Skip to main content Accessibility help
×
Home

Lens-based fluorescence nanoscopy

  • Christian Eggeling (a1) (a2), Katrin I. Willig (a1), Steffen J. Sahl (a1) and Stefan W. Hell (a1)

Abstract

The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or ‘nanoscopy’ offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent ‘on’ and ‘off’ states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lens-based fluorescence nanoscopy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Lens-based fluorescence nanoscopy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Lens-based fluorescence nanoscopy
      Available formats
      ×

Copyright

Corresponding author

*Author for Correspondence: Stefan W. Hell, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany. Email: hell@nanoscopy.de

References

Hide All
Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413468.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2002). Molecular Biology of the Cell, 4 edn. New York: Garland Science.
Anbar, M. & Hart, E. J. (1964). Reactivity of aromatic compounds toward hydrated electrons. Journal of the American Chemical Society 86(24), 56335637.
Ando, R., Mizuno, H. & Miyawaki, A. (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700), 13701373.
Andresen, M., Stiel, A. C., Trowitzsch, S., Weber, G., Eggeling, C., Wahl, M. C., Hell, S. W. & Jakobs, S. (2007). Structural basis for reversible photoswitching in Dronpa. Proceedings of the National Academy of Sciences of the United States of America 104, 1300513009.
Andresen, M., Wahl, M. C., Stiel, A. C., Grater, F., Schafer, L. V., Trowitzsch, S., Weber, G., Eggeling, C., Grubmuller, H., Hell, S. W. & Jakobs, S. (2005). Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 102(37), 1307013074.
Andrew, T. L., Tsai, H. Y. & Menon, R. (2009). Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324(5929), 917921.
Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. (2011). Identification of clustering artifacts in photoactivated localization microscopy. Nature Method 8, 527528. doi: 10.1038/nmeth.1627.
Aquino, D., Schönle, A., Geisler, C., Middendorff, C. V., Wurm, C. A., Okamura, Y., Lang, T., Hell, S. W. & Egner, A. (2011). Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nature Method 8(4), 353359.
Ash, E. A. & Nicholls, G. (1972). Super-resolution aperture scanning microscope. Nature 237, 510512.
Auksorius, E., Boruah, B. R., Dunsby, C., Lanigan, P. M. P., Kennedy, G., Neil, M. A. A. & French, P. M. W. (2008). Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Optics Letters 33(2), 113115.
Axelrod, D. (1981). Cell-substrate contacts illuminated by total internal reflection fluorescence. Journal of Cell Biology 89, 141145.
Backer, A. S., Backlund, M. P., Lew, M. D. & Moerner, W. E. (2013). Single-molecule orientation measurements with a quadrated pupil. Optics Letters 38(9), 15211523.
Backer, A. S., Backlund, M. P., Von Diezmann, A. R., Sahl, S. J. & Moerner, W. E. (2014). A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. Applied Physics Letters 104(19), 193701.
Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J., Grover, G., Agrawal, A., Piestun, R. & Moerner, W. E. (2012). Simultaneous, accurate measurement of the 3D position and orientation of single molecules. Proceedings of the National Academy of Sciences 109(47), 1908719092.
Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J. & Moerner, W. E. (2014). The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. ChemPhysChem 15(4), 587599.
Baddeley, D., Jayasinghe, I. D., Cremer, C., Cannell, M. B. & Soeller, C. (2009). Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophysical Journal 96(2), L22L24.
Bailey, B., Farkas, D. L., Taylor, D. L. & Lanni, F. (1993). Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 4448.
Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P. R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F. & Wrachtrup, J. (2008). Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648651.
Bates, M., Blosser, T. R. & Zhuang, X. W. (2005). Short-range spectroscopic ruler based on a single-molecule optical switch. Physical Review Letters 94, 108101.
Bates, M., Dempsey, G. T., Chen, K. H. & Zhuang, X. (2011). Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. ChemPhysChem 13(1), 99107.
Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. W. (2007). Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 17491753.
Bates, M., Huang, B. & Zhuang, X. W. (2008). Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology 12(5), 505514.
Bergermann, F., Alber, L., Sahl, S.J., Engelhardt, J. & Hell, S.W. (2015). 2000-fold parallelized dual-color STED fluorescence nanoscopy Optics Express 23(1), 211223.
Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. (2012). Nanoscopy in a living mouse brain. Science 335, 551.
Bertero, M. & Boccacci, P. (1998). Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol, UK.
Bertero, M., Boccacci, P., Brakenhoff, G. J., Malfanti, F. & Van Der Voort, H. T. M. (1990). Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy. Journal of Microscopy 157, 320.
Bethge, P., Chereau, R., Avignone, E., Marsicano, G. & Nägerl, U. V. (2013). Two-photon excitation STED microscopy in two colors in acute brain slices. Biophysical Journal 104, 778785.
Betzig, E., Chichester, R. J., Lanni, F. & Taylor, D. L. (1993). Near-field fluorescence imaging of cytoskeletal actin. Bioimaging 1, 129136.
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 16421645.
Bewersdorf, J., Bennett, B. T. & Knight, K. L. (2006). H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proceedings of the National Academy of Sciences of the United States of America 103, 1813718142.
Bianchini, P. & Diaspro, A. (2012). Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam. Journal of Microscopy 245(3), 225228.
Bierwagen, J., Testa, I., Fölling, J., Wenzel, D., Jakobs, S., Eggeling, C. & Hell, S. W. (2010). Far-field autofluorescence nanoscopy. Nano Letters 2010(10), 42494252.
Bingen, P., Reuss, M., Engelhardt, J. & Hell, S. W. (2011). Parrallelized STED fluorescence nanoscopy. Optics Express 19(24), 2371623726.
Biteen, J. S., Thompson, M. A., Tselentis, N. K., Bowman, G. R., Shapiro, L. & Moerner, W. E. (2008). Super-resolution imaging in live caulobacter crescentus cells using photoswitchable EYFP. Nature Methods 5, 947949.
Biteen, J. S., Thompson, M. A., Tselentis, N. K., Shapiro, L. & Moerner, W. E. (2009). Superresolution imaging in live Caulobacter crescentus cells using photoswitchable enhanced yellow fluorescent protein. Proceedings SPIE 7185, 71850I.
Bloembergen, N. (1965). Nonlinear Optics. New York: Benjamin.
Blom, H., Kastrup, L. & Eggeling, C. (2006). Fluorescence fluctuation spectroscopy in reduced detection volumes. Current Pharmaceutical Biotechnology 7(1), 5166.
Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Rantanen, V., Widengren, J., Aperia, A. & Brismar, H. (2012). Nearest neighbor analysis of dopamine D1 receptors and Na1-K1-ATPases in dendritic spines dissected by STED microscopy. Microscopy Research and Technique 75, 220228.
Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Widengren, J., Bondar, A., Aperia, A. & Brismar, H. (2011). Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy. BMC Neuroscience 12, 16.
Bobroff, N. (1986). Position measurement with a resolution and noise-limited instrument. Review of Scientific Instruments 57(6), 11521157.
Bock, H. (2008). High-Resolution Fluorescence Microscopy with Photoswitchable Fluorescent Proteins. Germany: University Goettingen.
Bock, H., Geisler, C., Wurm, C. A., Von Middendorff, C., Jakobs, S., Schönle, A., Egner, A., Hell, S. W. & Eggeling, C. (2007). Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Applied Physics B: Lasers and Optics 88(8), 161165.
Borlinghaus, R. T. (2006). Mrt letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching. Microscopy Research and Technique 69, 689692.
Born, M. & Wolf, E. (2002). Principles of Optics, 7th edn. Cambridge, New York, Melbourne, Madrid, Cape Town: Cambridge University Press.
Bossi, M., Foelling, J., Belov, V. N., Boyarskiy, V. P., Medda, R., Egner, A., Eggeling, C., Schoenle, A. & Hell, S. W. (2008). Multi-color far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Letters 8(8), 24632468.
Bossi, M., Foelling, J., Dyba, M., Westphal, V. & Hell, S. W. (2006). Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New Journal of Physics 8, 275.
Boyarskiy, V. P., Belov, V. N., Medda, R., Hein, B., Bossi, M. & Hell, S. W. (2008). Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chemistry: A European Journal 14, 17841792.
Brakemann, T., Stiel, A. C., Weber, G., Andresen, M., Testa, I., Grotjohann, T., Leutenegger, M., Plessmann, U., Urlaub, H., Eggeling, C., Wahl, M., Hell, S. W. & Jakobs, S. (2011). A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nature Biotechnology 29, 942947.
Bretschneider, S., Eggeling, C. & Hell, S. W. (2007). Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters 98(21), 218103.
Brown, D. A. & London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. Journal of Biological Chemistry 275(23), 1722117224.
Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L. & Hell, S. W. (2011). Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Optics Express 19(4), 31303143.
Burns, D. H., Callis, J. B., Christian, G. D. & Davidson, E. R. (1985). Strategies for attaining superresolution using spectroscopic data as constraints. Applied Optics 24(2), 154161.
Chen, Y., Muller, J. D., So, P. T. C. & Gratton, E. (1999). The photon counting histogram in fluorescence fluctuation spectroscopy. Biophysical Journal 77, 553567.
Chen, B.-C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., Wu, X.S., Hammer, J.A. III, Liu, Z., English, B.P., Mimori-Kiyosue, Y., Romero, D.P., Ritter, A.T., Lippincott-Schwartz, J., Fritz-Laylin, L., Mullins, R.D., Mitchell, D.M., Bembenek, J.N., Reymann, A.-C., Böhme, R., Grill, S.W., Wang, J.T., Seydoux, G., Tulu, U.S., Kiehart, D.P., Betzig, E. (2014). Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998.
Chi, K. R. (2009). Super-resolution microscopy: breaking the limits. Nature Methods 6(1), 1518.
Chmyrov, A., Arden-Jacob, J., Zilles, A., Drexhage, K. H. & Widengren, J. (2008). Characterization of new fluorescent labels for ultra-high resolution microscopy. Photochemical and Photobiological Sciences 7, 13781385.
Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., D'Este, E., Jakobs, S., Eggeling, C. & Hell, S. W. (2013). Nanoscopy with more than 100,000 ‘doughnuts’. Nature Methods 10, 737740.
Clausen, M. & Lagerholm, B. C. (2011). The probe rules in single particle tracking. Current Protein and Peptide Science 12, 699713.
Clausen, M. P., Galiani, S., Bernardino De La Serna, J., Fritzsche, M., Chojnacki, J., Gehmlich, K., Lagerholm, B. C. & Eggeling, C. (2013). Pathways to optical STED microscopy. NanoBioImaging 1(1), 112.
Cognet, L., Tsyboulski, D. A. & Weisman, R. B. (2008). Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes. Nano Letters 8(2), 749753.
Conchello, J.-A. & Lichtman, J. W. (2005). Optical sectioning microscopy. Nature Methods 2(12), 920931.
Conchello, J. A. & Mcnally, J. G. (1996). Fast regularization technique for expectation maximization alogorithm for optical sectioning microscopy. Society of Photo-Optical Instrumentation Engineers. Proceedings 2655, 199208.
Cox, S., Rosten, E., Monypenny, J., Jovanovic-Talisman, T., Burnette, D. T., Lippincott-Schwartz, J., Jones, G. E. & Heintzmann, R. (2012). Bayesian localization microscopy reveals nanoscale podosome dynamics. Nature Methods 9(2), 195200.
Cremer, C. & Cremer, T. (1978). Considerations on a laser-scanning-microscope with high-resolution and depth of field. Microscopica Acta 81(1), 3144.
Cronin, B., De Wet, B. & Wallace, M. I. (2009). Lucky imaging: improved localization accuracy for single molecule imaging. Biophysical Journal 96(7), 29122917.
Dave, R., Terry, D. S., Munro, J. B. & Blanchard, S. C. (2009). Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophysical Journal 96, 23712381.
Dean, C., Liu, H., Staudt, T., Stahlberg, M. A., Vingill, S., Buckers, J., Kamin, D., Engelhardt, J., Jackson, M. B., Hell, S. W. & Chapman, E. R. (2012). Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. Journal of Neuroscience 32(16), 53985413.
De Bakker, B. I., De Lange, F., Cambi, A., Korterik, J. P., Van Dijk, E. M. H. P., Van Hulst, N. F., Figdor, C. G. & Garcia-Parajo, M. F. (2007). Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy. ChemPhysChem 8(10), 14731480.
Dedecker, P., Hofkens, J. & Hotta, J. I. (2008). Diffraction-unlimited optical microscopy. Materials Today 11, 1221.
Dedecker, P., Hotta, J. I., Flors, C., Sliwa, M., Uji-I, H., Roeffaers, M. B. J., Ando, R., Mizuno, H., Miyawaki, A. & Hofkens, J. (2007). Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. Journal of the American Chemical Society 129(51), 1613216141.
Dedecker, P., Moa, G. C. H., Dertinger, T. & Zhang, J. (2012). Widely accessible method for superresolution fluorescence imaging of living systems. Proceedings of the National Academy of Sciences of the United States of America 109(27), 1090910914.
Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods 8(12), 10271036.
Denk, W. (1996). Two-photon excitation in functional biological imaging. Journal of Biomedical Optics 1, 296304.
Denk, W., Strickler, J. H. & Webb, W. W. (1990). 2-photon laser scanning fluorescence microscopy. Science 248, 7376.
Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. (2009). Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America 106(52), 2228722292.
Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. (2010). Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Optics Express 18(18), 1887518885.
Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. (1997). On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640), 355358.
Digman, M. A., Dalal, R., Horwitz, A. F. & Gratton, E. (2008). Mapping the number of molecules and brightness in the laser scanning microscope. Biophysical Journal 94, 23202332.
Ding, J. B., Takasaki, K. T. & Sabatini, B. L. (2009). Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63, 429437.
Dittrich, P. S. & Schwille, P. (2001). Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Applied Physics B: Lasers and Optics 73, 829837.
Donnert, G., Eggeling, C. & Hell, S. W. (2007a). Major signal increase in fluorescence microscopy through dark-state relaxation. Nature Methods 4(1), 8186.
Donnert, G., Eggeling, C. & Hell, S. W. (2009). Triplet-relaxation microscopy with bunched pulsed excitation. Photochemistry and Photobiology 8, 481485.
Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Lurmann, R., Jahn, R., Eggeling, C. & Hell, S. W. (2006). Macromolecular-scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America 103(31), 1144011445.
Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., Schoenle, A., Jahn, R., Jakobs, S., Eggeling, C. & Hell, S. W. (2007b). Two-color far-field fluorescence nanoscopy. Biophysical Journal 92(8), L67L69.
Dyba, M. & Hell, S. W. (2002). Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Physical Review Letters 88(16), 163901.
Dyba, M. & Hell, S. W. (2003). Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Applied Optics 42(25), 51235129.
Dyba, M., Jakobs, S. & Hell, S. W. (2003). Immunofluorescence stimulated emission depletion microscopy. Nature Biotechnology 21(11), 13031304.
Eggeling, C. (2012). STED-FCS nanoscopy of membrane dynamics. In Fluorescent Methods to Study Biological Membranes, vol. 13 (eds. Mely, Y. & Duportail, G.), pp. 291309. Berlin: Springer-Verlag.
Eggeling, C., Berger, S., Brand, L., Fries, J. R., Schaffer, J., Volkmer, A. & Seidel, C. A. M. (2001a). Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. Journal of Biotechnology 86, 163180.
Eggeling, C., Hilbert, M., Bock, H., Ringemann, C., Hofmann, M., Stiel, A. C., Andresen, M., Jakobs, S., Egner, A., Schönle, A. & Hell, S. W. (2007). Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration. Microscopy Research and Technique 70(12), 10031009.
Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., Hein, B., Von Middendorff, C., Schönle, A. & Hell, S. W. (2009). Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–U1121.
Eggeling, C., Schaffer, J., Volkmer, A., Seidel, C. A. M., Brand, L., Jaeger, S. & Gall, K. (2001b). Multi-parameter fluorescence detection at the single-molecule level: techniques and applications. In Proceedings: 2. Biosensor Symposium, Tuebingen, Germany.
Eggeling, C., Volkmer, A. & Seidel, C. A. M. (2005). Molecular photobleaching kinetics of rhodamine 6 G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6, 791804.
Eggeling, C., Widengren, J., Brand, L., Schaffer, J., Felekyan, S. & Seidel, C. A. M. (2006). Analysis of photobleaching in single-molecule multicolor excitation and forster resonance energy transfer measurement. Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory 110(9), 29792995.
Eggeling, C., Widengren, J., Rigler, R. & Seidel, C. A. M. (1998). Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Analytical Chemistry 70, 26512659.
Eggeling, C., Widengren, J., Rigler, R. & Seidel, C. A. M. (1999). Photostabilities of fluorescent dyes for single-molecule spectroscopy: mechanisms and experimental methods for estimating photobleaching in aqueous solution. In Applied Fluorescence in Chemistry, Biology and Medicine (eds. Rettig, W., Strehmel, B., Schrader, M. & Seifert, H.), pp. 193240. Berlin: Springer.
Eggeling, C., Willig, K. I. & Barrantes, F. J. (2013). STED microscopy of living cells – New frontiers in membrane and neurobiology. Journal of Neurochemistry 126(2), 203212.
Egner, A., Geisler, C., Von Middendorff, C., Bock, H., Wenzel, D., Medda, R., Andresen, M., Stiel, A.-C., Jakobs, S., Eggeling, C., Schoenle, A. & Hell, S. W. (2007). Fluorescence nanoscopy in whole cells by asnychronous localization of photoswitching emitters. Biophysical Journal 93, 32853290.
Egner, A. & Hell, S. W. (2005). Fluorescence microscopy with super-resolved optical sections. Trends in Cell Biology 15(4), 207215.
Egner, A., Jakobs, S. & Hell, S. W. (2002). Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proceedings of the National Academy of Sciences of the United States of America 99, 33703375.
Egner, A., Verrier, S., Goroshkov, A., Soling, H. D. & Hell, S. W. (2004). 4Pi-microscopy of the Golgi apparatus in live mammalian cells. Journal of Structural Biology 147(1), 7076.
Ehrenberg, M. & Rigler, R. (1974). Rotational brownian motion and fluorescence intensity fluctuations. Chemical Physics 4(3), 390401.
Enderlein, J., Toprak, E. & Selvin, P. R. (2006). Polarization effect on position accuracy of fluorophore localization. Optics Express 14(18), 81118120.
Endesfelder, U., Van De Linde, S., Wolter, S., Sauer, M. & Heilemann, M. (2010). Subdiffraction-resolution fluorescence microscopy of myosin–actin motility. ChemPhysChem 11(4), 836840.
Engelhardt, J., Keller, J., Hoyer, P., Reuss, M., Staudt, T. & Hell, S. W. (2011). Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Letters 11(1), 209213.
Evanko, D. (2009). Primer: fluorescence imaging under the diffraction limit. Nature Methods 6(1), 1920.
Fahey, P. F., Koppel, D. E., Barak, L. S., Wolf, D. E., Elson, E. L. & Webb, W. W. (1977). Lateral diffusion in planar lipid bilayers. Science 195(4275), 305306.
Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B. A. & Webb, W. W. (1996). Constrainted diffusion or immobile fraction on cell surfaces: a new interpretation. Biophysical Journal 70, 27672773.
Feringa, B. L., ed. (2001). Molecular Switches. Weinheim: Wiley-VCH.
Fernandez-Suarez, M. & Ting, A. Y. (2008). Fluorescent probes for super-resolution imaging in living cells. Nature Reviews. Molecular Cell Biology 9, 929943.
Fielding, C. J., ed. (2006). Lipid Rafts and Caveolae. Weinheim: Wiley-VCH.
Fiolka, R., Beck, M. & Stemmer, A. (2008). Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. Optics Letters 33(14), 16291631.
Fischer, J., Freymann, G. & Wegener, M. (2010). The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Advanced Materials 22(32), 35783582.
Fitzpatrick, J. A., Yan, Q., Sieber, J. J., Dyba, M., Schwarz, U., Szent-Gyorgyi, C., Woolford, C. A., Berget, P. B., Waggoner, A. S. & Bruchez, M. P. (2009). STED nanoscopy in living cells using fluorogen activating proteins. Bioconjugate Chemistry 20(10), 18431847.
Flors, C., Ravarani, N. J. & Dryden, D. T. F. (2009). Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 10, 22012204.
Fölling, J., Belov, V., Kunetsky, R., Medda, R., Schönle, A., Egner, A., Eggeling, C., Bossi, M. & Hell, S. W. (2007). Photochromic rhodamines provide nanoscopy with optical sectioning. Angewandte Chemie (international Edition) 46, 62666270.
Fölling, J., Belov, V., Riedel, D., Schönle, A., Egner, A., Eggeling, C., Bossi, M. & Hell, S. W. (2008a). Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9, 321326.
Fölling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C. & Hell, S. W. (2008b). Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5, 943945.
Friedemann, K., Turshatov, A., Landfester, K. & Crespy, D. (2011). Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning. Langmuir 27(11), 71327139.
Friedrich, M., Gan, Q., Ermolayev, V. & Harms, G. S. (2011). STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophysical Journal 100, L43L45.
Frohn, J. T., Knapp, H. F. & Stemmer, A. (2000). True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences of the United States of America 97, 72327236.
Fu, C. C., Lee, H. Y., Chen, K., Lim, T. S., Wu, H. Y., Lin, P. K., Wei, P. K., Tsao, P. H., Chang, H. C. & Fann, W. (2007). Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences of the United States of America 104(3), 727732.
Geerts, H., Debrabander, M., Nuydens, R., Geuens, S., Moeremans, M., Demey, J. & Hollenbeck, P. (1987). Nanovid Tracking – a New Automatic Method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophysical Journal 52, 775782.
Geisler, C., Schoenle, A., Von Middendorff, C., Bock, H., Eggeling, C., Egner, A. & Hell, S. W. (2007). Resolution of l/10 in fluorescence microscopy using fast single molecule photo-switching. Applied Physics A: Materials Science and Processing 88(2), 223226.
Geissbuehler, S., Bocchio, N. L., Dellagiacoma, C., Berclaz, C., Leutenegger, M. & Lasser, T. (2012). Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Optical Nanoscopy 1(4).
Geissbuehler, S., Dellagiacoma, C. & Lasser, T. (2011). Comparison between SOFI and STORM. Biomedical Optics Express 2(3), 408420.
Giannone, G., Hosy, E., Levet, F., Constals, A., Schulze, K., Sobolevsky, A. I., Rosconi, M. P., Gouaux, E., Tampe, R., Choquet, D. & Cognet, L. (2010). Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophysical Journal 2010, 13031310.
Giske, A. (2007). CryoSTED microscopy – a new spectroscopic approach for improving the resolution of STED microscopy using low temperature. University of Heidelberg.
Gordon, M. P., Ha, T. & Selvin, P. R. (2004). Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences of the United States of America 101, 64626465.
Göttfert, F., Wurm, C. A., Mueller, V., Berning, S., Cordes, V. C., Honigmann, A. & Hell, S. W. (2013). Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophysical Journal 105, L01L03.
Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. (2012). Adaptive optics enables 3D STED microscopy in aberrating specimens. Optics Express 20(19), 20998.
Gould, T. J., Gunewardene, M. S., Gudheti, M. V., Verkhusha, V. V., Yin, S. R., Gosse, J. A. & Hess, S. T. (2008). Nanoscale imaging of molecular positions and anisotropies. Nature Methods 5(12), 10271030.
Gould, T. J., Kromann, E. B., Burke, D., Booth, M. J. & Bewersdorf, J. (2013). Auto-aligning stimulated emission depletion microscope using adaptive optics. Optics Letters 38(11), 18601862.
Gould, T. J., Myers, J. R. & Bewersdorf, J. (2011). Total internal reflection STED microscopy. Optics Express 19(14), 1335113357.
Grotjohann, T., Testa, I., Leutenegger, M., Bock, H., Urban, N. T., Lavoie-Cardinal, F., Willig, K. I., Eggeling, C., Jakobs, S. & Hell, S. W. (2011). Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478, 204208.
Grotjohann, T., Testa, I., Reuss, M., Brakemann, T., Eggeling, C., Hell, S. W. & Jakobs, S. (2012). rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLIFE 1, e00248.
Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R. & Hell, S. W. (2004). Cooperative 4pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophysical Journal 87, 41464152.
Gunewardene, M. S., Subach, F. V., Gould, T. J., Penoncello, G. P., Gudheti, M. V., Verkhusha, V. V. & Hess, S. T. (2011). superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophysical Journal 101, 15221528.
Gustafsson, M. G., Agard, D. A. & Sedat, J. W. (1996). 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution. In Three-Dimensional Microscopy: Image Acquisition and Processing III, vol. 2655 (ed. Cogswell, C., Kino, G. S. & Wilson, T.), San Jose, CA, USA, pp. 6266. Proc. SPIE.
Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198(2), 8287.
Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America 102(37), 1308113086.
Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. (1995). Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. SPIE – the International Society for Optical Engineering. Proceedings 2412, 147156.
Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. (1999). (im)-m-5: 3d widefield light microscopy with better than 100 nm axial resolution. Journal of Microscopy 195, 1016.
Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A. & Sedat, J. W. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal 94(12), 49574970.
Habuchi, S., Dedecker, P., Hotta, J. I., Flors, C., Ando, R., Mizuno, H., Miyawaki, A. & Hofkens, J. (2006). Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochemistry and Photobiology 5, 567576.
Han, K. Y., Kim, S. K., Eggeling, C. & Hell, S. (2010). Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Letters 10(8), 31993203.
Han, K. Y., Wildanger, D., Rittweger, E., Meijer, J., Pezzagna, S., Hell, S. W. & Eggeling, C. (2012). Dark state photophysics of nitrogen–vacancy centres in diamond. New Journal of Physics 14, 123002.
Han, K. Y., Willig, K. I., Rittweger, E., Jelezko, F., Eggeling, C. & Hell, S. W. (2009). Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Letters 9(9), 33233329.
Hancock, J. F. (2006). Lipid rafts: contentious only from simplistic standpoints. Nature Reviews. Molecular Cell Biology 7, 457462.
Hanzal-Bayer, M. F. & Hancock, J. F. (2007). Lipid rafts and membrane traffic. F E B S Letters 581, 20982104.
Harke, B. (2008). 3D STED Microscopy with Pulsed and Continuous Wave Lasers. PhD thesis, Georg-August-University Goettingen.
Harke, B., Bianchini, P., Brandi, F. & Diaspro, A. (2012). Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography. ChemPhysChem 13(6), 14291434.
Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schoenle, A. & Hell, S. W. (2008a). Resolution scaling in STED microscopy. Optics Express 16(6), 41544162.
Harke, B., Ullal, C. K., Keller, J. & Hell, S. W. (2008b). Three-dimensional nanoscopy of colloidal crystals. Nano Letters 8(5), 13091313.
Haustein, E. & Schwille, P. (2003). Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29(2), 153166.
He, H. T. & Marguet, D. (2011). Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annual Review of Physical Chemistry 62, 417436.
Hedde, P. N., Fuchs, J., Oswald, F., Wiedenmann, J. & Nienhaus, G. U. (2009). Online image analysis software for photoactivation localization microscopy. Nature Methods 6(10), 689690.
Heilemann, M., Dedecker, P., Hofkens, J. & Sauer, M. (2009a). Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser and Photonics Reviews 3(1–2), 180202.
Heilemann, M., Van De Linde, S., Mukherjee, A. & Sauer, M. (2009b). Super-resolution imaging with small organic fluorophores. Angewandte Chemie (international Edition) 48(37), 69036908.
Heilemann, M., Van De Linde, S., Schuttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P. & Sauer, M. (2008). Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie (international Edition) 47, 61726176.
Hein, B., Willig, K. I. & Hell, S. W. (2008). Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proceedings of the National Academy of Sciences of the United States of America 105(38), 1427114276.
Hein, B., Willig, K. I., Wurm, C. A., Westphal, V., Jakobs, S. & Hell, S. W. (2010). Stimulated emission depletion nanoscopy of living cells using SNAP-Tag fusion proteins. Biophysical Journal 98, 158163.
Heintzmann, R. & Ficz, G. (2007). Breaking the resolution limit in light microscopy. Methods in Cell Biology 81, 561580.
Heintzmann, R. & Gustafsson, M. G. L. (2009). Subdiffraction resolution in continuous samples. Nature Photonics 3(7), 362364.
Heintzmann, R., Jovin, T. M. & Cremer, C. (2002). Saturated patterned excitation microscopy – a concept for optical resolution improvement. Optical Society of America. Journal A: Optics, Image Science, and Vision 19(8), 15991609.
Heisenberg, W. (1930). The Physical Principles of the Quantum Theory. Chicago: Chicago University Press.
Hell, S. (2009a). Far-field optical nanoscopy. In Single Molecule Spectroscopy in Chemistry (eds. Gräslund, A., Rigler, R. & Widengren, J.), pp. 365398. Berlin: Springer.
Hell, S. W. (2007). Verfahren und Fluoreszenzlichtmikroskop zum raeumlich hochaufloesenden Abbilden einer Struktur einer Probe German Patent, vol. DE 10 2006 021 317.
Hell, S. W. (1992). Double-scanning confocal microscope. European Patent 0491289, vol. 0491289.
Hell, S. W. (1994). Improvement of lateral resolution in far-field light microscopy using two-photon excitation with offset beams. Optics Communications 106, 1924.
Hell, S. W. (2003). Toward fluorescence nanoscopy. Nature Biotechnology 21(11), 13471355.
Hell, S. W. (2004). Strategy for far-field optical imaging and writing without diffraction limit. Physics Letters. Section A: General, Atomic and Solid State Physics 326(1–2), 140145.
Hell, S. W. (2007). Far-field optical nanoscopy. Science 316(5828), 11531158.
Hell, S. W. (2009b). Microscopy and its focal switch. Nature Methods 6(1), 2432.
Hell, S. W., Dyba, M. & Jakobs, S. (2004). Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology 14(5), 599609.
Hell, S. W., Jakobs, S. & Kastrup, L. (2003). Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A: Materials Science and Processing 77, 859860.
Hell, S. W. & Kroug, M. (1995). Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Applied Physics B: Lasers and Optics 60, 495497.
Hell, S. W., Lindek, S., Cremer, C. & Stelzer, E. H. K. (1994). Measurement of the 4Pi-confocal point spread function proves 75 nm resolution. Applied Physics Letters 64(11), 13351338.
Hell, S. W., Schmidt, R. & Egner, A. (2009). Diffraction-3unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics 3, 381387.
Hell, S. W. & Stelzer, E. H. K. (1992). Properties of a 4pi confocal fluorescence microscope. Optical Society of America. Journal A: Optics, Image Science, and Vision 9, 21592166.
Hell, S. W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated-emission – stimulated-emission-depletion fluorescence microscopy. Optics Letters 19(11), 780782.
Henriques, R., Lelek, M., Fornasiero, E. F., Valtorta, F., Zimmer, C. & Mhlanga, M. M. (2010). QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nature Methods 7(5), 339340.
Hernandez, I. C., d'Amora, M., Diaspro, A. & Vicidomini, G. (2014a). Influence of laser intensity noise on gated CW-STED microscopy Laser Physics Letters 11(9), 095603.
Hernandez, I. C., Peres, C., Zanacchi, F. C., d'Amora, M., Christodoulou, S., Bianchini, P., Diaspro, A. & Vicidomini, G. (2014b). A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy. J. Biophotonics 7, 376380.
Hess, S. T., Girirajan, T. P. K. & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal 91(11), 42584272.
Hess, S. T., Gould, T. J., Gudheti, M. V., Maas, S. A., Mills, K. D. & Zimmerberg, J. (2007). Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proceedings of the National Academy of Sciences of the United States of America 104(44), 1737017375.
Hoebe, R. A., Van Oven, C. H., Gadella, T. W. J., Dhonukshe, P. B., Van Noorden, C. J. F. & Manders, E. M. M. (2007). Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotech 25(2), 249253.
Hofmann, M. (2007). RESOLFT-Mikroskopie mit photoschaltbaren Proteinen. Germany: University of Heidelberg.
Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. (2005). Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America 102(49), 1756517569.
Holden, S. J., Uphoff, S. & Kapanidis, A. N. (2011). DAOSTORM: an algorithm for highdensity super-resolution microscopy. Nature Methods 8(4), 279280.
Honigmann, A., Eggeling, C., Schulze, M. & Lepert, A. (2012). Super-resolution STED microscopy advances with yellow CW OPSL. Laser Focus World 48(1), 7579.
Honigmann, A., Mueller, V., Fernando, U. P., Eggeling, C. & Sperling, J. (2013a). Simplifying STED microscopy of photostable red-emitting labels. Laser + Potonik 5, 4042.
Honigmann, A., Mueller, V., Hell, S. W. & Eggeling, C. (2013b). STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Discussion 161, 7789.
Honigmann, A., Mueller, V., Ta, H., Schoenle, A., Sezgin, E., Hell, S.W. & Eggeling, C. (2014). Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nature Communications 5:5412 doi: 10.1038/ncomms6412.
Hotta, J., Fron, E., Dedecker, P., Janssen, K. P. F., Li, C., Muellen, K., Harke, B., Bückers, J., Hell, S. W. & Hofkens, J. (2010). Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. Journal of the American Chemical Society 132(14), 50215023.
Hoyer, P., Staudt, T., Engelhardt, J. & Hell, S. W. (2010). Quantum dot blueing and blinking enables fluorescence nanoscopy. Nano Letters 11(1), 245250.
Hu, D. H., Tian, Z. Y., Wu, W. W., Wan, W. & Li, A. D. Q. (2008). Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. Journal of the American Chemical Society 130(46), 1527915281.
Huang, B. (2010). Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology 14, 1014.
Huang, B., Babcock, H. & Zhuang, X. (2010). Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 143, 10471058.
Huang, B., Bates, M. & Zhuang, X. (2009). Super-resolution fluorescence microscopy. Annual Reviews of Biochemistry 78, 9931016.
Huang, B., Wang, W. Q., Bates, M. & Zhuang, X. W. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810813.
Huang, F., Hartwich, T. M. P., Rivera-Molina, F. E., Lin, Y., Duim, W. C., Long, J. J., Uchil, P. D., Myers, J. R., Baird, M. A., Mothes, W., Davidson, M. W., Toomre, D. & Bewersdorf, J. (2013). Video-rate nanoscopy using sCMOSCMOSCMOSCMOS camera–specific single-molecule localization algorithms. Nature Methods 10(7), 653658.
Huang, F., Schwartz, S. L., Byars, J. M. & Lidke, K. A. (2011). Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomedical Optics Express 2(5), 13771393.
Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. (2002). A digital fluorescent molecular photoswitch. Nature 420(6917), 759760.
Irvine, S. E., Staudt, T., Rittweger, E., Engelhardt, J. & Hell, S. W. (2008). Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angewandte Chemie (international Edition) 47(14), 26852688.
Izeddin, I., El Beheiry, M., Andilla, J., Ciepielewski, D., Darzacq, X. & Dahan, M. (2012). PSF shaping using adaptive optics for threedimensional single-molecule super-resolution imaging and tracking. Optics Express 20(5), 49574967.
Izeddin, I., Specht, C. G., Lelek, M., Darzacq, X., Triller, A., Zimmer, C. & Dahan, M. (2011). Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PloS ONE 6, e15611.
Jacobson, K., Mouritsen, O. G. & Anderson, G. W. (2007). Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biology 9(1), 714.
Jelezko, F. & Wrachtrup, J. (2006). Single defect centres in diamond: a review. Physica Status Solidi. A: Applications and Materials Science (Print) 203, 32073225.
Jia, S., Vaughan, J. C. & Zhuang, X. (2014). Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat Photon 8(4), 302306.
Joly, E. (2004). Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state? BMC Cell Biology 5(5), 3.
Jones, S. A., Shim, S.-H., He, J. & Zhuang, X. (2011). Fast, three-dimensional super-resolution imaging of live cells. Nature Methods 8(6), 499505.
Juette, M. F., Gould, T. J., Lessard, M. D., Mlodzianoski, M. J., Nagpure, B. S., Bennett, B. T., Hess, S. T. & Bewersdorf, J. (2008). Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nature Methods 5(6), 527529.
Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Faraday Discussions 9, 1419.
Kask, P., Palo, K., Ullmann, D. & Gall, K. (1999). Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proceedings of the National Academy of Sciences of the United States of America 96, 1375613761.
Kasper, R., Harke, B., Forthmann, C., Tinnefeld, P., Hell, S. W. & Sauer, M. (2010). Single-molecule STED microscopy with photostable organic fluorophores. Small 6(13), 13791384.
Kastrup, L., Blom, H., Eggeling, C. & Hell, S. W. (2005). Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Physical Review Letters 94, 178104.
Kastrup, L., Wildanger, D., Rankin, B. & Hell, S. W. (2010). STED microscopy with compact light sources. In Nanoscopy and Multidimensional Optical Fluorescence Microscopy (ed. Diaspro, A.), pp. 113. Boca Raton: Chapman & Hall/CRC.
Keller, J. (2006). Optimal de-excitation patterns for RESOLFT-Microscopy. PhD thesis, University of Heidelberg, Germany.
Kellner, R., Baier, J., Willig, K. I., Hell, S. W. & Barrantes, F. J. (2007). Nanoscale organization of nicotinic acetylcholine receptors revealed by STED microscopy. Neuroscience 144(1), 135143.
Kirsch, A., Meyer, C. & Jovin, T. M. (1996 ). Integrating of optical techniques in scanning probe microscopes; the scanning near-field optical microscope (SNOM). In Analytical Use of Fluorescenct Probes in Oncology (eds. Kohen, E. & Hirschberg, J. G.), pp. 317323. New York: Plenum Press.
Kittel, R. J., Wichmann, C., Rasse, T. M., Fouquet, W., Schmidt, M., Schmid, A., Wagh, D. A., Pawlu, C., Kellner, R. R., Willig, K. I., Hell, S. W., Buchner, E., Heckmann, M. & Sigrist, S. J. (2006). Bruchpilot promotes active zone assembly, ca2+ channel clustering, and vesicle release. Science 312, 10511054.
Klar, T. A. & Hell, S. W. (1999). Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters 24(14), 954956.
Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America 97, 82068210.
Klein, T., Loeschberger, A., Proppert, S., Wolter, S., Van De Linde, S. & Sauer, M. (2011). Live-cell dSTORM with SNAP-tag fusion proteins. Nature Methods 8(1), 79.
Kolmakov, K., Belov, V. N., Bierwagen, J., Ringemann, C., Mueller, V., Eggeling, C. & Hell, S. W. (2010a). Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chemistry – A European Journal 16(1), 158166.
Kolmakov, K., Belov, V. N., Wurm, C. A., Harke, B., Leutenegger, M., Eggeling, C. & Hell, S. W. (2010b). A versatile route to red-emitting carbopyronine dyes for optical microscopy and nanoscopy. European Journal of Organic Chemistry 2010(19), 35933610.
Kolmakov, K., Wurm, C. A., Hennig, R., Rapp, E., Jakobs, S., Belov, V. N. & Hell, S. W. (2012). Red-emitting rhodamines with hydroxylated, sulfonated, and phosphorylated dye residues and their use in fluorescence nanoscopy. Chemistry – A European Journal 18(41), 1298612998.
Koopman, M., Cambi, A., De Bakker, B. I., Josten, B., Figdor, C. G., Van Hulst, N. F. & Garcia-Parajo, M. F. (2004). Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS Letters 573, 610.
Krueger, A. (2008). New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry – A European Journal 14, 13821390.
Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S., Kondo, J. & Fujiwara, T. (2005). Paradigm shift of the plasmamembrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annual Review of Biophysics and Bioengineering 34, 351378.
Lagerholm, B. C., Averett, L., Weinreb, G. E., Jacobson, K. & Thompson, N. L. (2006). Analysis method for measuring submicroscopic distances with blinking quantum dots. Biophysical Journal 91, 30503060.
Larson, D. R. (2010). The economy of photons. Nature Methods 7(5), 357359.
Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T. & Moerner, W. E. (2012). STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophysical Journal 102, 29262935.
Laurence, T. A. & Chromy, B. A. (2010). Efficient maximum likelihood estimator fitting of histograms. Nature Methods 5(7), 338339.
Lauterbach, M. A., Keller, J., Schönle, A., Kamin, D., Westphal, V., Rizzoli, S. O. & Hell, S. W. (2010a). Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. Journal of Biophotonics 3(7), 417424.
Lauterbach, M. A., Ullal, C. K., Westphal, V. & Hell, S. (2010b). Dynamic imaging of colloidal-crystal nanostructures at 200 frames per second. Langmuir 26(18), 1440014404.
Lee, H.-L. D., Sahl, S. J., Lew, M. D. & Moerner, W. E. (2012). The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Applied Physics Letters 100(15), 153701.
Lee, M. K., Rai, P., Williams, J., Twieg, R. J. & Moerner, W. E. (2014). Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. Journal of the American Chemical Society 136(40), 1400314006.
Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Reymann, J., Muller, P., Hausmann, M. & Cremer, C. (2008). Spdm: light microscopy with single-molecule resolution at the nanoscale. Applied Physics B: Lasers and Optics 93, 112.
Lemmer, P., Gunkel, M., Weiland, Y., Mueller, P., Baddeley, D., Kaufmann, R., Urich, A., Eipel, H., Amberger, R., Hausmann, M. & Cremer, C. (2009). Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. Journal of Microscopy 235(2), 163171.
Leutenegger, M., Eggeling, C. & Hell, S. W. (2010). Analytical description of STED microscopy performance. Optics Express 18(25), 26417.
Leutenegger, M., Goesch, M., Perentes, A., Hoffmann, P., Martin, O. J. F. & Lasser, T. (2006). Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. Optics Express 14(2), 956969.
Leutenegger, M., Ringemann, C., Lasser, T., Hell, S. W. & Eggeling, C. (2012). Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Optics Express 20(5), 52435263.
Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G. & Webb, W. W. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682686.
Lew, M. D., Backlund, M. P. & Moerner, W. E. (2013). Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. Nano Letters 13(9), 39673972.
Lew, M. D. & Moerner, W. E. (2014). Azimuthal polarization filtering for accurate, precise, and robust single-molecule localization microscopy. Nano Letters 14(11), 64076413.
Lewis, A., Isaacson, M., Harootunian, A. & Murray, A. (1984). Development of a 500 a resolution light microscope. Ultramicroscopy 13, 227231.
Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. (2009a). Achieving l/20 resolution by one-color initiation and deactivation of polymerization. Science 324(5929), 910913.
Li, Q., Wu, S. S. H. & Chou, K. C. (2009b). Subdiffraction-limit two-photon fluorescence microscopy for GFP-Tagged cell imaging. Biophysical Journal 97(12), 32243228.
Lidke, K. A., Rieger, B., Jovin, T. M. & Heintzmann, R. (2005). Superresolution by localization of quantum dots using blinking statistics. Optics Express 13(18), 70527062.
Lieto, A. M., Cush, R. C. & Thompson, N. L. (2003). Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophysical Journal 85, 32943302.
Lingwood, D. & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science 327, 4650.
Lippincott-Schwartz, J. & Manley, S. (2009). Putting super-resolution fluorescence microscopy to work. Nature Methods 6(1), 2123.
Liu, Z. W., Lee, H., Xiong, Y., Sun, C. & Zhang, X. (2007). Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 16861686.
Lommerse, P. H. M., Spaink, H. P. & Schmidt, T. (2004). In vivo plasma membrane organization: results of biophysical approaches. Biochimica et Biophysica Acta 1664, 119131.
Lord, S. J., Lee, H.-L. D. & Moerner, W. E. (2010). Single-molecule spectroscopy and imaging of biomolecules in living cells. Analytical Chemistry 82(6), 21922203.
Lukinavicius, G. & Johnsson, K. (2011). Switchable fluorophores for protein labeling in living cells. Current Opinion in Chemical Biology 15(6), 768774.
Lukinavicius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., Mueller, V., Reymond, L., Correa, I. R., Luo, Z.-G., Schultz, C., Lemke, E. A., Heppenstall, P., Eggeling, C. & Johnsson, K. (2013). A near-infrared fluorophore for live-cell superresolution microscopy of cellular proteins. Nature Chemistry 5, 132139.
Lukinavicius, G., Reymond, L., D'Este, E., Masharina, A., Göttfert, F., Ta, H., Güther, A., Fournier, M., Rizzo, S., Waldmann, H., Blaukopf, C., Sommer, C., Gerlich, D.W., Arndt, H., Hell, S.W. & Johnsson, K. (2014). Fluorogenic probes for live-cell imaging of the cytoskeleton Nature Methods 11(7), 731733.
Lukosz, W. (1966). Optical systems with resolving powers exceeding the classical limit. Journal of the Optical Society of America 56, 14631471.
Lukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Markelov, M. L., Zaraisky, A. G., Zhao, X. N., Fang, Y., Tan, W. Y. & Lukyanov, S. A. (2000). Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. Journal of Biological Chemistry 275(34), 2587925882.
Magde, D., Webb, W. W. & Elson, E. (1972). Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Physical Review Letters 29(11), 705708.
Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E. & Lippincott-Schwartz, J. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5(2), 155157.
Manzo, C., Van Zanten, T. S. & Garcia-Parajo, M. F. (2011). Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes. Biophysical Journal 100, L08L10.
Maurer, P. C., Maze, J., Stanwix, P. L., Jiang, L., Gorshkov, A. V., Zibrov, A. A., Harke, B., Hodges, J. S., Zibrov, A. S., Yacoby, A., Twitchen, D., Hell, S. W., Walsworth, R. L. & Lukin, M. D. (2010). Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Physics 6, 912918.
Maze, J. R., Stanwix, P. L., Hodges, J. S., Hong, S., Taylor, J. M., Cappellaro, P., Jiang, L., Dutt, M. V. G., Togan, E., Zibrov, A. S., Yacoby, A., Walsworth, R. L. & Lukin, M. D. (2008). Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644647.
Mccabe, E. M., Fewer, D. T., Ottewill, A. C., Hewlett, S. J. & Hegarty, J. (1996). Direct-view microscopy: optical sectioning strength for finite-sized, multiple-pinhole arrays. Journal of Microscopy 184(2), 95105.
Mei, E. & Hochstrasser, R. M. (2006). High-resolution optical imaging from trajectory time distributions. Journal of Physical Chemistry B 110, 2510125107.
Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S. O., Donnert, G. & Hell, S. W. (2008). Dual-color sted microscopy at 30-nm focal-plane resolution. Small 4(8), 10951100.
Minsky, M. (1961). Microscopy apparatus US Patent.
Mitronova, G. Y., Belov, V. N., Bossi, M. L., Wurm, C. A., Meyer, L., Medda, R., Moneron, G., Bretschneider, S., Eggeling, C., Jakobs, S. & Hell, S. W. (2010). New fluorinated rhodamines for optical microscopy and nanoscopy. Chemistry A European Journal 16(15), 44774488.
Mlodzianoski, M. J., Juette, M. F., Beane, G. L. & Bewersdorf, J. (2009). Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Optics Express 17(10), 82648277.
Moerner, W. E. (2006). Single-molecule mountains yield nanoscale cell images. Nature Methods 3(10), 781782.
Moerner, W. E. (2007). New directions in single-molecule imaging and analysis. Proceedings of the National Academy of Sciences of the United States of America 104(31), 1259612602.
Moerner, W. E. & Kador, L. (1989). Optical-detection and spectroscopy of single molecules in a solid. Physical Review Letters 62(21), 25352538.
Moertelmaier, M., Brameshuber, M., Linimeier, M., Schutz, G. J. & Stockinger, H. (2005). Thinning out clusters while conserving stoichiometry of labeling. Applied Physics Letters 87, 263903.
Moffitt, J. R., Osseforth, C. & Michaelis, J. (2011). Time-gating improves the spatial resolution of STED microscopy. Optics Express 19(5), 42424254.
Moneron, G. & Hell, S. (2009). Two-photon excitation STED microscopy. Optics Express 17(17), 1456714573.
Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V. & Hell, S. W. (2010). Fast STED microscopy with continuous wave fiber lasers. Optics Express 18(2), 13021309.
Morozova, K. S., Piatkevich, K. D., Gould, T. J., Zhang, J., Bewersdorf, J. & Verkhusha, V. V. (2010). Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophysical Journal 99, L13L15.
Mortensen, K. I., Churchman, S. L., Spudich, J. A. & Flyvbjerg, H. (2010). Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nature Methods 7(5), 377381.
Mueller, V. (2012). Nanoscale studies of membrane dynamics via STED – Fluorescence Correlation Spectroscopy, University Heidelberg.
Mueller, V., Eggeling, C., Karlsson, H. & Von Gegerfelt, D. (2012). CW DPSS lasers make STED microscopy more practical. Biophotonics 19(5), 3032.
Mueller, V., Honigmann, A., Ringemann, C., Medda, R., Schwarzmann, G. & Eggeling, C. (2013). FCS in STED microscopy: studying the nanoscale of lipid membrane dynamics. In Methods in Enzymology, vol. 591 (ed. Tetin, S. Y.), pp. 138. Burlington: Academic Press: Elsevier.
Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R., Leutenegger, M., Polyakova, S., Belov, V. N., Hell, S. W. & Eggeling, C. (2011). STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophysical Journal 101, 16511660.
Muller, C. B. & Enderlein, J. (2010). Image scanning microscopy. Physical Review Letters 104(19), 198101.
Muller, T., Schumann, C. & Kraegeloh, A. (2012). STED microscopy and its applications: new insights into cellular processes on the nanoscale. ChemPhysChem 13(8), 19862000.
Munro, S. (2003). Lipid rafts: elusive or illusive? Cell 115, 377388.
Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W. & Bonhoeffer, T. (2008). Live-cell imaging of dendritic spines by STED microscopy. Proceedings of the National Academy of Sciences of the United States of America 105, 1898218987.
Neumann, D., Bückers, J., Kastrup, L., Hell, S. & Jakobs, S. (2010). Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophysics 5(3), 14.
Nieuwenhuizen, R. P. J., Lidke, K. A., Bates, M., Leyton Puig, D., Grünwald, D., Stallinga, S. & Rieger, B. (2013). Measuring image resolution in optical nanoscopy. Nature Methods 10, 557562.
Novotny, L. & Hecht, B. (2006). Principles of Nano-optics. Cambridge: Cambridge University Press.
Ondrus, A. E., Lee, H.-LU D., Iwanaga, S., Parsons, W. H., Andresen, B. M., Moerner, W. E. & Du Bois, J. (2012). Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. Chemistry and Biology 19(7), 902912.
Opazo, F., Levy, M., Byrom, M., Schaefer, C., Geisler, C., Groemer, T. W., Ellington, A. D. & Rizzoli, S. O. (2012). Aptamers as potential tools for super-resolution microscopy. Nature Methods 9, 938939.
Opazo, F., Punge, A., Bückers, J., Hoopmann, P., Kastrup, L., Hell, S. W. & Rizzoli, S. O. (2010). Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic: the International Journal of Intracellular Transport 11(6), 800812.
Orrit, M. & Bernard, J. (1990). Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Physical Review Letters 65, 27162719.
Osseforth, C., Moffitt, J. R., Schermelleh, L. & Michaelis, J. (2013). Simultaneous dual-color 3D STED microscopy. Optics Express 22(6), 70287039.
Patterson, G., Davidson, M., Manley, S. & Lippincott-Schwartz, J. (2010). Superresolution imaging using single-molecule localization. Annual Review of Physical Chemistry 61, 345367.
Patterson, G. H. & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588), 18731877.
Pavani, S. R. P., Thompson, M. A., Biteen, J. S., Lord, S. J., Liu, N., Twieg, R. J., Piestun, R. & Moerner, W. E. (2009). Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proceedings of the National Academy of Sciences of the United States of America 106(9), 29952999.
Pawley, J. B. (2006). Handbook of Biological Confocal Microscopy, 2nd edn. New York: Springer.
Pellett, P. A., Sun, X., Gould, T. J., Rothman, J. E., Xu, M.-Q., Correa, J. R., , I. R. & Bewersdorf, J. (2011). Two-color STED microscopy in living cells. Biomedical Optics Express 2(8), 23642371.
Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters 85(18), 39663969.
Persson, F., Bingen, P., Staudt, T., Engelhardt, J., Tegenfeldt, J. O. & Hell, S. W. (2011). Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED). Angewandte Chemie International Edition 50(24), 55815583.
Pertsinidis, A., Zhang, Y. & Chu, S. (2010). Subnanometre single-molecule localization, registration and distance measurements. Nature 466(7306), 647651.
Petersen, N. O., Hoddelius, P. L., Wiseman, P. W., Seger, O. & Magnusson, K.-E. (1986). Quantification of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophysical Journal 65, 11351146.
Pike, L. J. (2006). Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. Journal of Lipid Research 47, 15971598.
Podolskiy, V. A. & Narimanov, E. E. (2005). Near-sighted superlens. Optics Letters 30, 7577.
Pohl, D. W., Denk, W. & Lanz, M. (1984). Optical stethoscopy – image recording with resolution lambda/20. Applied Physics Letters 44, 651653.
Qu, X. H., Wu, D., Mets, L. & Scherer, N. F. (2004). Nanometer-localized multiple single-molecule fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America 101(31), 1129811303.
Rankin, B. R. & Hell, S. W. (2009). STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Optics Express 17(18), 1567915684.
Rankin, B. R., Kellner, R. R. & Hell, S. W. (2008). Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Optics Letters 33(21), 24912493.
Rankin, B. R., Moneron, G., Wurm, C. A., Nelson, J. C., Walter, A., Schwarzer, D., Schroeder, J., Colon-Ramos, D. A. & Hell, S. W. (2011). Nanoscopy in a living multicellular organism expressing GFP. Biophysical Journal 100, L63L65.
Rasnik, I., Mckinney, S. A. & Ha, T. (2006). Nonblinking and longlasting single-molecule fluorescence imaging. Nature Methods 3(11), 891893.
Rego, E. H., Shao, L., Macklin, J. J., Winoto, L., Johansson, G. A., Kamps-Hughes, N., Davidson, M. W. & Gustafsson, M. G. L. (2012). Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proceedings of the National Academy of Sciences of the United States of America 109(3), E135E143.
Reisinger, E., Bresee, C., Neef, J., Nair, R., Reuter, K., Bulankina, A., Nouvian, R., Koch, M., Bückers, J., Kastrup, L., Roux, I., Petit, C., Hell, S. W., Brose, N., Rhee, J., Kügler, S., Brigande, J. V. & Moser, T. (2011). Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. Journal of Neuroscience 31(13), 48864895.
Reuss, M., Engelhardt, J. & Hell, S. (2010). Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Optics Express 18(2), 10491058.
Reuther, A., Laubereau, A. & Nikogosyan, D. N. (1996). Primary photochemical processes in water. Journal of Physical Chemistry 100, 1679416800.
Rice, J. H. (2007). Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution. Molecular BioSystems 3(11), 781793.
Ringemann, C., Harke, B., Middendorff, C. V., Medda, R., Honigmann, A., Wagner, R., Leutenegger, M., Schoenle, A., Hell, S. & Eggeling, C. (2009). Exploring single-molecule dynamics with fluorescence nanoscopy. New Journal of Physics 11, 103054.
Ringemann, C., Schönle, A., Giske, A., Von Middendorff, C., Hell, S. W. & Eggeling, C. (2008). Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy. ChemPhysChem 9(9), 612624.
Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. (2009a). Sted microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics 3, 144147.
Rittweger, E., Wildanger, D. & Hell, S. W. (2009b). Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhysics Letters 86(14001), 14001.
Roeffaers, M. B. J., De Cremer, G., Libeert, J., Ameloot, R., Dedecker, P., Bons, A.-J., Buckins, M., Martens, J. A., Sels, B. F., De Vos, D. E. & Hofkens, J. (2009). Super-Resolution Reactivity Mapping of Nanostructured Catalyst Particles 48, 92859289.
Ruprecht, V., Wieser, S., Marguet, D. & Schuetz, G. J. (2011). Spot variation fluorescence correlation spectroscopy allows for superresolution chronoscopy of confinement times in membranes. Biophysics Journal 100, 28392845.
Rust, M. J., Bates, M. & Zhuang, X. W. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793795.
Sahl, S. J., Leutenegger, M., Hell, S. W. & Eggeling, C. (2014). High-resolution tracking of single-molecule diffusion in membranes by confocalized and spatially differentiated fluorescence photon stream recording. ChemPhysChem 15(4), 771783.
Sahl, S. J., Leutenegger, M., Hilbert, M., Hell, S. W. & Eggeling, C. (2010). Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proceedings of the National Academy of Sciences of the United States of America 107(15), 68296834.
Sahl, S. J. & Moerner, W. E. (2013). Super-resolution fluorescence imaging with single molecules. Current Opinion in Structural Biology 23(5), 778787.
Sahl, S. J., Weiss, L. E., Duim, W. C., Frydman, J. & Moerner, W. E. (2012). Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species. Scientific Reports 2, 895.
Sakata, T., Yan, Y. & Marriot, G. (2005). Family of site-selective molecular optical switches. Journal of Organic Chemistry 70, 20092013.
Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., Leonhardt, H. & Sedat, J. W. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881), 13321336.
Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A. & Hell, S. W. (2008). Spherical nanosized focal spot unravels the interior of cells. Nature Methods 5(6), 539544.
Schmidt, R., Wurm, C. A., Punge, A., Egner, A., Jakobs, S. & Hell, S. W. (2009). Mitochondrial cristae revealed with focused light. Nano Letters 9(6), 25082510.
Schoenle, A. & Hell, S. W. (2007). Fluorescence nanoscopy goes multicolor. Nature Biotechnology 25(11), 12341235.
Schönle, A., Hanninen, P. E. & Hell, S. W. (1999). Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Annalen der Physik 8(2), 115133.
Schrader, M., Meinecke, F., Bahlmann, K., Kroug, M., Cremer, C., Soini, E. & Hell, S. W. (1995). Monitoring the excited state of a dye in a microscope by stimulated emission. Bioimaging 3, 147153.
Schröder, J., Benink, H., Dyba, M. & Los, G. V. (2008). In vivo labeling method using a genetic construct for nanoscale resolution microscopy. Biophysical Journal 96(1), L1L3.
Schrof, S., Staudt, T., Rittweger, E., Wittenmayer, N., Dresbach, T., Engelhardt, J. & Hell, S. W. (2011). STED nanoscopy with mass-produced laser diodes. Optics Express 19(9), 80668072.
Schutz, G. J., Schindler, H. & Schmidt, T. (1997). Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophysical Journal 73, 10731080.
Schwentker, M. A. (2007). Parallelized Ground State Depletion. Germany: University of Heidelberg.
Schwentker, M. A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C. & Hell, S. W. (2007). Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70(3), 269280.
Schwering, M., Kiel, A., Kurz, A., Lymperopoulos, K., Sprodefeld, A., Kramer, R. H. & Herten, D. P. (2011). Far-field nanoscopy with reversible chemical reactions. Angewandte Chemie (international Edition) 50, 29402945.
Schwille, P., Korlach, J. & Webb, W. W. (1999). Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176182.
Scott, T. F., Kowalski, B. A., Sullivan, A. C., Bowman, C. N. & Mcleod, R. R. (2009). Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324(5929), 913917.
Sergeev, M., Costantino, S. & Wiseman, P. W. (2006). Measurement of monomer-oligomer distributions via fluorescence moment image analysis. Biophysical Journal 91, 38843896.
Sezgin, E., Levental, I., Grzybek, M., Schwarzmann, G., Mueller, V., Honigmann, A., Belov, V. N., Eggeling, C., Coskun, Ü., Simons, K. & Schwille, P. (2012). Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochimica et Biophysica Acta (BBA) – Biomembranes 1818, 17771784.
Sharonov, A. & Hochstrasser, R. M. (2006). Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences of the United States of America 103(50), 1891118916.
Shaw, A. S. (2006). Lipid rafts: now you see them, now you don't. Nature Immunology 7(11), 11391142.
Shechtman, Y., Sahl, S. J., Backer, A. S. & Moerner, W. E. (2014). Optimal point spread function design for 3D imaging. Physical Review Letters 113(13), 133902.
Sheetz, M. P., Turney, S., Qian, H. & Elson, E. L. (1989). Nanometer-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340, 284288.
Sheppard, C. J. R. & Kompfner, R. (1978). Resonant scanning optical microscope. Applied Optics 17, 28792882.
Shera, E. B., Seitzinger, N. K., Davis, L. M., Keller, R. A. & Soper, S. A. (1990). Detection of single fluorescent molecules. Chemical Physics Letters 174(6), 553557.
Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods 5(5), 417423.
Shroff, H., Galbraith, C. G., Galbraith, J. A., White, H., Gillette, J., Olenych, S., Davidson, M. W. & Betzig, E. (2007). Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences of the United States of America 104(51), 2030820313.
Shtengel, G., Galbraith, J. A., Galbraith, C. G., Lippincott-Schwartz, J., Gillette, J. M., Manley, S., Sougrat, R., Waterman, C. M., Kanchanawong, P., Davidson, M. W., Fetter, R. D. & Hess, H. F. (2009). Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proceedings of the National Academy of Sciences of the United States of America 106(9), 31253130.
Sieber, J. J., Willig, K. I., Heintzmann, R., Hell, S. W. & Lang, T. (2006). The snare motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophysical Journal 90, 28432851.
Sieber, J. J., Willig, K. I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G., Rammner, B., Eggeling, C., Hell, S. W., Grubmuller, H. & Lang, T. (2007). Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 10721076.
Simons, K. & Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569572.
Small, A. R. (2009). Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. Biophysical Journal 96(2), L16L18.
Smith, B. R., Inglis, D. W., Sandnes, B., Rabeau, J. R., Zvyagin, A. V., Gruber, D., Noble, C. J., Vogel, R., Osawa, E. & Plakhotnik, T. (2009). Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5(14), 16491653.
Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. (2010). Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nature Methods 7(5), 373375.
Smolyaninov, II, Hung, Y. J. & Davis, C. C. (2007). Magnifying superlens in the visible frequency range. Science 315(5819), 16991701.
Staudt, T., Engler, A., Rittweger, E., Harke, B., Engelhardt, J. & Hell, S. W. (2011). Far-field optical nanoscopy with reduced number of state transition cycles. Optics Express 19(6), 56445657.
Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. (2008). Superresolution microscopy on the basis of engineered dark states. Journal of the American Chemical Society 130, 1684016841.
Stiel, A. C., Andresen, M., Bock, H., Hilbert, M., Schilde, J., Schönle, A., Eggeling, C., Egner, A., Hell, S. W. & Jakobs, S. (2008). Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophysical Journal 95, 29892997.
Stiel, A. C., Trowitzsch, S., Weber, G., Andresen, M., Eggeling, C., Hell, S. W., Jakobs, S. & Wahl, M. C. (2007). 1·8 angstrom bright-state structure of the reversibly switchable fluorescent protein dronpa guides the generation of fast switching variants. Biochemical Journal 402(1), 3542.
Synge, E. H. (1928). A suggested method for extending microscopic resolution into the ultra-microscopic region. Philosophical Magazine 6, 356362.
Takasaki, K. T., Ding, J. B. & Sabatini, B. L. (2013). Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophysical Journal 104, 770777.
Tanaka, K. A. K., Suzuki, K. G. N., Shirai, Y. M., Shibutani, S. T., Miyahara, M. S. H., Tsuboi, H., Yahara, M., Yoshimura, A., Mayor, S., Fujiwara, T.K., Kusumi, A. (2010). Membrane molecules mobile even after chemical fixation. Nature Methods 7(11), 865866.
Tonnesen, J., Katona, G., Rozsa, B. & Nägerl, U.V. (2014). Spine neck plasticity regulates compartmentalization of synapses Nature Neuroscience 17(5):678685.
Testa, I., Schönle, A., Middendorff, C. V., Geisler, C., Medda, R., Wurm, C. A., Stiel, A. C., Jakobs, S., Bossi, M., Eggeling, C., Hell, S. W. & Egner, A. (2008). Nanoscale separation of molecular species based on their rotational mobility. Optics Express 16(25), 2109321104.
Testa, I., Urban, N. T., Jakobs, S., Eggeling, C., Willig, K. I. & Hell, S. W. (2012). Nanoscopy of living brain slices with low light levels. Neuron 75, 9921000.
Testa, I., Wurm, C. A., Medda, R., Rothermel, E. V., Middendorff, C., Fölling, J., Jakobs, S., Hell, S. W. & Eggeling, C. (2010). Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophysical Journal 99(8), 26862694.
Thompson, R. E., Larson, D. R. & Webb, W. W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82, 27752783.
Tinnefeld, P., Eggeling, C., Hell, S.W. (2015). (Eds.) Far-Field Optical Nanoscopy, Springer Series on Fluorescence, Vol. 14. Springer (Berlin & Heidelberg, Germany).
Tonnesen, J., Nadrigny, F., Willig, K. I., Wedlich-Soldner, R. & Nägerl, U. V. (2011). Two-color STED microscopy of living synapses using a single laser-beam pair. Biophysical Journal 101, 25452552.
Toraldo Di Francia, G. (1952). Super-gain antennas and optical resolving power. Il Nuovo Cimento 9, 426435.
Tsien, R. Y., Ernst, L. & Waggoner, A. (2006). Fluorophores for confocal microscopy: photophysics and photochemistry. In Handbook of Biological Confocal Microscopy (ed. Pawley, J. B.), pp. 338352. New York: Springer.
Tzeng, Y. K., Faklaris, O., Chang, B. M., Kuo, Y. M., Hsu, J. H. & Chang, H. C. (2011). Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angewandte Chemie International Edition 50, 22622265.
Ullal, C. K., Primpke, S., Schmidt, R., Böhm, U., Egner, A., Vana, P. & Hell, S. W. (2011). Flexible microdomain specific staining of block copolymers for 3D optical nanoscopy. Macromolecules 44(19), 75087510.
Ullal, C. K., Schmidt, R., Hell, S. W. & Egner, A. (2009). Block copolymer nanostructures mapped by far-field optics. Nano Letters 9(6), 24972500.
Urban, N. T., Willig, K. I., Hell, S. W. & Nägerl, U. V. (2011). STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophysical Journal 101(5), 12771284.
Van De Linde, S., Endesfelder, U., Mukherjee, A., Schuttpelz, M., Wiebusch, G., Wolter, S., Heilemann, M. & Sauer, M. (2009). Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochemistry and Photobiology 8, 465469.
Van De Linde, S., Kasper, R., Heilemann, M. & Sauer, M. (2008). Photoswitching microscopy with standard fluorophores. Applied Physics B: Lasers and Optics 93(4), 725731.
Van Zanten, T. S., Gomez, J., Manzo, C., Cambi, A., Bucet, J., Reigad, R. & Garcia-Parajo, M. F. (2010). Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proceedings of the National Academy of Sciences of the United States of America 107(35), 1543715442.
Vicidomini, G., Moneron, G., Eggeling, C., Rittweger, E. & Hell, S. W. (2012). STED with wavelengths closer to the emission maximum. Optics Express 20(5), 52255236.
Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, H., Eggeling, C. & Hell, S. W. (2011). Sharper low-power STED nanoscopy by time gating. Nature Methods 8(7), 571573.
Vicidomini, G., Schoenle, A., Ta, H., Han, K. Y., Moneron, G., Eggeling, C. & Hell, S. W. (2013). STED nanoscopy with time-gated detection: theoretical and experimental aspects. PloS ONE 8(1), e54421.
Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M. & Tinnefeld, P. (2008). A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angewandte Chemie (international Edition) 47(29), 54655469.
Vukojevic, V., Heidkamp, M., Minga, Y., Johansson, B., Tereniusa, L. & Rigler, R. (2008). Quantitative single-molecule imaging by confocal laser scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 105(47), 1817618181.
Wagner, E., Lauterbach, M., Kohl, T., Westphal, V., Williams, G. S. B., Steinbrecher, J. H., Streich, J. H., Korff, B., Tuan, H.-T. M., Hagen, B., Luther, S., Hasenfuss, G., Parlitz, U., Jafri, M. S., Hell, S. W., Lederer, W. J. & Lehnart, S. E. (2012). STED live cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circulation Research 111, 402414.
Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. (2005). Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophysical Journal 89, 40294042.
Webb, W. W., Wells, K. S., Sandison, D. R. & Strickler, J. (1990). Criteria for quantitative dynamical confocal fluorescence imaging. In Optical Microscopy for Biology (eds. Herman, B. & Jacobson, K.), pp. 73108. New York: Wiley.
Weil, T., Parton, R., Herpers, B., Soetaert, J., Xanthakis, D., Dobbie, I., Halstead, J., Hayashi, R., Rabouille, C. & Davis, I. (2012). Drosophila patterning is established by differential association of mRNAs with P bodies. Nature Cell Biology 14, 13051313.
Weiss, S. (1999). Fluorescence spectroscopy of single biomolecules. Science 283, 16761683.
Weiss, S. (2000). Shattering the diffraction limit of light: a revolution in fluorescence microscopy? Proceedings of the National Academy of Sciences of the United States of America 97(16), 87478749.
Wenger, J., Conchonaud, F., Dintinger, J., Wawrezinieck, L., Ebbesen, T. W., Rigneault, H., Marguet, D. & Lenne, P. F. (2007). Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophysical Journal 92(3), 913919.
Westphal, V., Blanca, C. M., Dyba, M., Kastrup, L. & Hell, S. W. (2003). Laser-diode-stimulated emission depletion microscopy. Applied Physics Letters 82(18), 31253127.
Westphal, V. & Hell, S. W. (2005). Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters 94, 143903.
Westphal, V., Lauterbach, M. A., Di Nicola, A. & Hell, S. W. (2007). Dynamic far-field fluorescence nanoscopy. New Journal of Physics 9, 435.
Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R. & Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246249.
Widengren, J., Chmyrov, A., Eggeling, C., Lofdahl, P. A. & Seidel, C. A. M. (2007). Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory 111, 429440.
Widengren, J. & Rigler, R. (1996). Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging 4(3), 149156.
Widengren, J. & Schwille, P. (2000). Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy. Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory 104, 64166428.
Wiesbauer, M., Wollhofen, R., Vasic, B., Schilcher, K., Jacak, J. & Klar, T. A. (2013). Nano-anchors with single protein capacity produced with STED lithography. Nano Letters 13(11), 56725678.
Wildanger, D., Bückers, J., Westphal, V., Hell, S. W. & Kastrup, L. (2009a). A STED microscope aligned by design. Optics Express 17(18), 1610016110.
Wildanger, D., Maze, J. & Hell, S. W. (2011). Diffraction unlimited all-optical recording of electron spin resonances. Physical Review Letters 107, 017601.
Wildanger, D., Medda, R., Kastrup, L. & Hell, S. W. (2009b). A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy 236, 3543.
Wildanger, D., Patton, B.R., Schill, H., Marseglia, L., Hadden, J.P., Knauer, S., Schönle, A., Rarity, J.G., O'Brien, J.L., Hell, S.W. & Smith, J.M. (2012). Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Advanced Optical Materials 24(44), 309313.
Wildanger, D., Rittweger, E., Kastrup, L. & Hell, S. W. (2008). STED microscopy with a supercontinuum laser source. Optics Express 16(13), 96149621.
Willig, K. I., Harke, B., Medda, R. & Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods 4(11), 915918.
Willig, K. I., Keller, J., Bossi, M. & Hell, S. W. (2006a). STED microscopy resolves nanoparticle assemblies. New Journal of Physics 8, 106.
Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S. & Hell, S. W. (2006b). Nanoscale resolution in GFP-based microscopy. Nature Methods 3(9), 721723.
Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. (2006c). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086), 935939.
Willig, K. I., Stiel, A. C., Brakemann, T., Jakobs, S. & Hell, S. W. (2011). Dual-label STED nanoscopy of living cells using photochromism. Nano Letters 11(9), 39703973.
Wilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M. & Rossjohn, J. (2005). Variations on the GFP chromophore. Journal of Biological Chemistry 280(4), 24012404.
Wilmes, S., Staufenbiel, M., LIßE, D., Richter, C. P., Beutel, O., Busch, K., Hess, S. T. & Piehler, J. (2012). Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. Angewandte Chemie (international Edition) 51(20), 48684871.
Wilson, T. & Sheppard, C. J. R. (1984). Theory and Practice of Scanning Optical Microscopy. New York: Academic Press.
Wollhofen, R., Katzmann, J., Hrelescu, C., Jacak, J. & Klar, T. A. (2013). 120 nm resolution and 55 nm structure size in STED-lithography. Optics Express 21(9), 1083110840.
Wolter, S., Schuttpelz, M., Tscherepanow, M., Van De Linde, S., Heilemann, M. & Sauer, M. (2010). Real-time computation of subdiffraction-resolution fluorescence images. Journal of Microscopy 237(1), 1222.
Wombacher, R., Heidbreder, M., Van De Linde, S., Sheetz, M. P., Heilemann, M., Cornish, V. W. & Sauer, M. (2010). Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7, 717719. doi: 10.1038/nmeth.1489.
Wu, Y., Wawrzusin, P., Senseney, J., Fischer, R.S., Christensen, R., Santella, A., York, A.G., Winter, P.W., Waterman, C.M., Bao, Z., Colón-Ramos, D.A., McAuliffe, M. & Shroff, H. (2013). Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy Nature Biotechnology, 31(11), 10321038.
Wurm, C.A., Neumann, D., Schmidt, R., Egner, A., Jakobs, S. (2010). Sample Preparation for STED Microscopy. In: Papkovsky, D.B. (ed) Live Cell Imaging, Methods in Molecular Biology. Springer, Heidelberg, pp 185199.
Wurm, C. A., Kolmakov, K., Göttfert, F., Ta, H., Bossi, M., Schill, H., Berning, S., Jakobs, S., Donnert, G., Belov, V. N. & Hell, S. W. (2012). Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy 1(7), 17.
Xu, K., Babcock, H. P. & Zhuang, X. (2012). Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nature Methods 9(2), 185188.
Xu, K., Zhong, G. & Zhuang, X. (2013). Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in Axons. Science 339, 452456.
Yang, B., Przybilla, F., Mestre, M., Trebbia, J.-B. & Lounis, B. (2014). Large parallelization of STED nanoscopy using optical lattices Optics Express 22(5), 55815589.
Yechiel, E. & Edidin, M. (1987). Micrometer-scale domains in fibroblast plasma-membranes. Journal of Cell Biology 105(2), 755760.
Yildiz, A., Forkey, J. N., Mckinney, S. A., Ha, T., Goldman, Y. E. & Selvin, P. R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1·5-nm localization. Science 300(5628), 20612065.
York, A. G., Ghitani, A., Vaziri, A., Davidson, M. W. & Shroff, H. (2011). Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nature Methods 8, 327333. doi: 10.1038/nmeth.1571.
York, A. G., Parekh, S. H., Nogare, D. D., Fischer, R. S., Temprine, K., Mione, M., Chitnis, A. B., Combs, C. A. & Shroff, H. (2012). Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nature Methods 9, 749754. doi: 10.1038/nmeth.2025.
Zanacchi, F. C., Lavagnino, Z., Donnorso, M. P., Del Bue, A., Furia, L., Faretta, M. & Diaspro, A. (2011). Live-cell 3D super-resolution imaging in thick biological samples. Nature Methods 8(12), 10471049.
Zander, C., Enderlein, J. & Keller, R. A. (2002). Single-molecule Detection in Solution, 1st edn. Berlin, Germany: Wiley-VCH.
Zondervan, R., Kulzer, F., Orlinskii, S. B. & Orrit, M. (2003). Photoblinking of rhodamine 6 G in poly(vinyl alcohol): radical dark state formed through the triplet. Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory 107(35), 67706776.