Skip to main content
    • Aa
    • Aa

Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications

  • José García de la Torre (a1) and Victor A. Bloomfield (a2)

Among the Various methods for characterizing macromolecules in solution, hydrodynamic techniques play a major role. Since the advent of the ultracentrifuge and the development of viscometric apparatus, sedimentation coefficients and intrinsic viscosities have been extensively used to learn about the size and shape of synthetic and biological polymers. More recently, refined techniques such as quasielastic light scattering, transient electric birefringence and fluorescence anisotropy decay have made it possible to obtain in a simple and rapid way quantitative information of high precision on the translational and rotational brownian dynamics of dissolved macromolecules.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. I. Abdel-Khalik & R. B. Bird (1975). Estimation of the zero shear rate viscosity for dilute solution of rigid macromolecules with complex configurations. Biopolymers 14, 19151932.

F. Allen (1981). Bacteriophage. In Molecular Electrooptics (ed. S. Krause ). New York: Plenum. (In the Press.)

P. R. Andrews & P. D. Jeffrey (1976). The use of sedimentation coefficients to distinguish between models for protein oligomers. Biophys. Chem. 4, 93102.

G. J. Baran & V. A. Bloomfield (1978). Tail-fiber attachment in bacteriophage T4D studied by quasielastic light scattering-band electrophoresis. Biopolymers 17, 20152028.

G. G. Belford , R. L. Belford & G. Weber (1972). Dynamics of fluorescence polarization in macromolecules. Proc. natn. Acad. Sci. U.S.A. 69, 13921393.

V. A. Bloomfield , De La Torre, J. Garcia & R. W. Wilson (1979). Rotational diffusion coefficients of complex macromolecules. In Electrooptics and Dielectrics of Macromoleculesand Colloids (ed. B. R. Jennings ), pp. 183195. New York: Plenum.

V. A. Bloomfield , Holde, K. E. Van & W. O. Dalton (1967 b). Frictional coefficients of multisubunit structures. II. Application to proteins and viruses. Biopolymers 5, 149159.

W. Boontje , J. Greve & J. Blok (1977). Transient electric birefringence of T-even bacteriophages. III. T2L and T6 with retracted fibres compared to T4B. Biopolymers 16, 551573.

W. Boontje , J. Gaive & J. Blok (1978). Transient electric birefringence of T-even bacteriophages. IV. T2Lo and T6 with extended tail fibres. Biopolymers 17, 26892702.

H. Brenner (1967). Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape. J. Colloid & Interface Sci. 23, 407436.

S. Broersma (1960 a). Rotational diffusion constant of a cylindrical particle. J. Chem. Phys. 32, 16261631.

S. Broersma (1960 b). Viscous force constant for a closed cylinder. J. Chem. Phys. 32, 16321635.

A. T. Chang & T. Y. Wu (1971). A note on the helical movement of microorganisms. Proc. R. Soc. Lond. B 178, 327416.

B. U. Felderhof (1978). Hydrodynamic interaction between two spheres. Physica A 89, 373384.

B. U. Felderhof & J. M. Deutch (1975).Frictional properties of dilute polymer solutions. I. Rotational friction coefficient. J. Chem. Phys. 62, 23912397.

G. Felsenfeld (1978). Chromatin. Nature, Lond.271, 115122.

D. P. Filson & V. A. Bloomfield (1967). Shell model calculations of rotational diffusion coefficients. Biochemistry, N.Y.6, 16501658.

D. P. Filson & V. A. Bloomfield (1968). The conformation of polysomes in solution. Biochim. biophys. Acta 155, 169182.

De La Torre, J. García & V. A. Bloomfield (1980). The conformation of myosin in dilute solution as estimated from hydrodynamic properties. Biochemistry, N.Y.19, 51185123.

S. C. Harvey (1978). Diffusion of hinged particles: An exception to the Einstein relation. J. chem. Phys. 69, 34263427.

S. C. Harvey (1979 a). Transport properties of particles with segmental flexibility. I. Hydrodynamic resistance and diffusion of a freely hinged particle. Biopolymers 18, 10811104.

S. C. Harvey (1979 b). Experimental detection of macromolecular flexibility by observation of time-dependent diffusion coefficients. J. chem. Phys. 71, 42214226.

S. C. Harvey & H. C. Cheung (1980). Transport properties of particles with segmental flexibility. II. Decay of fluorescence polarization anisotropy from hinged macromolecules. Biopolymers 19, 913930.

S. C. Harvey & De La Torre, J. Garcia (1980). Co-ordinate systems for modelling the hydrodynamic resistance and diffusion coefficients of irregularly shaped rigid macromolecules. Macromolecules 13. (In the Press.)

J. E. Hearst (1963). Rotary diffusion constants of stiff-chain macromolecules. J. chem. Phys. 38, 10621065.

J. E. Hearst (1964). Intrinsic viscosity of stiff-chain macromolecules. J. chem. Phys. 40, 15061509.

J. E. Hearst & W. H. Stockmaye (1962). Sedimentation constants of broken chains and wormlike coils. J. chem. Phys. 37, 14251433.

J. E. Hearst & Y. Tagami (1965). Shear dependence of the intrinsic viscosity of rigid distributions of segment with cylindrical symmetry. J. chem. Phys. 42, 41494151.

M. E. J. Holwill & R. E. Burge (1963). A hydrodynamic study of the motility of flagellated bacteria. Archs Biochem. Biophys. 101, 249260.

P. C. Hopman & G. Koopmans (1979). Molecular weights of the slow and fast forms of TaL bacteriophage. Biopolymers 18, 15511553.

P. C. Hopman & G. Koopmans (1980).Influence of double scattering in determination of rotational diffusion coefficients by depolarized dynamic light scattering: application to the bacteriophages T7 and T4B. Biopolymers 19, 12411255.

K. Iwata (1979). Viscoelastic properties of rigid and semiflexible particles in solution. I. J. chem. Phys. 71, 931943.

J. G. Kirkwood (1954). The general theory of irreversible processes in solutions of macromolecules. J. Polym. Sci. 12, 112.

J. G. Kirkwood (1949). The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Red. Tray. chim. 68, 649761.

J. G. Kirkwood & J. Riseman (1948). The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. chem. Phys. 16, 565573.

R. D. Kornberg (1977). Structure of chromatin. A. Rev. Biochem, 46, 931954.

H. A. Kramers (1946). The behavior of macromolecules in inhomogeneous flow. J. chem. Phys. 14, 415424.

I. D. Kuntz Jr & W. Kauzmann (1974). Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239345.

M. J. Lighthill (1975). Mathematical biofluid dynamics, chap. 3. Society for Industrial and Applied Mathematics, Philadelphia, PA.

T. K. Lim , G. J. Baran & V. A. Bloomfield (1977). Measurement of diffusion coefficient and electrophoretic mobility with a quasielastic light scattering band-electrophoresis apparatus. Biopolymers 16, 14731488.

J. A. Mccammon , J. M. Deutch & B. U. Felderitoff (1975 a). Frictional properties of multisubunit structures. Biopolymers 14, 26132623.

J. A. Mccammon , J. M. Deutch & B. U. Felderitoff (1975 b). Low values of the Scheraga–Mendelkern β parameter for proteins. An explanation based on porous sphere hydrodynamics. Biopolymers 14, 24792487.

J. A. Mccammon & J. M. Deutch (1976). Frictional properties of non- spherical multisubunit structures. Application to tubules and cylinders. Biopolymers 15, 13971408.

H. Nakajima & Y. Wada (1977). A general method for evaluation of diffusion constants, dilute-solution viscoelasticity, and the dielectric property of a rigid macromolecule with an arbitrary configuration. Biopolymers 16, 875893.

H. Nakajima & Y. Wada (1978). A general method for the evaluation of diffusion constants, dilute-solution viscoelasticity and the complex dielectric constant of a rigid macromolecule with an arbitrary configuration. II. Biopolymers 17, 22912307.

J. Newman , H. L. Swinney & L. A. Day (1977). Hydrodynamic properties and structure of fd virus. J. Molec. Biol. 116, 593606.

T. Norisuye , M. Motokawa & H. Fujita (1979). Wormlike chains near the rod limit: Translational friction coefficient. Macromolecules 12, 320–323.

F. Perrin (1934). Mouvement brownien d'un ellipsoïde. I. Dispersion diélectrique pour des molecules ellipsoïdales. J. Phys. Radium 5, 497511.

F. Perrin (1936). Mouvement brownien d'un ellipsoïde. II. Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales. J. Phys. Radium 7, 111.

B. Ramsay-Shaw & K. S. Schmitz (1976). Quasielastic light scattering by biopolymers. Conformation of chromatin multimers. Biochim. biophys. Res. Comm. 73, 224232.

B. Ramsay-Shaw & K. S. Schmitz (1979). In Chromatin Structure and Function, part B (ed. C. A. Nicoli ), pp. 427438. New York: Plenum.

J. Rotne & S. Prager (1969). Variational treatment of hydrodynamic interaction on polymers. J. chem. Phys. 50, 48314837.

P. E. Rouse (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. chem. Phys. 21, 12721280.

H. Scfieraga (1955). Non-Newtonian viscosity of solutions of ellipsoidal particles. J. chem. Phys. 23, 15261532.

H. Scheraga & L. Mandelkern (1953). Consideration of the hydrodynamic properties of proteins. J. Am. chem. Soc. 75, 179184.

K. S. Schmitz (1977). Hydrodynamic shielding of spherical subunits in macromolecular complexes. Biopolymers 16, 26352640.

K. S. Schmitz & B. Ramsay-Shaw (1977 a). Chromatin conformation: a systematic analysis of helical parameters from hydrodynamic data. Biopolymers 16, 2619–2633.

K. S. Schmitz & B. Ramsay-Shaw (1977 b). Hydrodynamic evidence in support of spacer regions in chromatin. Science, N. Y.197, 661663.

R. Simha (1940). The influence of Brownian movements on the viscosity of solutions. J. Phys. Chem. 44, 2534.

E. Swanson , D. C. Teller & Haen C. De (1978). The low Reynolds number translational friction of ellipsoids, cylinders, dumbells and hollow spherical caps. Numerical testing of the validity of the modified Oseen tensor in computing the friction of objects modelled as beads on the shell. J. chem. Phys. 68, 50975102.

E. Swanson D. C. Teller & Haen C. De (1980). Creeping flow translational resistance of rigid assemblies of spheres. J. chem. Phys. 72, 16231628.

M. M. Tirado & J. Garcí De La Torre (1979). Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders. J. chem. Phys. 71, 25812588.

M. M. Tirado & De La Torre J. García (1980). Rotational diffusion of rigid, symmetric top macromolecules. Application to circular cylinders. J. chem. Phys. 73. (In the Press.)

K. Tsuda (1969). Intrinsic viscosity of rigid complex macromolecules. Bull. chem. Soc. Japan 42, 850.

K. Tsuda (1970a). Intrinsic viscosity of rigid complex macromolecules. Rheol. Acta 9, 509516.

W. A. Wegener (1980b). The hydrodynamic resistance and diffusion coefficients of a flexible hinged rod. Biopolymers 19. (In the Press.)

W. A. Wegener , R. M. Dowben & V. J. Koester (1979). Time-dependent birefringence, linear dichroism, and optical rotation resulting from rigid-body rotational diffusion. J. chem. Phys. 70, 622632.

J. B. Welch & V. A. Bloomfleld (1978). Concentration-dependent isomerization of bacteriophage T2L. Biopolymers 17, 20012014.

G. Wilemski (1977). Conformation dependent transport coefficients of once-broken rods. Macromolecules 10, 2834.

R. W. Wilson & V. A. Bloomfield (1979a). Hydrodynamic properties of macromolecular complexes. V. Improved calculation of rotational diffusion coefficient and intrinsic viscosity. Biopolymers 18, 12051211.

R. W. Wilson & V. A. Bloomfield (1979b). Rotational effects in quasi- elastic laser light scattering from T-even bacteriophage. Biopolymers 18, 15431549.

H. Yamakawa (1970). Transport properties of polymer chains in dilute solutions. Hydrodynamic interaction. J. chem. Phys. 53, 436443.

H. Yamakawa (1975). Viscoelastic properties of straight circular macromolecules in dilute solution. Macromolecules 8, 339342.

H. Yamakawa & M. Fujii (1973). Translational friction coefficient of wormlike chains. Macromolecules 6, 407414.

H. Yamakawa & G. Tanaka (1972). Translational diffusion coefficients of rodlike polymers: Application of the modified Oseen tensor. J. chem. Phys. 57, 15371542.

H. Yamakawa & J. Yamaki (1973). Application of Kirkwood theory of transport in polymer solutions to rigid assemblies of beads. J. chem. Phys. 58, 20492055.

H. Yamakawa , T. Yoshizaki & M. Fujii (1977). Transport coefficients of helical wormlike chains. I. Characteristic helices. Macromolecules 10, 934943.

J. Yguerabide , H. F. Epstein & L. Stryer (1970). Segmental flexibility in an antibody molecule. J. molec. Biol. 51, 573590.

T. Yoshixaki & H. Yamakawa (1980). Dynamics of spheroid–cylindrical molecules in dilute solutions. J. chem. Phys. 72, 5769.

H. Yu & W. H. Stockmayer (1967). Intrinsic viscosity of a once-broken rod. J. chem. Phys. 47, 13691373.

B. H. Zimm (1956). Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. chem. Phys. 24, 269278.

B. H. Zimm (1980). Chain molecule hydrodynamics by the Monte Carlo method and the validity of the Kirkwood–Riseman approximation. Macromolecules 13, 592602.

R. Zwanzig , J. Kiefer & G. H. Weiss (1968). On the validity of the Kirk-wood–Riseman theory. Proc. natn. Acad. Sci. U.S.A. 60, 381386.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 267 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd May 2017. This data will be updated every 24 hours.