Skip to main content
×
×
Home

Minimalist models for proteins: a comparative analysis

  • Valentina Tozzini (a1)
Abstract

The last decade has witnessed a renewed interest in the coarse-grained (CG) models for biopolymers, also stimulated by the needs of modern molecular biology, dealing with nano- to micro-sized bio-molecular systems and larger than microsecond timescale. This combination of size and timescale is, in fact, hard to access by atomic-based simulations. Coarse graining the system is a route to be followed to overcome these limits, but the ways of practically implementing it are many and different, making the landscape of CG models very vast and complex.

In this paper, the CG models are reviewed and their features, applications and performances compared. This analysis, restricted to proteins, focuses on the minimalist models, namely those reducing at minimum the number of degrees of freedom without losing the possibility of explicitly describing the secondary structures. This class includes models using a single or a few interacting centers (beads) for each amino acid.

From this analysis several issues emerge. The difficulty in building these models resides in the need for combining transferability/predictive power with the capability of accurately reproducing the structures. It is shown that these aspects could be optimized by accurately choosing the force field (FF) terms and functional forms, and combining different parameterization procedures. In addition, in spite of the variety of the minimalist models, regularities can be found in the parameters values and in FF terms. These are outlined and schematically presented with the aid of a generic phase diagram of the polypeptide in the parameter space and, hopefully, could serve as guidelines for the development of minimalist models incorporating the maximum possible level of predictive power and structural accuracy.

Copyright
Corresponding author
References
Hide All
Alemani, D., Collu, F., Cascella, M. & Dal Peraro, M. (2010). A nonradial coarse-grained potential for proteins produces naturally stable secondary structure elements. J. Chem. Theor. Comput. 6, 315324.
Arcangeli, C. & Tozzini, V. (in preparation). Multi-scale modeling molecular dynamics of the Artichoke Mottled. Crinkle Virus, in preparation.
Arora, N. & Jayaram, B. (1996). Strength of hydrogen bonds in alpha helices. J. Comput. Chem. 18, 12461252.
Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O. & Bahar, I. (2001). Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505515.
Ayton, G. S., Noid, W. G. & Voth, G. A. (2007). Multiscale modeling of biomolecular systems: in serial and in parallel. Curr. Opin. Struct. Biol. 17, 192198.
Bahar, I. & Jernigan, R. L. (1997). Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J. Mol. Biol. 266, 195214.
Bahar, I., Kaplan, M. & Jernigan, R. L. (1997). Short-range conformational energies, secondary structure propensities, and recognition of correct sequence–structure matches. Proteins 29, 292308.
Banachowicz, E., Gapinski, J. & Patkowski, A. (2000). Solution structure of biopolymers: a new method of constructing a bead model. Biophys. J. 78, 7078.
Bay, Y. & Englander, W. (1994). Hydrogen bond strength and beta-sheet propensities: the role of a side chain blocking effect. Proteins 18, 262266.
Betancourt, M. R. & Thirumalai, D. (1999). Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 8, 361369.
Buck, P. M. & Bystroff, C. (2009). Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field. Proteins 76, 331342.
Cascella, M. & Peraro, M. D. (2008). Challenges and perspectives in biomolecular simulations: from the atomistic picture to multiscale modeling. Curr. Opin. Struct. Biol. 18, 630640.
Chang, C.-E., Trylska, J., Tozzini, V. & McCammon, J. A. (2007). Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations. Chem. Biol. Drug Des. 69, 513.
Chennubhotla, C., Rader, A. J., Lee-Wei Yang, L.-W. & Bahar, I. (2005). Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys. Biol. 2, S173S180.
Chou, P. Y. & Fasman, G. D. (1978). Empirical prediction of protein conformation. Annu. Rev. Biochem. 47, 251276.
Chu, J.-W. & Voth, G. A. (2007). Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Biophys. J. 93, 38603871.
Clementi, C., Nymeyer, H. & Onuchic, J. N. (2000). Topological and energetic factors: what determines the structural details of the transition state ensemble and ‘en-route’ intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937953.
Das, A. & Andersen, H. C. (2009). The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation. J. Chem. Phys. 131, 034102.
Das, P., Matysiak, S. & Clementi, C. (2005). Balancing energy and entropy: a minimalist model for the characterization of protein folding landscapes. Proc. Natl. Acad. Sci. U.S.A. 102, 1014110146.
Demirel, M. C. & Keskin, O. (2005). Protein interactions and fluctuations in a proteomic network using an elastic network model. J. Biomol. Struct. Dyn. 22, 381386.
Di Fenza, A., Rocchia, W. & Tozzini, V. (2009). Complexes of HIV-1 Integrase with HAT proteins: multiscale models, dynamics and hypotheses on allosteric sites of inhibition. Proteins 76, 946958.
Ercolessi, F. & Adams, J. B. (1994). Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26, 583.
Florence Tama, F. & Brooks, C. L. III (2005). Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct. 35, 115133.
Friedel, M. & Shea, J. M. (2004). Self-assembly of peptides into a β-barrel motif. J. Chem. Phys. 120, 5809.
Friedel, M., Sheeler, D. J., & Shea, J.-E. (2003). Effects of confinement and crowding on the thermodynamics and kinetics of folding of a minimalist β-barrel protein. J. Chem. Phys. 118, 81068113.
Go, N. & Scheraga, H. A. (1976). On the use of classical statistical mechanics in the treatment of polymer chain conformation. Macromolecules 9, 535542.
Ha-Duong, T. (2010). Protein backbone dynamics simulations using coarse-grained bonded potentials and simplified hydrogen bonds. J. Chem. Theory Comput. 6, 761773.
Hamacher, K. & McCammon, J. A. (2006). Computing the amino acid specificity of fluctuations in biomolecular systems. J. Chem. Theory Comput. 2, 873878.
Honeycutt, J. D. & Thirumalai, D. (1990). Metastability of the folded states of globular proteins. Proc. Natl. Acad. Sci. U.S.A. 87, 35263529.
Izvekov, S. & Voth, G. A. (2006). Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. J. Chem. Theory Comput. 2, 637648.
Izvekov, S., Parrinello, M., Burnham, C. J. & Voth, G. A. (2004). Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J. Chem. Phys. 120, 1089610913.
Izvekov, S. & Voth, G. A. (2005). Multiscale coarse graining of liquid-state systems. J. Chem. Phys. 123, 134105.
Jang, H., Hall, C. K. & Zhou, Y. (2004). Assembly and kinetic folding pathways of a tetrameric β-sheet complex: molecular dynamics simulations on simplified off-lattice protein models. Biophys. J. 86, 3149.
Jeong, J. I., Jang, Y. & Kim, M. K. (2005). A connection rule for α-carbon coarse-grained elastic network models using chemical bond information. J. Mol. Graph Model 24, 296306.
Kaya, H. & Chan, H. S. (2003). Solvation effects and driving forces for proteinthermodynamic and kinetic cooperativity: how adequate is native-centric topological modeling? J. Mol. Biol. 326, 911931.
Keskin, O., Bahar, I., Badretdinov, A., Ptitsyn, O. & Jernigan, R. (1998). Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions. Protein Sci. 7, 2578.
Klimov, D. K. & Thirumalai, D. (2000). Mechanisms and kinetics of β-hairpin formation. Proc. Natl. Acad. Sci. U.S.A. 97, 25442549.
Klimov, D. K., Betancourt, M. R. & Thirumalai, D. (1998). Virtual atom representation of hydrogen bonds in minimal off-lattice models of alpha helices: effect on stability, cooperativity and kinetics. Folding Des. 3, 481496.
Koga, N. & Takada, S. (2001). Roles of native topology and chain-length scaling in protein folding: a simulation study. J. Mol. Biol. 313, 171180.
Korkuta, A. & Hendrickson, W. A. (2009). A force field for virtual atom molecular mechanics of proteins. Proc. Natl. Acad. Sci. U.S.A. 106, 1566715672.
Kundu, S., Sorensen, D. C., & Phillips, G. R. Jr. (2004). Automatic domain decomposition of proteins by a Gaussian network model. Proteins 57, 725733.
Levitt, M. & Warshel, A. (1975). Computer simulation of protein folding. Nature 253, 694698.
Levitt, M. (1976). A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59107.
Liu, P., Izvekow, S. & Voth, G. A. (2007). Multi-scale coarse graining of monosaccharides. J. Phys. Chem. B 111, 1156611575.
Liwo, A., Oldziej, S., Pincus, M. R., Wawak, R. J., Rackowsky, S. & Scheraga, H. A. (1997a). A united-residue force field for off-lattice protein structure simulations. I. Functional forms and parameters of long range side chain interactions potentials from protein crystal data. J. Comput. Chem. 18, 849873.
Liwo, A., Pincus, M. R., Wawak, R. J., Rackowsky, S., Oldziej, S. & Scheraga, H. A. (1997b). A united-residue force field for off-lattice protein structure simulations. II. Parameterization of short-range interactions and determination of weights of energy terms by z-score optimization. J. Comput. Chem. 18, 874887.
Lyman, E., Pfaendtner, J., & Voth, G. A. (2008). Systematic multiscale parameterization of heterogeneous elastic network models of proteins. Biophys. J. 95, 41834192.
Májek, P. & Elber, R. (2009). A coarse-grained potential for fold recognition and molecular dynamics simulations of proteins. Proteins 76, 822836.
Maragakis, P. & Karplus, M. (2005). Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J. Mol. Biol. 352, 807822.
Mathews, C., van Holde, K. E. & Ahern, K. G. (2000). Biochemistry. 3rd edn. San Francisco: Addison Wesley Longman Inc.
Matysiak, S. & Clementi, C. (2006). Minimalist protein model as a diagnostic tool for misfolding and aggregation. J. Mol. Biol. 363, 297308.
McCammon, J. A. & Northrup, S. H. (1980). Helix–coil transition in a simple polypeptide model. Biopolymers 19, 20332045.
Miyazawa, S. & Jernigan, R. L. (1996). Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256, 623.
Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S.-J. (2008). The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819834.
Mukherjee, A. & Bagchi, B. (2002). Correlation between rate of folding, energy landscape and topology in the folding of a model protein HP-36. J. Chem. Phys. 118, 47334747.
Mukherjee, A., Bhimalapuram, P. & Bagchia, B. (2005). Orientation-dependent potential of mean force for protein folding. J. Chem. Phys. 123, 014901.
Nakagawa, N. & Peyrard, M. (2006). Modeling protein thermodynamics and fluctuations at the mesoscale. Phys. Rev. E 74, 041916.
Noid, W. G., Chu, J.-W., Ayton, G. S., Krishna, V., Izvekov, S., Voth, G. A., Das, A. & Andersen, H. C. (2008a). The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem. Phys. 128, 244114.
Noid, W. G., Liu, P., Wang, Y., Chu, J.-W., Ayton, G. S., Izvekov, S., Andersen, H. C., & Voth, G. A. (2008b). The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J. Chem. Phys. 128, 244115.
Nymeyer, H., Garcia, A. E. & Onuchic, J. N. (1998). Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc. Natl. Acad. Sci. U.S.A. 95, 59215928.
Okur, A., Strockbine, B., Hornak, V. & Simmerling, C. (2003). Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins. J. Comput. Chem. 24, 2131.
Ono, S., Nakajima, N., Higo, J. & Nakamura, H. (2000). Peptide free-energy profile is strongly dependent on the force field: comparison of C96 and AMBER95. J. Comput. Chem. 21, 748762.
Reith, D., Pütz, M. & Müller-Plathe, F. (2003). Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 16241636.
Russell, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velaszquez-Muriel, J. A. & Sali, A. (2009). The structural dynamics of macromolecular processes. Curr. Opin. Cell Biol. 21, 112.
Sherwood, P., Brooks, B. R. & Sansom, M. S. (2008). Multiscale methods for macromolecular simulations. Curr. Opin. Struct. Biol. 18, 630640.
Shi, Q., Izvekov, S., & Voth, G. A. (2006). Mixed atomistic and coarse grained molecular dynamics: simulation of membrane a bound ion channel. J. Phys. Chem. B. 110, 1504515048.
Silverstein, K. A. T., Haymet, A. D. J. & Dill, K. A. (1998). A simple model of water and the hydrophobic effect. J. Am. Chem. Soc. 120, 31663175.
Soheilifard, R., Makarov, D. E. & Rodin, G. J. (2008). Critical evaluation of simple network models of protein dynamics and their comparison with crystallographic B-factors. Phys. Biol. 5, 026008.
Sorenson, J. M. & Head-Gordon, T. (2002a). Protein engineering study of protein L by simulation. J. Comput. Biol. 9, 3554.
Sorenson, J. M. & Head-Gordon, T. (2002b). Toward minimalist models of larger proteins: a ubiquitin-like protein. Proteins 46, 368379.
Thorpe, I. F., Zhou, J. & Voth, G. A. (2008). Peptide folding using multiscale coarse-grained models. J. Phys. Chem. B 112, 1307913090.
Tirion, M. M. (1996). Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 1905.
Tozzini, V. (2005). Coarse grained models for proteins. Curr. Opin. Struct. Biol. 15, 144150.
Tozzini, V. (2010). Multi-scale modeling of proteins. Acc. Chem. Res. 43, 220230.
Tozzini, V. (in preparation). The phase diagram of a minimalist polypeptide model, in preparation.
Tozzini, V. & McCammon, J. A. (2005). A coarse grained model for the dynamics of flap opening in HIV-1 protease. Chem. Phys. Lett. 413, 123128.
Tozzini, V. & McCammon, J. A. (2008). One-bead models for proteins. In Coarse Graining of Condensed Phase and Biomolecular Systems (ed. Voth, G. A.), p. 285. Washington, DC: CRC Press.
Tozzini, V., Rocchia, W. & McCammon, J. A. (2006). Mapping AA models onto one-bead coarse grained models: general properties and applications to a minimal polypeptide model. J. Chem. Theory Comput. 2, 667673.
Tozzini, V., Trylska, J., Chang, C.-E. & McCammon, J. A. (2007). Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. J. Struct. Biol. 157, 606615.
Trovato, F. & Tozzini, V. A. (in preparation). Coarse grained model for the dynamic of the aggregation of the green fluorescent proteins, in preparation.
Trylska, J., Tozzini, V., Chang, C.-E. & McCammon, J. A. (2007). HIV-1 protease substrate binding and product release pathways explored with coarse-grained molecular dynamics. Biophys. J. 92, 41794187.
Trylska, J., Tozzini, V. & McCammon, J. A. (2005). Exploring global motions and correlations in the ribosome. Biophys. J. 89, 14551463.
Van Aalten, D. M. F., De Groot, B. L., Findlay, J. B. C., Berendsen, H. J. C. & Amadei, A. (1997). A comparison of techniques for calculating protein essential dynamics. J. Comput. Chem. 18, 169181.
Voet, D. & Voet, J. G. (2005). Biochemistry. 3rd edn. New York: Wiley.
Voltz, K., Trylska, J., Tozzini, V., Kurkal-Siebert, V., Langowski, J. & Smith, J. (2008). Coarse-grained force field for the nucleosome from self-consistent multiscaling. J. Comput. Chem. 29, 14291439.
Wang, Y., Noid, W. G., Liu, P. & Voth, G. A. (2009). Effective force coarse-graining. Phys. Chem. Chem. Phys. 11, 20022015.
Wu, Y., Lu, M., Chen, M., Li, J. & Ma, J. (2007). OPUS-Ca: a knowledge-based potential function requiring only Cα positions. Protein Sci. 16, 14491463.
Yap, E.-H., Fawzi, N. L., & Head-Gordon, T. (2008). A coarse-grained α-carbon protein model with anisotropic hydrogen-bonding. Proteins 70, 626638.
Zacharias, M. (2003). Protein–protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci. 12, 12711282.
Zhou, H. & Zhou, Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 27142726.
Zhou, J., Thorpe, I. F., Izvekov, S. & Voth, G. A. (2007). Coarse-grained peptide modeling using a systematic multiscale approach. Biophys. J. 92, 42894303.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed