Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T21:06:40.186Z Has data issue: false hasContentIssue false

The kinetics of voltage-gated ion channels

Published online by Cambridge University Press:  17 March 2009

R. D. Keynes
Affiliation:
Physiological Laboratory, Cambridge CB2 3EG, England

Extract

When Hodgkin & Huxley (1952) first embarked on the analysis of their voltageclamp data on the ionic currents in the squid giant axon, they hoped to be able to deduce a mechanism from it, but it soon became clear that the electrical data would by themselves yield only very general information about the class of system likely to be involved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G. (1973). The effect of potassium diffusion through the Schwann cell layer on potassium conductance of the squid axon. J. Membrane Biol. 13, 353386.CrossRefGoogle ScholarPubMed
Adams, D. J. & Gage, P. W. (1979). Sodium and calcium gating currents in an Aplysia neurone. J. Physiol., Lond. 291, 467481.CrossRefGoogle Scholar
Adelman, W. J. & Palti, Y. (1969). The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid. J. gen. Physiol. 54, 589606.CrossRefGoogle ScholarPubMed
Adelman, W. J., Palti, Y. & Senft, J. P. (1973). Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance. J. Membrane Biol. 13, 387410.CrossRefGoogle Scholar
Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. (1970). Voltage clamp experiments in striated muscle fibres. J. Physiol., Lond. 208, 607644.CrossRefGoogle ScholarPubMed
Agnew, W. S., Levinson, S. R., Brabson, J. S. & Raftery, M. A. (1978). Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc. natl. Acad. Sci. U.S.A. 75, 26062610.CrossRefGoogle ScholarPubMed
Aldrich, R. W., Corey, D. P. & Stevens, C. F. (1983). A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature, Lond. 306, 436441.CrossRefGoogle ScholarPubMed
Aldrich, R. W. & Stevens, C. F. (1987). Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J. Neurosci. 7, 418431.CrossRefGoogle ScholarPubMed
Alicata, D. A., Rayner, M. D. & Starkus, J. G. (1990). Sodium channel activation mechanisms: insights from deuterium oxide substitution. Biophys. J. 57, 745758.CrossRefGoogle ScholarPubMed
Almers, W., Stanfield, P. R. & Stühmer, W. (1983). Slow changes in currents through sodium channels in frog muscle membrane. J. Physiol., Lond. 339, 253271.CrossRefGoogle ScholarPubMed
Alzheimer, C., Schwindt, P. C. & Crill, W. E. (1993 a). Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J. Neurosci. 13, 660673.CrossRefGoogle ScholarPubMed
Alzheimer, C., Schwindt, P. C. & Crill, W. E. (1993 b). Postnatal development of a 422 persistent Na+ current in pyramidal neurons from rat sensorimotor cortex. J. Neurophysiol. 69, 290292.CrossRefGoogle Scholar
Armstrong, C. M. & Bezanilla, F. (1974). Charge movement associated with the opening and closing of the activation gates of the Na channel. j. gen. Physiol. 63, 533552.CrossRefGoogle Scholar
Armstrong, C. M. & Bezanilla, F. (1977). Inactivation of the sodium channel. II. Gating current experiments. J. gen. Physiol. 70, 567590.CrossRefGoogle ScholarPubMed
Armstrong, C. M., Bezanilla, F. & Rojas, E. (1973). Destruction of sodium inactivation in squid axons perfused with pronase. J. gen. Physiol. 62, 375391.CrossRefGoogle ScholarPubMed
Armstrong, C. M. & Gilly, W. F. (1979). Fast and slow steps in the activation of sodium channels. J. gen. Physiol. 74, 691711.CrossRefGoogle ScholarPubMed
Attwell, D., Cohen, I., Eisner, D., Ohba, M. & Ojeda, C. (1979). The steady state TTX-sensitive (‘window’) sodium current in cardiac Purkinje fibres. Pflügers Arch. Eur. J. Physiol. 379, 137142.CrossRefGoogle ScholarPubMed
Auld, V. J., Goldin, A. L., Krafte, D. S., Catterall, W. A., Lester, H. A., Davidson, N. & Dunn, R. J. (1990). A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA 87, 323327.CrossRefGoogle ScholarPubMed
Babila, T., Moscucci, A., Wang, H., Weaver, F. E. & Koren, G. (1994). Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment. Neuron 12, 615626.CrossRefGoogle ScholarPubMed
Baldwin, T. J., Tsaur, M-L., Lopez, G. A., Jan, Y. N. & Jan, L. Y. (1991). Characterization of a mammalian cDNA for an inactivating voltage-sensitive K+ channel. Neuron 7, 471483.CrossRefGoogle ScholarPubMed
Bean, B. P. (1989). Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51, 367384.CrossRefGoogle ScholarPubMed
Bean, B. P. & Rios, E. (1989). Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J. gen. Physiol. 94, 6593.CrossRefGoogle ScholarPubMed
Begenisich, T. (1979). Conditioning hyperpolarizing-induced delays in the potassium channels of myelinated nerve. Biophys. J. 27, 257266.CrossRefGoogle ScholarPubMed
Bekkers, J. M., Greeff, N. G., Keynes, R. D. & Neumcke, B. (1984). The effect of local anaesthetics on the components of the asymmetry current in the squid giant axon. J. Physiol., Lond. 352, 653668.CrossRefGoogle ScholarPubMed
Bekkers, J. M., Greeff, N. G. & Keynes, R. D. (1986). The conductance and density of sodium channels in the cut-open squid giant axon. J. Physiol., Lond. 377, 463486.CrossRefGoogle ScholarPubMed
Bezanilla, F. & Armstrong, C. M. (1977). Inactivation of the sodium channel. I. Sodium current experiments. J. gen. Physiol. 70, 549566.CrossRefGoogle ScholarPubMed
Bezanilla, F. & Correa, A. M. (1991). Single sodium channels in high internal sodium in the squid giant axon. Biophys. J. 59, 12a.Google Scholar
Bezanilla, F., Perozo, E., Papazian, D. M. & Stefani, E. (1991). Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254, 679683.CrossRefGoogle ScholarPubMed
Bezanilla, F. & Taylor, R. E. (1978). Temperature effects on gating currents in the squid giant axon. Biophys. J. 23, 479484.CrossRefGoogle ScholarPubMed
Bezanilla, F., Taylor, R. E. & Fernandez, J. M. (1982). Distribution and kinetics of membrane dielectric polarization. I. Long-term inactivation of gating currents. J. gen. Physiol. 79, 2140.CrossRefGoogle ScholarPubMed
Brismar, T. (1977). Slow mechanism for sodium permeability inactivation in myelinated nerve fibre of Xenopus laevis. J. Physiol., Lond. 270, 283297.CrossRefGoogle ScholarPubMed
Bullock, J. O. & Schauf, C. L. (1978). Combined voltage-clamp and dialysis of Myxicola axons: behaviour of membrane asymmetry currents. J. Physiol. 278, 309324.CrossRefGoogle ScholarPubMed
Cahalan, M. D. & Almers, W. (1979). Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin. Biophys. J. 27, 3956.CrossRefGoogle ScholarPubMed
Campbell, D. T. (1983). Sodium channel gating currents in frog skeletal muscle. J. gen. Physiol. 82, 679701.CrossRefGoogle ScholarPubMed
Cannon, S. C. (1994). Slow sodium channel inactivation need not be disrupted in the pathogenesis of myotonia and periodic paralysis. Biophys. J. 66, 543544.CrossRefGoogle Scholar
Cannon, S. C. & Strittmatter, S. M. (1992). Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron 10, 317326.CrossRefGoogle Scholar
Catterall, W. A. (1986). Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neurosci. 9, 710.CrossRefGoogle Scholar
Catterall, W. A. (1988). Structure and function of voltage-sensitive ion channels. Science, Wash. 242, 5061.CrossRefGoogle ScholarPubMed
Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15S48.CrossRefGoogle ScholarPubMed
Catterall, W. A. (1993). Structure and function of voltage-gated ion channels. Trends Neurosci. 16, 500506.CrossRefGoogle ScholarPubMed
Chabala, L. D. (1984). The kinetics of recovery and development of potassium channel inactivation in perfused squid (Loligo pealei) giant axons. J. Physiol., Lond. 356, 193220.CrossRefGoogle ScholarPubMed
Chahine, M., George, A. L., Zhou, M., JI, S., Sun, W., Barchi, R. L. & Horn, R. (1994). Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12, 281294.CrossRefGoogle ScholarPubMed
Chandler, W. K. & Meves, H. (1970 a). Evidence for two types of sodium conductance in axons perfused with fluoride solutions, J. Physiol., Lond. 211, 653678.CrossRefGoogle Scholar
Chandler, W. K. & Meves, H. (1970 b). Rate constants associated with changes in sodium conductance in axons perfused with sodium fluoride. J. Physiol., Lond. 211, 679705.CrossRefGoogle ScholarPubMed
Chandler, W. K. & Meves, H. (1970 c). Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J. Physiol., Lond. 211, 707728.CrossRefGoogle ScholarPubMed
Chen, C. & Cannon, S. (1994). β1, subunit modulation of Na channel inactivation does not occur from the cytoplasmic side. Biophys. J. 66, A243.Google Scholar
Chiu, S. y. (1977). Inactivation of sodium channels: second order kinetics in myelinated nerve. J. Physiol., Lond. 273, 573596.CrossRefGoogle ScholarPubMed
Chiu, S. Y. (1980). Asymmetry currents in the mammalian myelinated nerve. J. Physiol., Lond. 309, 499519.CrossRefGoogle ScholarPubMed
Choi, K. L., Mossman, C., Aubé, J. & Yellen, G. (1993). The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10, 533541.CrossRefGoogle ScholarPubMed
Clay, J. R. & Shlesinger, M. F. (1982). Delayed kinetics of squid axon potassium channels do not always superpose after time translation. Biophys. J. 37, 677680.CrossRefGoogle Scholar
Cole, K. S. & Moore, J. W. (1960). Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1, 114.CrossRefGoogle ScholarPubMed
Connor, J. A. & Stevens, C. F. (1971). Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J. Physiol., Lond. 213, 2130.CrossRefGoogle ScholarPubMed
Conti, F. & Palmieri, G. (1968). Nerve fiber behaviour in heavy water under voltageclamp. Biophysik 5, 7177.CrossRefGoogle ScholarPubMed
Conti, F. & Stühmer, W. (1989). Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur. Biophys. J. 17, 5359.CrossRefGoogle ScholarPubMed
Coronado, R., Latorre, R. & Mautner, H. G. (1984). Single potassium channels with delayed rectifier behavior from lobster axon membranes. Biophys. J. 45, 289299.CrossRefGoogle ScholarPubMed
Correa, A. M. & Bezanilla, F. (1990). Properties of squid single Na channels in an extended voltage range. Biophys. J. 57, 102a.Google Scholar
Correa, A. M. & Bezanilla, F. (1994 a). Gating of the squid sodium channel at positive potentials. I. Macroscopic ionic and gating currents. Biophys. J. 66, 18531863.CrossRefGoogle ScholarPubMed
Correa, A. M. & Bezanilla, F. (1994 b). Gating of the squid sodium channel at positive potentials. II. Single channels reveal two open states. Biophys. J. 66, 18641878.CrossRefGoogle ScholarPubMed
Crouzy, S. C. & Sigworth, F. J. (1993). Fluctuations in ion channel gating currents. Analysis of nonstationary shot noise. Biophys. J. 64, 6876.CrossRefGoogle ScholarPubMed
De Biasi, M., Hartmann, H. A., Drewe, J. A., Taglialatela, M., Brown, A. M. & Kirsch, G. E. (1993). Inactivation determined by a single site in K+ pores. Pflügers Arch. Eur. J. Physiol. 422, 354363.CrossRefGoogle ScholarPubMed
Delcour, A. H., Lipscombe, D. & Tsien, R. W. (1993). Multiple modes of N-type calcium channel activity distinguished by difference in gating kinetics. J. Neurosci. 13, 181194.CrossRefGoogle ScholarPubMed
Delcour, A. H. & Tsien, R. W. (1993). Altered prevalence of gating modes in neurotransmitter inhibition of N-type calcium channels. Science 259, 980984.CrossRefGoogle ScholarPubMed
Dubois, J. M. (1981). Evidence for the existence of three types of potassium channels in the frog Ranvier node membrane, J. Physiol., Lond. 318, 297316.CrossRefGoogle ScholarPubMed
Dubois, J. M. & Bergman, C. (1975). Late sodium current in the node of Ranvier. Pflügers Arch. Eur. J. Physiol. 357, 145148.CrossRefGoogle ScholarPubMed
Dubois, J. M. & Bergman, C. (1977). Asymmetrical currents and sodium currents in Ranvier nodes exposed to DDT. Nature, Lond. 266, 741742.CrossRefGoogle ScholarPubMed
Dubois, J. M. & Schneider, M. F. (1982). Kinetics of intramembrane charge movement and sodium current in frog node of Ranvier. J. gen. Physiol. 79, 571–562.CrossRefGoogle ScholarPubMed
Durell, S. R. & Guy, H. R. (1992). Atomic scale structure and functional models of voltage-gated potassium channels. Biophys. J. 62, 238250.CrossRefGoogle ScholarPubMed
Eaholtz, G., Scheuer, T. & Catterall, W. A. (1994). Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron 12, 10411048.CrossRefGoogle ScholarPubMed
Edmonds, D. T. (1989). A kinetic role for ionizable sites in membrane channel proteins. Eur. Biophys. J. 17, 113119.CrossRefGoogle ScholarPubMed
Edmonds, D. T. (1990). Gating charge transfer due to fixed ionizable sites. Eur. Biophys. J. 18, 135137.CrossRefGoogle ScholarPubMed
Ehrenstein, G. & Gilbert, D. L. (1966). Slow changes of potassium permeability in the squid giant axon. Biophys. J. 6, 553566.CrossRefGoogle ScholarPubMed
Featherstone, D., Henteleff, M., Rayner, M. D. & Ruben, P. C. (1994). Domain III and IV S4 charge neutralizations alter gating properties of rat brain IIA sodium channels. Biophys. J. 66, A102.Google Scholar
Field, A. C., Hill, C. & Lamb, G. D. (1988). Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rats. J. Physiol., Lond. 406, 277297.CrossRefGoogle Scholar
Forster, I. C. & Greeff, N. G. (1990). High resolution recording of asymmetry currents from the squid giant axon: technical aspects of voltage clamp design. J. Neurosci. Methods 33, 185205.CrossRefGoogle ScholarPubMed
Forster, I. C. & Greeff, N. G. (1992). The early phase of sodium channel gating current in the squid giant axon. Characteristics of a fast component of displacement charge movement. Eur. Biophys. J. 21, 99116.CrossRefGoogle ScholarPubMed
Fox, J. M. (1976). Ultra-slow inactivation of the ionic currents through the membrane of myelinated nerve. Biochim. biophys. Acta 426, 232244.CrossRefGoogle ScholarPubMed
Fox, A. P., Nowycky, M. C. & Tsien, R. W. (1987 a). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol., Lond. 394, 149172.CrossRefGoogle ScholarPubMed
Fox, A. P., Nowycky, M. C. & Tsien, R. W. (1987 b). Single-channel recordings of three types of calcium channels in chick sensory neurones. J. Physiol., Lond. 394, 173200.CrossRefGoogle ScholarPubMed
Frankenhaeuser, B. (1960). Sodium permeability in toad nerve and in squid nerve. J. Physiol., Lond. 152, 159165.CrossRefGoogle ScholarPubMed
Frankenhaeuser, B. & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibres of Loligo. J. Physiol., Lond. 131, 341376.CrossRefGoogle ScholarPubMed
Frankenhaeuser, B. & Hodgkin, A. L. (1957). The action of calcium on the electrical properties of squid axons. J. Physiol., Lond. 137, 218244.CrossRefGoogle ScholarPubMed
Frankenhaeuser, B. & Waltman, B. (1959). Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J. Physiol., Lond. 148, 677682.CrossRefGoogle ScholarPubMed
George, A. L., Knittle, T. J. & Tamkun, M. M. (1992 a). Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: Evidence for a distinct gene family. Proc. Natl. Acad. Sci. USA 89, 48934897.CrossRefGoogle ScholarPubMed
George, A. L., Komisarof, J., Kallen, R. G., & Barchi, R. L. (1992 b). Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann. Neurol. 31, 131137.CrossRefGoogle ScholarPubMed
Gilly, W. F. & Armstrong, C. M. (1984). Threshold channels–a novel type of sodium channel in squid giant axon. Nature Lond. 309, 448450.CrossRefGoogle ScholarPubMed
Goldman, L. (1988). Internal cations, membrane current, and sodium inactivation gate closure in Myxicola giant axons. Biophys. J. 54, 10271038.CrossRefGoogle ScholarPubMed
Goldman, L. (1991). Gating current kinetics in Myxicola giant axons. Order of the back transition rate constants. Biophys. J. 59, 574589.CrossRefGoogle ScholarPubMed
Goldman, L. & Hahin, R. (1978). Initial conditions and the kinetics of the sodium conductance in Myxicola giant axons. II. Relaxation experiments. J. gen. Physiol. 72, 879898.CrossRefGoogle ScholarPubMed
Greeff, N. G. & Forster, I. C. (1991). The quantal gating charge of sodium channel inactivation. Eur. Biophys. J. 20, 165176.CrossRefGoogle ScholarPubMed
Greeff, N. G., Keynes, R. D. & van Helden, D. F. (1982). Fractionation of the asymmetry current in the squid giant axon into inactivating and non-inactivating components. Proc. R. Soc. Lond. B 215, 375389.Google ScholarPubMed
Guy, H. R. (1988). A model relating the structure of the sodium channel to its function. Curr. Topics Membr. Transport 33, 289308.CrossRefGoogle Scholar
Guy, H. R. & Conti, F. (1990). Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 13, 201206.Google ScholarPubMed
Guy, H. R. & Durell, S. R. (1994). Using sequence homology to analyze the structure and function of voltage-gated ion channel proteins. In Molecular Evolution of Physiological Processes, Society of General Physiologists Symposium 47, edited by Fambrough, D. M., pp. 197212. Rockefeller University Press.Google Scholar
Guy, H. R. & Seetharamulu, P. (1986). Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. U.S.A. 83, 508512.CrossRefGoogle ScholarPubMed
Hadley, R. W. & Lederer, W. J. (1989). Intramembrane charge movement in guineapig and rat ventricular myocytes. J. Physiol., Lond. 415, 601624.CrossRefGoogle ScholarPubMed
Hahin, R. & Goldman, L. (1978). Initial conditions and the kinetics of the sodium conductance in Myxicola giant axons. I. Effects on the time-course of the sodium conductance. J. gen. Physiol. 72, 863877.CrossRefGoogle ScholarPubMed
Hanck, D. A., Sheets, M. F. & Fozzard, H. A. (1990). Gating currents associated with Na channels in canine cardiac Purkinje cells. J. gen. Physiol. 95, 439457.CrossRefGoogle ScholarPubMed
Heggeness, S. T. & Starkus, J. G. (1986). Saxitoxin and tetrodotoxin. Electrostatic effects on sodium channel gating current in crayfish giant axons. Biophys. J. 49, 629643.CrossRefGoogle Scholar
Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K. & Numa, S. (1992). Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441443.CrossRefGoogle ScholarPubMed
Henderson, R., Ritchie, J. M. & Strichartz, G. R. (1974). Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channel of nerve membrane. Proc. Natl. Acad. Sci. USA 71, 39363940.CrossRefGoogle Scholar
Hille, B. (1992). Ionic channels of excitable membranes. 2nd edition. Sinauer Associates Sunderland, Massachusetts.Google Scholar
Hodgkin, A. L. (1992). Chance & Design. Reminiscences of Science in Peace and War. Cambridge University Press.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500544.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol., Lond. 108, 3777.CrossRefGoogle ScholarPubMed
Horn, R., Patlak, J. & Stevens, C. F. (1981). The effect of tetramethyl-ammonium on single sodium channel currents. Biophys. J. 36, 321327.CrossRefGoogle Scholar
Horn, R. & Vandenberg, C. A. (1984). Statistical properties of single sodium channels. J. gen. Physiol. 84, 505534.CrossRefGoogle ScholarPubMed
Horne, W. A., Ellinor, P. T., Inman, I., Zhou, M., Tsien, R. W. & Schwarz, T. L. (1993). Molecular diversity of Ca2+ channel α1 subunits from the marine ray Discopyge ommata. Proc. natn. Acad. Sci. U.S.A. 86, 16891693.Google Scholar
Hoshi, T., Zagotta, W. N. & Aldrich, R. W. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533538.CrossRefGoogle ScholarPubMed
Hoshi, T., Zagotta, W. N. & Aldrich, R. W. (1991). Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547556.CrossRefGoogle Scholar
Hoshi, T., Zagotta, W. N. & Aldrich, R. W. (1994). Shaker potassium channel gating I: transitions near the open state. J. gen. Physiol. 103, 249278.CrossRefGoogle ScholarPubMed
Ichikawa, M. & Matsumoto, G. (1995). Tetrodotoxin affects sodium gating current in squid giant axons.In Proceedings of the Symposium on Cephalopod Neurobiology,Cambridge1991. Oxford University Press (in the press).CrossRefGoogle Scholar
Ilyin, V. I., Katina, I. E., Lonskii, A. V., Makovsky, V. S. & Polishchuk, E. V. (1980). The Cole-Moore effect in nodal membrane of the frog Rana ridibunda: evidence for fast and slow potassium channels. J. Membrane Biol. 57, 179193.CrossRefGoogle ScholarPubMed
Isom, L. L., De Jongh, K. S. & Catterall, W. A. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron 12, 11831194.CrossRefGoogle ScholarPubMed
Ji, S., Sun, W., George, A. L., Horn, R. & Barchi, R. L. (1994). Voltage-dependent regulation of modal gating in the rat SkM1 sodium channel expressed in Xenopus oocytes. Biophys. J. 66, A243.Google Scholar
Ju, Y-K., Saint, D. A. & Gage, P. W. (1994). Inactivation-resistant channels underlying the persistent sodium current in rat ventricular myocytes. Proc. R. Soc. Lond. B 256, 163168.Google ScholarPubMed
Keynes, R. D. (1983). Voltage-gated ion channels in the nerve membrane. Proc. R. Soc. Lond. B 220, 130.Google ScholarPubMed
Keynes, R. D. (1986). Modelling the sodium channel. In Ion channels in neural membranes, ed. Ritchie, J. M., Keynes, R. D. & Bolis, L. pp. 85101. Alan R. Liss, New York.Google Scholar
Keynes, R. D. (1990). A series-parallel model of the voltage-gated sodium channel. Proc. R. Soc. Lond. B 240, 425432.Google ScholarPubMed
Keynes, R. D. (1991). On the voltage dependence of inactivation in the sodium channel of the squid giant axon. Proc. R. Soc. Lond. B 243, 4753.Google ScholarPubMed
Keynes, R. D. (1992). A new look at the mechanism of activation and inactivation of voltage-gated ion channels. Proc. R. Soc. Lond. B 249, 107112.Google Scholar
Keynes, R. D. (1994). Bimodal gating of the sodium channel. Trends Neurosci. 17, 5861.CrossRefGoogle Scholar
Keynes, R. D., Greeff, N. G. & Forster, I. C. (1990). Kinetic analysis of the sodium gating current in the squid giant axon. Proc. R. Soc. Lond. B 240, 411423.Google ScholarPubMed
Keynes, R. D., Greeff, N. G. & Forster, I. C. (1992a). Activation, inactivation, and recovery in the sodium channels of the squid giant axon dialysed with different solutions. Phil. Trans. R. Soc. Lond. B 337, 471484.Google ScholarPubMed
Keynes, R. D., Greeff, N. G., Forster, I. C. & Bekkers, J. M. (1991a). The effect of tetrodotoxin on the sodium gating current in the squid giant axon. Proc. R. Soc. Lond. B 246, 135140.Google ScholarPubMed
Keynes, R. D., Greeff, N. G. & van Helden, D. F. (1982). The relationship between the inactivating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon. Proc. R. Soc. Lond. B 215, 391404.Google ScholarPubMed
Keynes, R. D. & Kimura, J. E. (1983). Kinetics of activation of the sodium conductance in the squid giant axon. J. Physiol., Lond. 336, 621634.CrossRefGoogle ScholarPubMed
Keynes, R. D., Kimura, J. E. & Greeff, N. G. (1988). Kinetics of activation of the potassium conductance in the squid giant axon. Proc. R. Soc. Lond. B 232, 375394.Google ScholarPubMed
Keynes, R. D. & Martins-Ferreira, H. (1953). Membrane potentials in the electroplates of the electric eel. J. Physiol., Lond. 119, 315351.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Meves, H. (1993). Properties of the voltage sensor for the opening and closing of the sodium channels in the squid giant axon. Proc. R. Soc. Lond. B 253, 6168.Google ScholarPubMed
Keynes, R. D., Meves, H. & Hof, D. (1992 b). The dual effect of internal tetramethylammonium ions on the two open states of the sodium channel in the squid giant axon. Proc. R. Soc. Lond. B 249, 101106.Google ScholarPubMed
Keynes, R. D. & Rojas, E. (1974). Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol. Lond. 239, 393434.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Rojas, E. (1976). The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. J. Physiol. Lond. 255, 157189.CrossRefGoogle ScholarPubMed
Keynes, R. D., Rojas, E. & Ceña, V. (1991 b). Blocking of the sodium channel by external Tris in the squid giant axon. Proc. R. Soc. Lond. B 246, 129133.Google Scholar
Khodorov, B. I. (1979). Inactivation of the sodium gating current. Neuroscience 4, 865876.CrossRefGoogle ScholarPubMed
Kimura, J. E. & Meves, H. (1979). The effect of temperature on the asymmetrical charge movement in squid giant axons. J. Physiol., Lond. 289, 479500.CrossRefGoogle ScholarPubMed
Kirsch, G. E., Drewe, J. A., Hartmann, H. A., Taglialatela, M., De Biasi, M., Brown, M. A. & Joho, R. H. (1992). Differences between the deep pores of K+ channels determined by an interacting pair of nonpolar amino acids. Neuron 8, 499505.CrossRefGoogle ScholarPubMed
Kostyuk, P. G., Krishtal, O. A. & Pidoplichko, V. I. (1981). Calcium inward current and related charge movements in the membrane of snail neurones J. Physiol., Lond. 310, 403421.CrossRefGoogle ScholarPubMed
Li, M., Unwin, N., Stauffer, K. A., Jan, Y-N. & Jan, L. Y. (1994). Images of purified Shaker potassium channels. Current Biol. 4, 110115.CrossRefGoogle ScholarPubMed
Liebovitch, L. S., Selector, L. Y. & Kline, R. P. (1992). Statistical properties predicted by the ball and chain model of channel inactivation. Biophys. J. 63, 15791585.CrossRefGoogle ScholarPubMed
Lipkind, G. M. & Fozzard, H. A. (1994). A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66, 113.CrossRefGoogle ScholarPubMed
Llinas, R. & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol., Lond. 305, 171195.CrossRefGoogle ScholarPubMed
Llinas, R., Sugimori, M., Lin, J-W. & Cherksey, B. (1989). Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Set. USA 86, 16891693.CrossRefGoogle ScholarPubMed
Mackinnon, R. (1991). Determination of the subunit stoichiometry of a voltageactivated potassium channel. Nature, Lond. 350, 232235.CrossRefGoogle ScholarPubMed
Mackinnon, R., Heginbotham, L. & Abramson, T. (1990). Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 5, 767771.CrossRefGoogle ScholarPubMed
Mackinnon, R. & Miller, C. (1989). Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science 245, 13821385.CrossRefGoogle ScholarPubMed
McCormack, K., Joiner, W. J. & Heinemann, S. H. (1994). A characterization of the activating structural rearrangements in voltage-dependent Shaker K+ channels. Neuron 12, 301315.CrossRefGoogle ScholarPubMed
McCormack, K., Tanouye, T., Iverson, L. E., Lin, J-W., Ramaswami, M., McCormack, T., Campanelli, J. T., Mathew, M. K. & Rudy, B. (1991). A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc. Natl. Acad. Sci. USA 88, 29312935.CrossRefGoogle ScholarPubMed
Matteson, D. R. & Armstrong, C. M. (1982). Evidence for a population of sleepy sodium channels in squid axon at low temperature. J. gen. Physiol. 79, 739758.CrossRefGoogle ScholarPubMed
Meves, H. (1974). The effect of holding potential on the asymmetry currents in squid giant axons. J. Physiol., Lond. 243, 847867.CrossRefGoogle Scholar
Meves, H. (1992). Potassium channel toxins. Chapter 21 in Handbook of Experimental Pharmacology, Vol. 102, edited by Herken, H. & Hucho, F.. Springer-Verlag, Berlin and Heidelberg.Google Scholar
Meves, H. & Pohl, J-A. (1990). A slow component in the gating current of the frog node of Ranvier. Pflügers Arch. Eur. jf. Physiol. 416, 162169.CrossRefGoogle ScholarPubMed
Meves, H. & Vogel, W. (1977). Slow recovery of sodium current and ‘gating current’ from inactivation. J. Physiol., Lond. 267, 395410.CrossRefGoogle ScholarPubMed
Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. & Numa, S. (1989). Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, Lond. 340, 230233.CrossRefGoogle ScholarPubMed
Mitrovic, N., George, A. L., Heine, R., Wagner, S., Pika, U., Hartlaub, U., Zhou, M., Lerche, H., Fahlke, Ch. & Lehmann-Horn, F. (1994). K+-aggravated myotonia: destabilization of the inactivated state of the muscle Na+ channel in human embryonic kidney cells. J. Physiol, Lond. 478, 395402.CrossRefGoogle Scholar
Moorman, J. R., Kirsch, G. E., Brown, A. M. & Joho, R. H. (1990). Changes in sodium channel gating produced by point mutations in a cytoplasmic linker. Science 250, 688691.CrossRefGoogle Scholar
Nagy, K., Kiss, T. & Hof, D. (1983). Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflügers Arch. Eur. J. Physiol. 399, 302308.CrossRefGoogle ScholarPubMed
Nagy, K. (1987). Subconductance states of single sodium channels modified by chloramine-T and sea anemone toxin in neuroblastoma cells. Eur. Biophys. J. 15, 129132.CrossRefGoogle ScholarPubMed
Nakayama, S. & Brading, A. (1993). Evidence for multiple open states of the Ca2+ channels in smooth muscle cells isolated from the guinea-pig detrusor. J. Physiol., Lond. 471, 87105.CrossRefGoogle ScholarPubMed
Neumcke, B., Nonner, W. & Stämpfli, R. (1976). Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve. Pflügers Arch. Eur. J. Physiol. 363, 193203.CrossRefGoogle ScholarPubMed
Nilius, B. (1988). Modal gating behaviour of cardiac sodium channels in cell-free membrane patches. Biophys. J. 53, 857862.CrossRefGoogle ScholarPubMed
Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. & Numa, S. (1986). Existence of distinct sodium channel messenger RNAs in rat brain. Nature, Lond. 320, 188192.CrossRefGoogle ScholarPubMed
Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyati, T. & Numa, S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, Lond. 312, 121127.CrossRefGoogle ScholarPubMed
Noda, M., Suzuki, H., Numa, S. & Stühmer, W. (1989). A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Letters 259, 213216.CrossRefGoogle ScholarPubMed
Nonner, W. (1980). Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve. J. Physiol., Lond. 299, 573603.CrossRefGoogle ScholarPubMed
Nonner, W., Rojas, E. & Stämpfli, R. (1978). Asymmetrical displacement currents in the membrane of frog myelinated nerve: early time course and effects of membrane potential. Pflügers Arch. Eur. J. Physiol. 375, 7585.CrossRefGoogle ScholarPubMed
Numa, S. (1989). A molecular view of neurotransmitter receptors and ionic channels. Harvey Lectures Series 83, 121165.Google Scholar
Oxford, G. S. & Yeh, J. Z. (1985). Interactions of monovalent cations with sodium channels in squid axons. I. Modification of physiological inactivation gating. J. gen. Physiol. 85, 583602.CrossRefGoogle ScholarPubMed
Palti, Y., Ganot, G. & Stämpfli, R. (1976). Effect of conditioning potential on potassium current kinetics in the frog node. Biophys. J. 16, 261273.CrossRefGoogle ScholarPubMed
Patlak, J. B. (1988). Sodium channel subconductance levels measured with a new Variance-Mean analysis. J. gen. Physiol. 92, 413430.CrossRefGoogle ScholarPubMed
Patlak, J. B. (1991). Molecular kinetics of voltage-dependent Na+ channels. Physiol. Rev. 71, 10471080.CrossRefGoogle ScholarPubMed
Patlak, J. B. (1993). Measuring kinetics of complex single ion channel data using Mean-Variance histograms. Biophys. J. 65, 2042.CrossRefGoogle ScholarPubMed
Patlak, J. & Ortiz, M. (1986). Two modes of gating during late Na+ channel currents in frog sartorius muscle. J. gen. Physiol. 87, 305326.CrossRefGoogle ScholarPubMed
Patton, D. E., West, J. W., Catterall, W. A. & Goldin, A. L. (1992). Amino acid residues required for fast sodium channel inactivation. Charge neutralizations and deletions in the III–IV linker. Proc. Natl. Acad. Sci. U.S.A. 89, 1091010914.CrossRefGoogle ScholarPubMed
Patton, D. E., West, J. W., Catterall, W. A. & Goldin, A. L. (1993). A peptide segment critical for sodium channel inactivation functions as an inactivation gate in a potassium channel. Neuron 11, 967974.CrossRefGoogle Scholar
Peganov, E. (1979). A study of the inactivating component of the asymmetrical displacement current in frog nerve fibre. Neuroscience 4, 539547.CrossRefGoogle ScholarPubMed
Perozo, E., Mackinnon, R., Bezanilla, F. & Stefani, E. (1993). Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11, 353358.CrossRefGoogle ScholarPubMed
Perozo, E., Papazian, D. M., Stefani, E. & Bezanilla, F. (1992). Gating currents in Shaker K+ channels. Implications for activation and inactivation models. Biophys. J. 62, 160171.CrossRefGoogle Scholar
Plant, T. D. (1988). Na+ currents in cultured mouse pancreatic B-cells. Pflügers Arch. Eur. J. Physiol. 411, 429435.CrossRefGoogle ScholarPubMed
Pongs, O. (1992). Molecular biology of voltage-dependent potassium channels. Physiol. Rev. 72, S69S88.CrossRefGoogle ScholarPubMed
Quandt, F. N. (1987). Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J. Physiol., Lond. 392, 563585.CrossRefGoogle ScholarPubMed
Rayner, M. D., Starkus, J. G., Ruben, P. C. & Alicata, D. A. (1992). Voltagesensitive and solvent-sensitive processes in ion channel gating. Kinetic effects of hyperosmolar media on activation and deactivation of sodium channels. Biophys. J. 61, 96108.CrossRefGoogle ScholarPubMed
Rayner, M. D., Starkus, J. G. & Ruben, P. C. (1993). Hydration forces in ion channel gating. Comments Mol. Cell. Biophys. 8, 155187.Google Scholar
Regan, L. J. (1991). Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis. J. Neurosci. 11, 22592269.CrossRefGoogle ScholarPubMed
Rettig, J., Wunder, F., Stocker, M., Lichtinghagen, R., Mastiaux, F., Beckh, S., Kues, W., Pedarzani, P., Schröter, K. H., Ruppersberg, J. P., Veh, R. & Pongs, O. (1992). Characterization of a Shaw-related potassium channel family in rat brain. EMBOJ. 11, 24732486.CrossRefGoogle ScholarPubMed
Rojas, E. & Rudy, B. (1976). Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from Loligo. 262, 501531.Google ScholarPubMed
Rosenthal, J. J. C. & Gilly, W. F. (1993). Amino acid sequence of a putative sodium channel expressed in the giant axon of the squid Loligo opalescens. Proc. Natl. Acad. Sci. USA 90, 1002610030.CrossRefGoogle ScholarPubMed
Ruben, P. C., Starkus, J. G. & Rayner, M. D. (1990). Holding potential affects the apparent voltage-sensitivity of sodium channel activation in crayfish giant axons. Biophys. J. 58, 11691181.CrossRefGoogle ScholarPubMed
Ruben, P. C., Starkus, J. G. & Rayner, M. D. (1992). Steady-state availability of sodium channels. Interactions between activation and slow inactivation. Biophys. J. 61, 941955.CrossRefGoogle ScholarPubMed
Rüdel, R., Richer, K. & Lehmann-Horn, M. D. (1993). Genotype-phenotype correlations in human skeletal muscle sodium channel disease. Arch. Neurol. 50, 12411248.CrossRefGoogle Scholar
Rudy, B. (1978). Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol., Lond. 283, 121.CrossRefGoogle ScholarPubMed
Rudy, B. (1981). Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. J. Physiol., Lond. 312, 531549.CrossRefGoogle ScholarPubMed
Rudy, B. (1988). Diversity and ubiquity of K channels. Neuroscience 25, 720749.CrossRefGoogle ScholarPubMed
Ruff, R. L. (1994). Slow Na+ channel inactivation must be disrupted to evoke prolonged depolarization-induced paralysis. Biophys. J. 66, 542545.CrossRefGoogle ScholarPubMed
Ruff, R. L., Simoncini, L. & Stühmer, W. (1987). Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J. Physiol., Lond. 383, 339348.CrossRefGoogle ScholarPubMed
Ruppersberg, J. P., Schröter, K. H., Sakmann, B., Stocker, M., Sewing, S. & Pongs, O. (1990). Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature, Lond. 345, 535537.CrossRefGoogle ScholarPubMed
Sagar, A. & Rakowski, R. F. (1994). Access channel model for the voltage dependence of the forward-running Na+/K+ pump. J. gen. Physiol. 103, 860894.CrossRefGoogle ScholarPubMed
Saint, D. A., Ju, Y. K. & Gage, P. W. (1992). A persistent sodium current in rat ventricular myocytes. J. Physiol., Lond. 454, 219231.CrossRefGoogle Scholar
Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ifune, C., Goodman, R. & Mandel, G. (1987). Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237, 744749.CrossRefGoogle ScholarPubMed
Salkoff, L., Baker, K., Butler, A., Covarrubias, M., Pak, M. D. & Wei, A. (1992). An essential ‘set’ of K+ channels conserved in fliesmice and humans. Trends Neurosci. 15, 161166.CrossRefGoogle ScholarPubMed
Sammar, M., Spira, G. & Meiri, H. (1992). Depolarization exposes the voltage sensor of the sodium channels in the extracellular region. J. Membrane Biol. 125, 111.CrossRefGoogle ScholarPubMed
Sato, C. & Matsumoto, G. (1992). Primary structure of squid sodium channel deduced from the complementary DNA sequence. Biochem. Biophys. Res. Comm. 186, 6168.CrossRefGoogle ScholarPubMed
Schauf, C. L. (1983). Insensitivity of activation delays in potassium and sodium channels to heavy water in Myxicola giant axons. J. Physiol., Lond. 337, 173182.CrossRefGoogle ScholarPubMed
Schauf, C. L. & Bullock, J. O. (1979). Modifications of sodium channel gating in Myxicola giant axons by deuterium, oxide, temperature, and internal cations. Biophys. J. 27, 193208.CrossRefGoogle ScholarPubMed
Schauf, C. L. & Bullock, J. O. (1982). Solvent substitution as a probe of channel gating in Myxicola. Effects of D2O on kinetic properties of drugs that occlude channels. Biophys. J. 37, 441452.CrossRefGoogle ScholarPubMed
Schauf, C. L. & Chuman, M. A. (1986). Mechanisms of sodium channel gating revealed by solvent substitution. In Ion channels in neural membranes, ed. Ritchie, J. M., Keynes, R. D. and Bolis, L. pp. 323. Alan Liss, New York.Google Scholar
Schauf, C. L., Peneck, T. L. & Davis, F. A. (1976). Slow inactivation in Myxicola axons. Biophys. J. 16, 771778.CrossRefGoogle ScholarPubMed
Scheuer, T. & Gilly, W. F. (1986). Charge movement and depolarization- contraction coupling in arthropod vs. vertebrate skeletal muscle. Proc. Natl. Acad. Sci. USA 83, 87998803.CrossRefGoogle ScholarPubMed
Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. (1992). The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 17121715.CrossRefGoogle ScholarPubMed
Schwarz, J. R. & Vogel, W. (1971). Potassium inactivation in single myelinated nerve fibres of Xenopus laevis. Pflügers Arch. 330, 6173.CrossRefGoogle ScholarPubMed
Shao, X. M. & Papazian, D. M. (1993). S4 mutations alter the single-channel gating kinetics of Shaker K+ channels. Neuron 11, 343352.CrossRefGoogle ScholarPubMed
Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. (1982). Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature, Lond. 299, 413417.CrossRefGoogle Scholar
Sigg, D., Stefani, E. & Bezanilla, F. (1994). Gating current noise produced by elementary transitions in Shaker potassium channels. Science 264, 578582.CrossRefGoogle ScholarPubMed
Sigworth, F. J. (1981). Covariance of nonstationary sodium current fluctuations at the node of Ranvier. Biophys. J. 34, 111133.CrossRefGoogle ScholarPubMed
Sigworth, F. J. (1993). Voltage gating of ion channels. Q. Rev. Biophys. 27, 140.CrossRefGoogle Scholar
Simoncini, L. & Stühmer, W. (1987). Slow sodium channel inactivation in rat fasttwitch muscle. J. Physiol., Lond. 383, 327337.CrossRefGoogle ScholarPubMed
Starkus, J. G., Fellmeth, B. D. & Raynek, M. D. (1981). Gating currents in the intact crayfish giant axon. Biophys. J. 35, 521533.CrossRefGoogle ScholarPubMed
Starkus, J. G. & Rayner, M. D. (1991). Gating current ‘fractionation’ in crayfish giant axons. Biophys. J. 60, 11011119.CrossRefGoogle ScholarPubMed
Starkus, J. G. & Shrager, P. (1978). Modification of slow sodium inactivation in nerve after internal perfusion with trypsin. Am. J. Physiol. 4:C238244.CrossRefGoogle Scholar
Stimers, J. R., Bezanilla, F. & Taylor, R. E. (1987). Sodium channel gating currents. Origin of the rising phase. J. gen. Physiol. 89, 521540.CrossRefGoogle ScholarPubMed
Striessnig, J., Glossmann, H. & Catterall, W. A. (1990). Identification of a phenylalkylamine binding region within the α1 subunit of skeletal muscle Ca2+ channels. Proc. Natl. Acad. Sci. USA 87, 91089112.CrossRefGoogle Scholar
Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H. & Numa, S. (1989 a). Structural parts involved in activation and inactivation of the sodium channel. Nature, Lond. 339, 597603.CrossRefGoogle ScholarPubMed
Stühmer, W., Conti, F., Stocker, M., Pongs, O. & Heinemann, S. H. (1991). Gating currents of inactivating and non-inactivating potassium channels expressed in Xenopus oocytes. Pflügers Arch. Eur. J. Physiol. 418, 423429.CrossRefGoogle ScholarPubMed
Stühmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. (1987). Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur. Biophys. J. 14, 131138.CrossRefGoogle ScholarPubMed
Stühmer, W., Ruppersberg, J. P., Schröter, K. H., Sakmann, B., Stocker, M., Giese, K. P., Perschke, A., Baumann, A. & Pongs, O. (1989 b). Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 8, 32353244.CrossRefGoogle ScholarPubMed
Swanson, R., Marshall, J., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., Luneau, C. J., Antanavage, J., Oliva, C., Buhrow, S. A., Bennett, C., Stein, R. B. & Kaczmarek, L. K. (1990). Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron 4, 929939.CrossRefGoogle ScholarPubMed
Taglialatela, M., Kirsch, G. E., Vandongen, A. M. J., Drewe, J. A., Hartmann, H. A., Joho, R. H., Stefani, E. & Brown, A. M. (1992). Gating currents from a delayed rectifier K+ channel with altered pore structure and function. Biophys. J. 62, 3436.CrossRefGoogle ScholarPubMed
Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. & Numa, S. (1987). Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, Lond. 328, 313318.CrossRefGoogle ScholarPubMed
Taylor, C. P. (1993). Na+ channels that open when they are not supposed to. Trends Neurosci. 16, 455460.CrossRefGoogle ScholarPubMed
Taylor, R. E. & Bezanilla, F. (1983). Sodium and gating current time shifts resulting from changes in initial conditions. J. gen. Physiol. 81, 773784.CrossRefGoogle ScholarPubMed
Terlau, H., Heinemann, S. H., Stühmer, W., Pusch, M., Conti, F., Imoto, K. & Numa, S. (1991). Mapping the site of block by tetrodotoxin and saxitoxin on sodium channel-II. FEBS Lett. 293, 9396.CrossRefGoogle ScholarPubMed
Tsien, R. W., Ellinor, P. T. & Horne, W. A. (1991). Molecular diversity of voltagedependent Ca2+ channels. Trends Pharmacol. Sci. 12, 349354.CrossRefGoogle ScholarPubMed
Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. (1988). Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431438.CrossRefGoogle ScholarPubMed
Tytgat, J. & Hess, P. (1992). Evidence for cooperative interactions in potassium channel gating. Nature, Lond. 359, 420423.CrossRefGoogle ScholarPubMed
Vandenberg, C. A. & Bezanilla, F. (1991 a). Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon. Biophys. J. 60, 14991510.CrossRefGoogle ScholarPubMed
Vandenberg, C. A. & Bezanilla, F. (1991 b). A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys. J. 60, 15111533.CrossRefGoogle ScholarPubMed
Vandenberg, C. A. & Horn, R. (1984). Inactivation viewed through single sodium channels. J. gen. Physiol. 84, 535564.CrossRefGoogle ScholarPubMed
Vassilev, P. M., Scheuer, T. & Catterall, W. A. (1988). Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241, 16581661.CrossRefGoogle ScholarPubMed
Vassilev, P. M., Scheuer, T. & Catterall, W. A. (1989). Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc. Natl. Acad. Sci. U.S.A. 86, 81478151.CrossRefGoogle ScholarPubMed
West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L. & Catterall, W. A. (1992). A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. natn. Acad. Sci. U.S.A. 89, 1091010914.CrossRefGoogle ScholarPubMed
White, M. M. & Bezanilla, F. (1985). Activation of squid axon K+ channels. Ionic and gating current studies. J. gen. Physiol. 85, 539554.CrossRefGoogle ScholarPubMed
Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. (1991). Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251, 939941.CrossRefGoogle ScholarPubMed
Yool, A. J. & Schwarz, T. L. (1991). Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349, 700704.CrossRefGoogle Scholar
Zagotta, W. N. & Aldrich, R. W. (1990). Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J. gen. Physiol. 95, 2960.CrossRefGoogle ScholarPubMed
Zagotta, W. N., Hoshi, T. & Aldrich, R. W. (1990). Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568571.CrossRefGoogle ScholarPubMed
Zagotta, W. N., Hoshi, T. & Aldrich, R. W. (1994 a). Shaker potassium channel gating III: evaluation of kinetic models for activation. J. gen. Physiol. 103, 321362.CrossRefGoogle ScholarPubMed
Zagotta, W. N., Hoshi, T., Dittman, J. & Aldrich, R. W. (1994 b). Shaker potassium channel gating II: transitions in the activation pathway. J. gen. Physiol. 103, 279320.CrossRefGoogle ScholarPubMed
Zhang, J-F., Randall, A. D., Ellinor, P. T., Horne, W. A., Sather, W. A., Tanabe, T., Schwarz, T. L. & Tsien, R. W. (1993). Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32, 10751088.CrossRefGoogle ScholarPubMed
Zhong, Y. & Wu, C-F. (1993). Modulation of different K+ currents in Drosophila: a hypothetical role for the Eag subunit in multimeric K+ channels. J. Neurosci. 13, 46694679.CrossRefGoogle ScholarPubMed
Zhou, J., Potts, J. F., Trimmer, J. S., Agnew, W. S. & Sigworth, F. J. (1991). Multiple gating modes and the effect of modulating factors on μ1 sodium channel. Neuron 7, 775785.CrossRefGoogle Scholar
Zimmerberg, J., Bezanilla, F. & Parsegian, V. A. (1990). Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys. J. 57, 10491064.CrossRefGoogle ScholarPubMed