Skip to main content Accessibility help

Ionic pores, gates, and gating currents

  • Clay M. Armstrong (a1)


The current phase of axon physiology began with the invention of the voltage clamp by Cole (1949) and its use by Hodgkin & Huxley (1952d) to produce an astonishingly complete analysis of the ionic permeabilities that are responsible for the action potential. Their description did notcontain much in the way of molecular detail, and left open such questions as whether ions cross the membrane by way of pores or carriers, and the nature of the ‘gating‘ processes that increase ordecrease ion permeability in response to changes of the membrane potential. In the last few years our picture of the ionicchannels has grown considerably more tangible, though it still falls far short of a detailed molecular description. This article describes this sharpened picture and reviews the evidence for it. The viewpoint expressed is a very personal one, andno attempt has been made to review the literature of axonology comprehensively.



Hide All
Adelman, W. J. & Senft, J. P. (1968). Dynamic asymmetries in the squid axon membrane. J. gen. Physiol. 51, 102–14s.
Anderson, C. R. & Stevens, C. F. (1973). Voltage-clamp analysis of acetylcholine produced fluctuations at frog neuromuscular junction. J. Physiol., Lond. 235, 655691.
Armstrong, C. M. (1966). Time course of TEA+induced anomalous rectification in squid giant axon. J. gen. Physiol. 50, 491503.
Armstrong, C. M. (1969). Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injected in squid axon. J. gen. Physiol. 54, 553–75.
Armstrong, C. M. (1970). Comparison of g K inactivation caused by quaternary ammonium ion with g Na inactivation. Biophys. Soc. Ann. Meet. Abstr. 10, 185 a.
Armstrong, C. M. (1971). Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. gen. Physiol. 58, 413–37.
Armstrong, C. M. (1974). K pores of nerve and muscle membrane. In Membranes: A Series of Advances, vol. 3 (ed. Eisenman, G.). New York: Marcel Dekker.
Armstrong, C. M. & Bezanilla, F. (1973 a). Properties of gating currents of sodium channels. Biol. Bull. mar. biol. Lab., Woods Hole 145, 423.
Armstrong, C. M. & Bezanilla, F. (1973 b). Currents related to the movement of gating particles of the sodium channels. Nature, Lond. 242, 459–61.
Armstrong, C. M., Bezanilla, F. M. & Horowicz, P. (1972). Twitches in the presence of ethylene-glycol bis (β-aminoethyl ether)-N, N'-tetraacetic acid. Biochim. biophys. Acta 267, 605–8.
Armstrong, C. M., Bezanilla, F. & Rojas, E. (1973). Destruction of sodium conductance inactivation in squid axon perfused with pronase. J. gen. Physiol. 62, 375–91.
Armstrong, C. M. & Binstock, L. (1965). Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. gen. Physiol. 48, 859–72.
Armstrong, C. M. & Hille, B. (1972). The inner quaternary ammonium ion receptor in potassium channels of node of Ranvier. J. gen. Physiol. 59, 388400.
Baker, P. F., Hodgkin, A. L. & Ridgway, E. B. (1971). Depolarization and calciumentry in squid giant axon. J. Physiol., Lond. 218, 709–55.
Begenisich, T. & Lynch, C. (1973). Reversible blockage of ionic currents by internal Zn. Biol. Bull. mar. biol. Lab., Woods Hole 145, 424.
Bergman, C. (1970). Increase of sodium concentration near the inner surface of nodal membrane. Pfüuger's Arch. Eur. J. Physiol. 317, 287302.
Bezanilla, F. & Armstrong, C. M. (1972). Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axon. J. gen. Physiol. 60, 588608.
Bezanilla, F. & Armstrong, C. M. (1973). Unpublished data.
Bezanilla, F. & Armstrong, C. M. (1974.). Gating currents of the sodium channels: three waysto block them. Science, N. Y. (In the Press.)
Ciani, S., Eisenman, G. & Szabo, G. (1969). A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on electrical properties of bilayer membranes. J. molec. Biol. I, 136.
Cohen, L. B., Keynes, D. & Landowne, D. (1972). Changes in axon light scatteringthat accompany the action potential: current dependent component. J. Physiol., Lond. 224, 727–52.
Cohen, L. B., Hille, B. & Keynes, R. D. (1970). Changes in axon birefringence during action potential. J. Physiol., Lond. 211, 495515.
Cole, K. S.Dynamic electrical characteristics of the squid axon membrane. Archs. Sci. Physiol. 3, 253–8.
Colquhoun, D. R., Henderson, R. & Ritchie, J. M. (1972). The binding of tetrodotoxin to non-myelinated nerve fibers. J. Physiol., Lond. 227, 95125.
Davila, H. V., Salzberg, B. M. & Cohen, L. B. (1972). Changes of fluorescence ofsquid axon during activity. Biol. Bull. mar. biol. Lab., Woods Hole 143, 457.
Davila, H. V., Salzberg, B. M. & Cohen, L. B. (1973). Use of fluorescent merocyanine dye for measuring axon membrane potential. Nature New Biol. 241, 159–60.
Diamond, J. M. & Wright, E. M. (1969). Biological membranes: The physical basis of ion and nonelectrolyte selectivity. A. Rev. Physiol. 31, 581646.
Eisenman, G. (1962). Cation selective glass electrodes and their mode of operation. Biophys. J. 2, 259323s.
Fishman, H. S. (1972). Excess noise from small patches of squid axon membrane. Biophys. Soc. Ann. Meet. Abst. 12, 119.
Fishman, H. S. (1973). Relaxation spectra of potassium channel noise from squid axon membranes. Proc. natn. Acad. Sci. (U.S.A.) 70, 876–9.
Frankenhaeuser, B. & Hodgkin, A. L. (1957). The action of calcium on electrical properties of squid axon. J. Physiol., Lond. 137, 218–44.
Frankenhabuser, B. & Moore, L. E. (1963). The effect of temperature on the sodium and potassium permeability changes in myelinated fibers of Xenopus laevis. J. Physiol., Lond. 169, 431–7.
Goldman, L. & Schauf, C. L. (1972). Inactivation of the sodium current in myxicola giantaxons. J. gen. Physiol. 59,659–75
Hagiwara, S. & Saito, N. (1959). Voltage-current relationships in nerve cell membranes of Onchidium verruculatum. J. Physiol., Lond. 148, 161–79.
Hille, B. (1966). Common mode of action of three agents that decrease the transient change in sodiumpermeability in nerves. Nature, Lond. 210, 1220–2.
Hille, B. (1970). Ionic channels in nerve membranes. prog. Biophys. & Mol. Biol. 21, 132.
Hille, B. (1967). The selective inhibition of delayed potassium currents in nerves by tetraethylammonium ions. J. gen. Physiol. 50, 1287–302.
Hille, B. (1971). The permeability of sodium channels to organic cations in myelinated nerves. J. gen. Physiol. 58, 599619.
Hille, B. (1972). The permeability of sodium channels to metal cations in myelinated nerves. J. gen. Physiol. 59, 637–58.
Hille, B. (1973). Potassium channels in myelinated nerves. J. gen. Physiol. 61,669–86.
Hladky, S. B. & Haydon, D. A. (1970). Discreteness of conductance change in biomolecularlipid membranes in the presence of certain antibiotics. Nature, Lond. 225, 451–3.
Hodgkin, A. L. & Huxley, A. F. (1952 a). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.J. Physiol., Lond. 116, 449–72.
Hodgkin, A. L. & Huxley, A. F. (1952 b). The components of membrane conductance inthe giant axon of Loligo. J. Physiol., Lond. 116, 473–96.
Hodgkin, A. L. & Huxley, A. F. (1952 c). The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol., Lond. 116, 497506.
Hodgkin, A. L. & Huxley, A. F. (1952 d). A quantitative description of membrane current and its application to conductance and excitation in nerve. J. Physiol., Lond. 117, 500–44.
Hodgkin, A. L., Huxley, A. F. & Katz, B. (1952). Measurements of current voltagerelations in the membrane of the giant axon of Loligo. J. Physiol., Lond. 116, 424–48.
Hodgkin, A. L. & Keynes, R. D. (1955). The potassium permeability of a giant nerve fibre. J. Physiol., Lond. 128, 6188.
Hodgkin, A. L. & Keynes, R. D. (1957). Movements of labelled calcium in squid giant axon. J. Physiol., Lond. 138, 253–81.
Horowicz, P., Gage, P. W. & Eisenberg, R. S. (1968). The role of electrochemicalgradient in determining potassium fluxes in frog striated muscle. J. gen. Physiol. 51, 193203S.
Hoyt, R. C. (1968). Sodium inactivation in nerve fibers. Biophys. J. 8, 1074–97.
Katz, & Miledi, (1972). The statistical nature of the acetyicholine potential and its molecular components. J. Physiol., Lond. 224, 665699.
Keynes, R. D., Ritchie, J. M. & Rojas, E. (1971). The binding of tetrodotoxin to nerve membranes. J. Physiol. 213, 235–54.
Keynes, R. D. & Rojas, E. (1973). Characteristics of sodium gating currents in the squidgiant axon. J. Physiol. 233, 2830P.
Keynes, R. D., Rojas, E. & Taylor, R. E. (1973). Saxitoxin, tetrodotoxin barriers and binding sites in squid giant axon. J. gen. Physiol. 6, 267.
Kilbourn, B. T., Dunitz, J. D., Dioda, L. A. & Simon, W. (1967). Structure of the K+ complex with nonactin a macrotetralide antibiotic possessing highly specific K+ transport properties. J. Molec. Biol. 30, 559–63.
Krasne, S., Eisenman, G. & Szabo, G. (1971). Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and grarnicidin. Science, N.Y. 174, 412–15.
Laüger, P. (1972). Carrier-mediated ion transport. Science, N.Y. 178, 2430.
Moora, J. W., Narahashi, T. & Shaw, T. I. (1967). An upper limit to the number of sodium channels in nerve membrane? J. Physiol., Lond. 188, 99105.
Mullins, L. J. (1959). An analysis of conductance changes in squid axon. J. gen. Physiol. 42, 1013–35.
Mullins, L. J. (1968). A single channel or a dual channel mechanism for nerve excitation. J. gen. Physiol. 52, 550–3.
Narahashi, T., Moore, J. W. & Scott, W. R. (1964). Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–74.
Parsegian, A. (1969). Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature, Lond. 221, 844–6.
Poussart, D. J. M. (1971). Membrane current noise in lobster axon under voltage clamp. Biophys. J. II, 211–34.
Siebenga, E. A., Meyer, W. A. & Verveen, A. A. (1973). Membrane shot-noise in electrically depolarized nodes of Ranvier. Pflüger's Arch. Eur. J. Physiol. 341, 8796.
Strichartz, G. R. (1973). The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. gen. Physiol. 62, 3757.
Tasaki, I. & Hagiwara, S. (1957). Demonstration of two stable potential states in squid giant axon under tetraethylammonium chloride. J. gen.Physiol. 40, 851–85.
Urry, D. W. (1971). The gramicidin A transmembrane channel: A proposed π(L, D) helix. Proc. natn. Acad. Sci. U.S.A. 68, 672–6.
Urry, D. W. (1972). A molecular theory of ion-conducting channels: A field dependent transition between conducting and non-conducting conformations. Proc. natn. Acad. Sci. U.S.A. 69, 1610–14.
Verveen, A. A. & Derksen, H. E. (1968). Fluctuation phenomena in nerve membrane. Proc. IEEE 56, 906–16.
Winkler, R. (1969). Kinetik und Mechanismus der Alkali-und Erdalkalimetalkomplexbildung in Methanol. Ph.D. Dissertation, Göttingen— Wien.
Woodhull, A. M. (1973). Ionic blockage of sodium channels in nerve. J. gen. Physiol. 61, 687708.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed