). Determination of the fold of the core protein of Hepatitis B virus by electron cryomicroscopy. Nature 386, 8891.CrossRefGoogle Scholar
Bogaerts, J., Dierckx, B., Meynants, G. & Uwaerts, D. (2003). Total dose and displacement damage effects in a radiation-hardened CMOS APS. IEEE Transactions on Electrical Development 50, 8490.CrossRefGoogle Scholar
Booth, C. R., Joanita, J. & Chiu, W. (2006). Assessing the capabilities of a 4k×4k CCD camera for electron cryo-microscopy at 300 kV. Journal of Structural Biology 156, 556563.CrossRefGoogle Scholar
Booth, C. R., Wen, J., Baker, M. L., Zhou, Z. H., Ludtke, S. J. & Chiu, W. (2004). A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. Journal of Structural Biology 147, 116127.CrossRefGoogle ScholarPubMed
Brink, J. & Chiu, W. (1994). Applications of a slow-scan CCD camera in protein electron crystallography. Journal of Structural Biology 113, 2334.CrossRefGoogle ScholarPubMed
Cabello, J., Bailey, A., Kitchen, I., Prydderch, M., Clark, A., Turchetta, R. & Wells, K. (2007). Digital autoradiography using room temperature CCD and CMOS imaging technology. Physics in Medicine and Biology 52, 49935011.CrossRefGoogle ScholarPubMed
Cabello, J. & Wells, K. (2007). A Monte Carlo investigation into the fundamental limitations of digital autoradiography: considerations for detector design. Nuclear Science Symposium Conference Record NSS IEEE 5, 36253630.Google Scholar
Campbell, M. (2010). 10 Years of the Medipix2 Collaboration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, in press, corrected proof, doi: 10.1016/j.nima.2010.1006.1106.CrossRefGoogle Scholar
Campbell, M., Anelli, G., Cantatore, E., Faccio, F., Heijne, E. H. M., Jarron, P., Santiard, J. C., Snoeys, W. & Wyllie, K. (2001). An introduction to deep submicron CMOS for vertex applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 473, 140145.CrossRefGoogle Scholar
Campbell, M., Heijne, E. H. M., Jarron, P., Krummenacher, F. O., Enz, C. C., Declercq, M., Vittoz, E. & Viertel, G. (1990). A 10 MHz micropower CMOS front end for direct readout of pixel detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 290, 149157.CrossRefGoogle Scholar
Caswell, T. A., Ercius, P., Tate, M. W., Ercan, A., Gruner, S. M. & Muller, D. A. (2009). A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109, 304311.CrossRefGoogle Scholar
Cheng, Y. & Walz, T. (2009). The advent of near-atomic resolution in single-particle electron microscopy. Annual Review of Biochemistry 78, 723742.CrossRefGoogle ScholarPubMed
Da Via, C., Bates, R., Bertolucci, E., Bottigli, U., Campbell, M., Chesi, E., Conti, M., D'Auria, S., Delpapa, C., Fantacci, M. E., Grossi, G., Heijne, E., Mancini, E., Middelkamp, P., Raine, C., Russo, P., O'Shea, V., Scharfetter, L., Smith, K., Snoeys, W. & Stefanini, A. (1997). Gallium arsenide pixel detectors for medical imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 395, 148151.CrossRefGoogle Scholar
Dainty, J. C. & Shaw, R. (1974). Image Science. New York: Academic Press.Google Scholar
De Rosier, D. J. & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130134.CrossRefGoogle ScholarPubMed
Denes, P., Bussata, J., Leeb, Z. & Radmillovic, V. (2007). Active pixel sensors for electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 579, 891894.CrossRefGoogle Scholar
Deptuch, G. (2005). Tritium autoradiography with thinned and back-side illuminated monolithic active pixel sensor device. Nuclear Instruments and Methods 543, 537548.CrossRefGoogle Scholar
Deptuch, G., Besson, A., Rehak, P., Szelezniak, M., Wall, J., Winter, M. & Zhu, Y. (2007). Direct electron imaging in electron microscopy with monolithic active pixel sensors. Ultramicroscopy 107, 674684.CrossRefGoogle ScholarPubMed
Deruijter, W. J. (1995). Imaging properties and applications of slow-scan charge-coupled-device cameras suitable for electron-microscopy. Micron 26, 247275.CrossRefGoogle Scholar
Downing, K. H. & Hendrickson, F. M. (1999). Performance of a 2 K CCD camera designed for electron crystallography at 400 kV. Ultramicroscopy 75, 215233.CrossRefGoogle Scholar
Eid, E. S., Chan, T. Y., Fossurn, E. R., Tsai, R. H., Spagnuolo, R., Deily, J., Byers, W. B. Jr. & Peden, J. C. (2001). Design and characterization of ionizing radiation-tolerant CMOS APS image sensors up to 30 Mrd (Si) total dose. IEEE Transactions on Nuclear Science 48, 17961806.CrossRefGoogle Scholar
Fan, G. Y. & Ellisman, M. H. (1993). High-sensitivity lens-coupled slow-scan CCD camera for transmission electron-microscopy. Ultramicroscopy 52, 2129.CrossRefGoogle ScholarPubMed
Faruqi, A. R. (1988). Development and application of multiwire detectors in biological X-ray studies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 273, 754763.CrossRefGoogle Scholar
Faruqi, A. R. (2009). Principles and prospects of direct high resolution electron image acquisition with CMOS detectors at low energies. Journal of Physics: Condensed Matter 21, 314004.Google ScholarPubMed
Faruqi, A. R. & Andrews, H. N. (1997). Cooled CCD camera with tapered fibre optics for electron microscopy. Nuclear Instruments and Methods A 392, 233236.CrossRefGoogle Scholar
Faruqi, A. R. & Cattermole, D. M. (2005). Pixel detectors for cryo-microscopy. Nuclear Instruments and Methods A 549, 192198.CrossRefGoogle Scholar
Faruqi, A. R., Cattermole, D. M., Henderson, R., Mikulec, B. & Raeburn, C. (2003). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94, 263276.CrossRefGoogle ScholarPubMed
Faruqi, A. R. & Henderson, R. (2007). Electronic detectors for electron microscopy. Current Opinion in Structural Biology 17, 549555.CrossRefGoogle ScholarPubMed
Faruqi, A. R., Henderson, R. & Holmes, J. (2006). Radiation damage studies on STAR250 CMOS sensor at 300 keV for electron microscopy. Nuclear Instruments and Methods 565, 139143.CrossRefGoogle Scholar
Faruqi, A. R., Henderson, R., Prydderch, M., Turchetta, R., Allport, P. & Evans, A. (2005a). Direct single electron detection with a CMOS detector for electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 546, 170175.CrossRefGoogle Scholar
Faruqi, A. R., Henderson, R. & Subramaniam, S. (1999). Cooled CCD detector with tapered fibre optics for recording electron diffraction patterns. Ultramicroscopy 75, 235250.CrossRefGoogle Scholar
Faruqi, A. R., Henderson, R. & Tlustos, L. (2005b). Noiseless direct detection of electrons in Medipix2 for electron microscopy. Nuclear Instruments and Methods 546, 160163.CrossRefGoogle Scholar
Faruqi, A. R. & Subramaniam, S. (2000). CCD detectors in high-resolution biological electron microscopy. Quarterly Reviews of Biophysics 33, 128.CrossRefGoogle ScholarPubMed
Fossum, E. R. (1993). Active pixel sensors: are CCDs dinosaurs? Proceedings of the SPIE 1900, 113.Google Scholar
Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annual Review of Biophysics and Biomolecular Structure 31, 303319.CrossRefGoogle ScholarPubMed
Frank, J. (2009). Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years. Quarterly Reviews of Biophysics 42, 139158.CrossRefGoogle Scholar
Geronimo, G. D., Deptuch, G., Dragone, A., Radeka, V., Rehak, P., Castoldi, A., Fazzi, A., Gatti, E., Guazzoni, C., Rijssenbeek, M., Dulinski, W., Besson, A., Deveaux, M. & Winter, M. (2006). A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy. Nuclear Instruments and Methods 568, 167175.CrossRefGoogle Scholar
Glaeser, R. M., McMullan, G., Faruqi, A. R. & Henderson, R. (2011). Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion. Ultramicroscopy 111, 90100.CrossRefGoogle ScholarPubMed
Hamilton, J. F. & Marchant, J. C. (1967). Image recording in electron microscopy. Journal of Optical Society of America 57, 232239.CrossRefGoogle Scholar
Henderson, R. (2004). Realizing the full potential of electron cryo-microscopy. Quarterly Reviews of Biophysics 37, 313.CrossRefGoogle Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of Molecular Biology 213, 899929.CrossRefGoogle ScholarPubMed
Henderson, R. & Glaeser, R. M. (1985). Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16, 139150.CrossRefGoogle Scholar
Janesick, J. & Putnam, G. (2003). Development and applications of high performance CCD and CMOS imaging arrays. Annual Review of Nuclear and Particle Science 53, 263300.CrossRefGoogle Scholar
Jin, L., Milazzo, A.-C., Kleinfelder, S., Li, S., Leblanc, P., Duttweiler, F., Bouwer, J. C., Peltier, S. T., Ellisman, M. H. & Xuong, N.-H. (2008). Applications of direct detection device in transmission electron microscopy. Journal of Structural Biology 161, 352358.CrossRefGoogle ScholarPubMed
Joy, D. C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. Oxford: Oxford University Press.CrossRefGoogle Scholar
King, W., Campbell, G., Frank, A., Reed, B., Schmerge, J., Siwick, B., Stuart, B. & Weber, M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. Journal of Applied Physics 97, 127.CrossRefGoogle Scholar
Klug, A. (1999). The tobacco mosaic virus particle: structure and assembly. Philosophical Transactions of Royal Society of London Series B: Biological Sciences 354, 531535.CrossRefGoogle ScholarPubMed
Krebs, A., Villa, C., Edwards, P. C. & Schertler, G. F. X. (1998). Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. Journal of Molecular Biology 282, 9911003.CrossRefGoogle ScholarPubMed
Krivanek, O. L. & Mooney, P. E. (1993). Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95.CrossRefGoogle Scholar
Krüger, H. (2005). 2D Detectors for particle physics and for imaging applications. Nuclear Instruments and Methods A551, 114.Google Scholar
Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614621.CrossRefGoogle ScholarPubMed
Landau, L. (1944). On the energy loss of fast particles by ionisation. Journal of Physics (Moscow) 8, 201.Google Scholar
Llopart, X. & Campbell, M. (2003). First test measurements of a 64 K pixel readout chip working in single photon counting mode. Nuclear Instruments and Methods A 509, 157163.CrossRefGoogle Scholar
Llopart, X., Campbell, M., Dinapoli, R., San Secundo, D. & Pernigotti, E. (2002). Medipix2: a 64k pixel readout chip with 55 μm square elements working in single photon counting mode. IEEE Transactions on Nuclear Science 49, 22792283.CrossRefGoogle Scholar
Lucic, V., Forster, F. & Baumeister, W. (2005). Structural studies by electron tomography: from cells to molecules. Annual Review of Biochemistry 74, 833865.CrossRefGoogle ScholarPubMed
Matheson, J., Moldovan, G., Clark, A., Prydderch, M., Turchetta, R., Derbyshire, G., Kirkland, A. & Allinson, N. (2009). Characterisation of a monolithic active pixel sensor for electron detection in the energy range 10–20 keV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, 199205.CrossRefGoogle Scholar
McMullan, G., Cattermole, D., Chen, S., Henderson, R., Llopart, X., Summerfield, C., Tlustos, L. & Faruqi, A. R. (2007). Electron imaging with Medipix2 hybrid pixel detector. Ultramicroscopy 107, 401413.CrossRefGoogle ScholarPubMed
McMullan, G., Chen, S., Henderson, R. & Faruqi, A. R. (2009a). The detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109, 11261143.CrossRefGoogle ScholarPubMed
McMullan, G., Clark, A. T., Turchetta, R. & Faruqi, A. R. (2009b). Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109, 14111416.CrossRefGoogle ScholarPubMed
McMullan, G. & Faruqi, A. R. (2008). Direct detection devices for single particle electron cryo-microscopy. Nuclear Instruments and Methods A591, 129133.CrossRefGoogle Scholar
McMullan, G., Faruqi, A. R., Henderson, R., Guerrini, N., Turchetta, R., Jacobs, A. & Van Hoften, G. (2009c). Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 11441147.CrossRefGoogle ScholarPubMed
Mettivier, G., Montesi, M. C. & Russo, P. (2004). Tritium digital autoradiography with a Medipix2 hybrid silicon pixel detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 516, 554563.CrossRefGoogle Scholar
Meyer, R. R. & Kirkland, A. (1998). The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75, 2333.CrossRefGoogle Scholar
Mikulec, B., Campbell, M., Heijne, E., Llopart, X. & Tlustos, L. (2003). X-ray imaging using single photon processing with semiconductor pixel detectors. Nuclear Instruments and Methods A 511, 282286.CrossRefGoogle Scholar
Milazzo, A., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C., Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P., Kleinfelder, S. & Xuong, N. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104, 152159.CrossRefGoogle ScholarPubMed
Mooney, P. (2007). Optimization of image collection for cellular electron microscopy. Methods in Cell Biology 79, 661719.CrossRefGoogle ScholarPubMed
Park, H. S., Baskin, J. S., Barwick, B., Kwon, O.-H. & Zewail, A. H. (2009). 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moiré fringe dynamics. Ultramicroscopy 110, 719.CrossRefGoogle ScholarPubMed
Peric, I. (2007). A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 582, 876885.CrossRefGoogle Scholar
Prydderch, M. L., Waltham, N. J., Turchetta, R., French, M. J., Holt, R., Marshall, A., Burt, D., Bell, R., Pool, P., Eyles, C. & Mapson-Menard, H. (2003). A 512×512 CMOS monolithic active pixel sensor with integrated ADCs for space science. Nuclear Instruments and Methods A512, 358367.CrossRefGoogle Scholar
Roberts, P. T. E., Chapman, J. N. & Macleod, A. M. (1982). A CCD-based recording system for CTEM. Ultramicroscopy 8, 385396.CrossRefGoogle Scholar
Russo, P., Lauria, A., Mettivier, G., Montesi, M. C., Marotta, M., Aloj, L. & Lastoria, S. (2008). 18F-FDG positron autoradiography with a particle counting silicon pixel detector. Physics in Medicine and Biology 53, 62276243.CrossRefGoogle ScholarPubMed
Russo, P., Mettivier, G., Pani, R., Pellegrini, R., Cinti, M. N. & Bennati, P. (2009). Imaging performance comparison between a LaBr[sub 3]:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera. Medical Physics 36, 12981317.CrossRefGoogle Scholar
Sander, B., Golas, M. M. & Stark, H. (2005). Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy. Journal of Structural Biology 151, 92105.CrossRefGoogle Scholar
Shapiro, S. L., Dunwoodie, W. M., Arens, J. F., Garrett Jernigan, J. & Gaalema, S. (1989). Silicon pin diode array hybrids for charged particle detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 275, 580586.CrossRefGoogle Scholar
Slayter, E. M. & Slayter, H. S. (1992). Light and Electron Microscopy. Cambridge: Cambridge University Press.Google Scholar
Spence, J. C. H. & Zuo, J. M. (1988). Large dynamic range, parallel detection system for electron diffraction and imaging. Review of Scientific Instruments 59, 21022105.CrossRefGoogle Scholar
Subramaniam, S., Lindahl, M., Bullough, P., Faruqi, A. R., Tittor, J., Oeterhelt, D., Brown, D., Lanyi, J. & Henderson, R. (1999). Protein conformational changes in the bacteriorhodopsin photocycle. Journal of Molecular Biology 287, 145161.CrossRefGoogle ScholarPubMed
Tlustos, L. (2005). Performance and limitations of high granularity single photon processing X-ray imaging detectors. Ph.D. thesis, University of Technology, Vienna, CERNTHESIS-2005-032.Google Scholar
Tromp, R. M. (2000). Low-energy electron microscopy. IBM Journal of Research and Development 44, 503516.CrossRefGoogle Scholar
Turchetta, R., Berst, J. D., Casadei, B., Claus, G., Colledani, C., Dulinski, W., Hu, Y., Husson, D., Le Normand, J. P., Riester, J. L., Deptuch, G., Goerlach, U., Higueret, S. & Winter, M. (2001). A monolithic active pixel sensor for charged particle tracking and imaging using standard. VLSI CMOS Technology Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 458, 677689.CrossRefGoogle Scholar
Typke, D., Gilpin, C. J., Downing, K. H. & Glaeser, R. M. (2007). Stroboscopic image capture: reducing the dose per frame by a factor of 30 does not prevent beam-induced specimen movement in paraffin. Ultramicroscopy 107, 106115.CrossRefGoogle Scholar
Van Gastel, R., Sikharulidze, I., Schramm, S., Abrahams, J. P., Poelsema, B., Tromp, R. M. & Van Der Molen, S. J. (2009). Medipix 2 detector applied to low energy electron microscopy. Ultramicroscopy 110, 3335.CrossRefGoogle ScholarPubMed
Van Heel, M., Gowen, B., Matadeen, R., Orlova, E. V., Finn, R., Pape, T., Cohen, D., Stark, H., Schmidt, R., Schatz, M. & Patwardhan, A. (2000). Single-particle electron cryo-microscopy: towards atomic resolution. Quarterly Reviews of Biophysics 33, 307369.CrossRefGoogle ScholarPubMed
Zewail, A. H. (2006). 4D ultrafast electron diffraction, crystallography, and microscopy. Annual Review of Physical Chemistry 57, 65103.CrossRefGoogle ScholarPubMed
Zhang, J., Baker, M. L., Schroder, G. F., Douglas, N. R., Reissmann, S., Jakana, J., Dougherty, M., Fu, C. J., Levitt, M., Ludtke, S. J., Frydman, J. & Chiu, W. (2010a). Mechanism of folding chamber closure in a group II chaperonin. Nature 463, 379383.CrossRefGoogle Scholar
Zhang, X., Jin, L., Fang, Q., Hui, W. H. & Zhou, Z. H. (2010b). 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472482.CrossRefGoogle ScholarPubMed
Zhang, X., Settembre, E., Xu, C., Dormitzer, P. R., Bellamy, R., Harrison, S. C. & Grigorieff, N. (2008). Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proceedings of the National Academy of Sciences, U. S. A. 105, 18671872.CrossRefGoogle ScholarPubMed
Zweig, H. J. (1965). Detective quantum efficiency of photodetectors with some amplification mechanisms. Journal of Optical Society of America 55, 525528.CrossRefGoogle Scholar
Zwerger, A., Faulera, A., Fiederle, M. & Jakobs, K. (2007). Medipix2: Processing and measurements of GaAs pixel detectors. Nuclear Instruments and Methods 576, 2326.CrossRefGoogle Scholar