Skip to main content Accessibility help

Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction

  • Magnus Bergh (a1), Gösta Huldt (a1), Nicusor Tîmneanu (a1), Filipe R. N. C. Maia (a1) and Janos Hajdu (a1) (a2)...


Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis of the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed. The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0·75 and 1·5 nm and at fluences of 1011–1012 photons μm−2 in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.


Corresponding author

*Author for correspondence: J. Hajdu, Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden. Tel.:+46-18-4714449; Fax: +46-18-511755; Email:


Hide All
Abbey, B., Nugent, K. A., Williams, G. J., Clark, J. N., Peele, A. G., Pfeifer, M. A., de Jonge, M. & McNulty, I. (2008). Keyhole coherent diffractive imaging. Nature Physics 4, 394.
Ayvazyan, V., Baboi, N., Bhr, J. et al. (2006). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. European Physical Journal D 37, 297.
Bergh, M., Tîmneanu, N. & van der Spoel, D. (2004). A model for the dynamics of a water cluster in a X-ray FEL beam. Physical Review E 70, 051904.
Bernal, J. D., Fankuchen, I. & Perutz, M. F. (1938). An x-ray study of chymotrypsin and haemoglobin. Nature 141, 523.
Blake, C. C. F. & Phillips, D. C. (1962). Effects of X-irradiation on single crystals of myoglobin. In Biological Effects of Ionizing Radiations at the Molecular Level, p. 183191. Vienna: International Atomic Energy Agency.
Bortel, G. & Faigel, G. (2007). Classification of continuous diffraction patterns: a numerical study. Journal of Structural Biology 158, 1018.
Bragg, L. & Perutz, F. M. (1952). The structure of haemoglobin. Proceedings of the Royal Society of London, Series A 213, 425.
Cannon, T. M. & Fenimore, E. E. (1979). Tomographical imaging using uniformly redundant arrays. Applied Optics 18(7), 10521057.
Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., Marchesini, S., Woods, B. W., Bajt, S., London, R. A., Plönjes, E., Kuhlmann, M., Treusch, R., Düsterer, S., Tschentscher, T., Schneider, J. R., Spiller, E., Möller, T., Bostedt, C., Hoener, M., Shapiro, D. A., Hodgson, K. O., van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M. M., Maia, F. R. N. C., Lee, R. W., Szoke, A., Tîmneanu, N. & Hajdu, J. (2006a). Femtosecond diffractive imaging with a soft-x-ray free-electron laser. Nature Physics 12, 839843.
Chapman, H. N., Barty, A., Marchesini, S., Noj, A., Cui, C., Howells, M. R., Rosen, R., He, H., Spence, J. C. H., Weierstall, U., Beetz, T., Jacobsen, C. & Shapiro, D. (2006b). High-resolution ab initio three-dimensional x-ray diffraction microscopy. Journal of the Optical Society of America. A, Optics and Image Science 23, 1179.
Chapman, H. N., Hau-Riege, S. P., Bogan, M., Bajt, S., Barty, A., Boutet, S., Marchesini, S., Frank, M., Woods, B. W., Benner, W. H., London, R. A., Rohner, U., Szöke, A., Spiller, E. A., Müller, T., Bostedt, C., Shapiro, D. A., Plönjes, E., Kuhlmann, M., Hodgson, K. O., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M. M. & Hajdu, J. (2007). Femtosecond time-delay x-ray holography. Nature 448, 676.
Cullen, D. E., Perkins, S. T. & Rathkopf, J. A. (1990). The 1989 Livermore Evaluated Photon Data Library (EPDL), UCRL-ID-103424. Livermore, CA: Lawrence Livermore National Laboratory.
Debye, P. (1914). Interferenz von Röntgenstrahlen und Wärmebewegung. Annalen der Physik (Leipzig) 348, 4992.
Delone, N. B. & Krainov, V. P. (2000). Multiphoton Processes in Atoms, p. 92. Berlin: Springer-Verlag.
Faure, J., Glinec, Y., Puhkov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541.
Fenimore, E. E. & Cannon, T. M. (1978). Coded aperture imaging with uniformly redundant arrays. Applied Optics 17(3), 337.
Frank, J. (1995). Three-Dimensional Electron Microscopy of Macromolecular Assemblies. San Diego, CA: Academic Press.
Geddes, C. G. R., van Tilborg, J., Toth, Cs., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W. P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.
Goodman, J. W. (1996). Introduction to Fourier Optics, 2nd edn. McGraw-Hill.
Grüner, F., Becker, S., Schramm, U., Eichner, T., Fuchs, M., Weingartner, R., Habs, D., Meyer ter vehn, J., Geissler, M., Ferrario, M., Serafini, L., van der Geer, B., Backe, H., Lauth, W. & Reiche, S. (2007). Design considerations for table-top, laser-based vuv and x-ray free electron lasers. Applied Physics B, Lasers and Optics 86, 431.
Hajdu, J., Machin, P. A., Campbell, J. W., Greenhough, T. J., Clifton, I. J., Zurek, S., Gover, S., Johnson, L. N. & Elder, M. (1987). Millisecond X-ray diffraction: first electron density map from Laue photographs of a protein crystal. Nature 329, 178.
Hajdu, J. & Andersson, I. (1993). Fast x-ray crystallography and time-resolved structures. Annual Review of Biophysics and Biomolecular Structure 22, 467.
Hau-Riege, S. P., London, R. A. & Szoke, A. (2004). Dynamics of biological molecules irradiated by short X-ray pulses. Physical Review E 69, 051906.
Hau-Riege, S. P., London, R. A., Huldt, G. & Chapman, H. N. (2005). Pulse requirements for x-ray diffraction imaging of single biological molecules. Physical Review E 71, 061919.
Hau-Riege, S. P., London, R. A., Chapman, H. N. & Bergh, M. (2007a). Soft-x-ray free-electronlaser interaction with materials. Physical Review E 76(4), 046403.
Hau-Riege, S. P., London, R. A., Chapman, H. N., Szoke, A. & Timneanu, N. (2007b). Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in X-ray diffraction imaging of single biological molecules. Physical Review Letters 98, 1983021.
Henderson, R. (1990). Cryoprotection of protein crystals against radiation-damage in electron and x-ray diffraction. Proceedings of the Royal Society of London, Series B 241, 6.
Henderson, R. (1995). The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules. Quarterly Reviews of Biophysics 28, 171.
Hendrickson, W. A. (1976). Radiation damage in protein crystallography. Journal of Molecular Biology 106, 889.
Henke, B., Gullikson, E. & Davis, J. (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92. Atomic Data and Nuclear Data Tables 54, 181.
Howells, M., Beetz, T., Chapman, H. N., Cui, C., Holton, J. M., Jacobsen, C. J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Sayre, D., Shapiro, D. A. & Spence, J. C. H. (2005). An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. [accessed in 2005].
Huldt, G., Szoke, A. & Hajdu, J. (2003). Diffraction imaging of single particles and biomolecules. Journal of Structural Biology 144, 171.
Jurek, Z., Faigel, G. & Tegze, M. (2004a). Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. European Physical Journal D 29, 217229.
Jurek, Z., Oszlányi, G. & Faigel, G. (2004b). Imaging atom clusters by hard x-ray free-electron lasers. Europhysics Letters 65, 491497.
London, R. A., Rosen, M. R. & Trebes, J. E. (1989). Wavelength choice for soft x-ray laser holography of biological samples. Applied Optics 28, 3397.
Marchesini, S., Boutet, S., Sakdinawat, A. E., Bogan, M. J., Bajt, S., Barty, A., Chapman, H. N., Frank, M., Hau-Riege, S. P., Szoke, A., Cui, C., Howells, M. R., Shapiro, D. A., Spence, J. C. H., Shaevitz, J. W., Lee, J. Y., Hajdu, J. & Seibert, M. M. (2008). Massively parallel X-ray holography. Nature Photonics 2, 560563.
Meidinger, N., Andritschke, R., Hälker, O., Hartmann, R., Hasinger, G., Herrmann, S., Holl, P., Kimmel, N., Pfeffermann, E., Predehl, P., Reich, C., Schächner, G., Soltau, H. & Strüder, L. (2007). Fast large-area spectroscopic and imaging CCD detectors for X-ray astronomy with eROSITA and for exploration of the nanocosmos. Proceedings – Society of Photo-Optical Instrumentation Engineers 6686, 0H1,
Miao, J., Sayre, D. & Chapman, H. N. (1998). Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects. Journal of the Optical Society of America. A, Optics and Image Science 15, 1662.
More, R. (1982). Electronic energy-levels in dense plasmas. Journal of Quantitative Spectroscopy & Radiative Transfer 27, 345.
Nantel, M., Ma, G., Gu, S., Coté, C. Y., Itatani, J. & Umstadter, D. (1998). Pressure ionisation and line merging in strongly coupled plasmas produced by 100-fs laser pulses. Physical Review Letters 20, 4442.
Nave, C. (1995). Radiation-damage in protein crystallography. Radiation Physics and Chemistry 45, 483.
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752757.
Nilsen, J. & Scofield, J. H. (2004). Plasmas with an index of refraction greater than 1. Optics Letters 29, 2677.
Quiney, H. M., Peele, A. G., Cai, Z., Paterson, D. & Nugent, K. A. (2006). Diffractive imaging of highly focused X-ray fields. Nature Physics 2, 101.
Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta Crystallographica 5, 843.
Scott, H. A. (2001). Cretin-a radiative transfer capability for laboratory plasmas. Journal of Quantitative Spectroscopy & Radiative Transfer 71, 689.
Scott, H. A. & Mayle, R. W. (1994). GLF – a simulation code for x-ray lasers. Applied Physics. B, Lasers and Optics 58, 35.
Shannon, C. E. (1949). Communications in the presence of noise. Proceedings of the Institute of Radio Engineers 37, 10.
Shen, Q., Bazarov, I. & Thibault, P. (2004). Diffractive imaging of nonperiodic materials with future coherent x-ray sources. Journal of Synchrotron Radiation 11, 432.
Solem, J. C. & Baldwin, G. C. (1982). Microholography of living organisms. Science 218, 229.
Spence, J. C. H., Weierstall, U. & Howells, M. (2002). Phase recovery and lensless imaging by iterative methods in optical; X-ray and electron diffraction. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences 360, 875.
Starodub, D., Rez, P., Hembree, G., Howells, M., Shapiro, D., Chapman, H. N., Fromme, P., Schmidt, K., Weierstall, U., Doak, R. B. & Spence, J. C. H. (2008, Jan). Dose, exposure time and resolution in serial X-ray crystallography. Journal of Synchrotron Radiation 15(1): 6273.
Stewart, J. C. & Pyatt, K. D. (1966). Lowering of ionization potentials in plasmas. Astrophysical Journal 144, 1203.
Thibault, P., Elser, V., Jacobsen, C., Sayre, D. & Shapiro, D. (2006). Reconstruction of a yeast cell from X-ray diffraction data. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical And General Crystallography 62, 248.
Timneanu, N., Caleman, C., Hajdu, J. & van der Spoel, D. (2004). Auger electron cascades in water and ice. Chemical Physics 299, 277283.
van Heel, M., Gowan, B., Matadeen, R., Orlova, E. V., Finn, R., Pape, T., Cohan, D., Stark, H., Schmidt, R., Schatz, M. & Patwardhan, A. (2000). Single-particle electron cryomicroscopy: towards atomic resolution. Quarterly Reviews of Biophysics 33, 307.
Waller, I. (1923). Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen. Zeitschrift für Physik 17, 389408.
Watson, J. P. (1987). Molecular Biology of the Gene, 4th edn.Wiley-Interscience.
Williams, G. J., Quiney, H. M., Dhal, B. B., Tran, C. Q., Nugent, K. A., Peele, A. G., Paterson, D. & de Jonge, M. D. (2006). Fresnel coherent diffractive imaging. Physical Review Letters 97, 025506.
Zamyatnin, A. A. (1984). Amino acid, peptide, and protein volume in solution. Annual Review of Biophysics and Bioengineering 13, 145.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed