Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T19:14:37.664Z Has data issue: false hasContentIssue false

Modeling large-scale dynamic processes in the cell: polarization, waves, and division

Published online by Cambridge University Press:  15 August 2014

David Sept*
Affiliation:
Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
Anders E. Carlsson*
Affiliation:
Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
*
*Authors for Correspondence: David Sept, Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA. Tel.: 734-615-9587; Fax: 734-647-4834; Email: dsept@umich.edu; Anders E. Carlsson, Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA. Email: aec@wustl.edu
*Authors for Correspondence: David Sept, Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA. Tel.: 734-615-9587; Fax: 734-647-4834; Email: dsept@umich.edu; Anders E. Carlsson, Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA. Email: aec@wustl.edu

Abstract

The past decade has witnessed significant developments in molecular biology techniques, fluorescent labeling, and super-resolution microscopy, and together these advances have vastly increased our quantitative understanding of the cell. This detailed knowledge has concomitantly opened the door for biophysical modeling on a cellular scale. There have been comprehensive models produced describing many processes such as motility, transport, gene regulation, and chemotaxis. However, in this review we focus on a specific set of phenomena, namely cell polarization, F-actin waves, and cytokinesis. In each case, we compare and contrast various published models, highlight the relevant aspects of the biology, and provide a sense of the direction in which the field is moving.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Adams, D. W. & Errington, J. (2009). Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Reviews: Microbiology 7, 642653.Google Scholar
Allard, J. & Mogilner, A. (2012). Traveling waves in actin dynamics and cell motility. Current Biology 25, 19.Google Scholar
Arai, Y., Shibata, T., Matsuoka, S., Sato, M. J., Yanagida, T. & Ueda, M. (2010). Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proceedings of the National Academy of Sciences of the United States of America 107, 1239912404.Google Scholar
Bathe, M. & Chang, F. (2010). Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding. Trends Microbiology 18, 3845.Google Scholar
Bois, J. S., Julicher, F. & Grill, S. W. (2011). Pattern formation in active fluids. Physical Review Letters 106, 028103.Google Scholar
Bretschneider, T., Anderson, K., Ecke, M., Muller-Taubenberger, A., Schroth-Diez, B., Ishikawa-Ankerhold, H. C. & Gerisch, G. (2009). The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophysical Journal 96, 28882900.Google Scholar
Callan-Jones, A. C. & Voituriez, R. (2013). Active gel model of amoeboid cell motility. New Journal of Physics, 15, 025022.Google Scholar
Carlsson, A. E. (2006). Contractile stress generation by actomyosin gels. Physical Review. E, Statistical Nonlinear Soft Matter Physics 74, 051912.Google Scholar
Carlsson, A. E. (2010). Dendritic actin filament nucleation causes traveling waves and patches. Physical Review Letters 104, 228102.Google Scholar
Dawes, A. T. & Edelstein-Keshet, L. (2007). Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophysical Journal 92, 744768.Google Scholar
Doubrovinski, K. & Kruse, K. (2008). Cytoskeletal waves in the absence of molecular motors. Europhysics Letters 83, 18003.Google Scholar
Doubrovinski, K. & Kruse, K. (2011). Cell Motility resulting from spontaneous polymerization waves. Physical Review Letters 107, 258103:258101258104.Google Scholar
Drake, T. & Vavylonis, D. (2010). Cytoskeletal dynamics in fission yeast: a review of models for polarization and division. Hfsp Journal 4, 122130.Google Scholar
Eggert, U. S., Mitchison, T. J. & Field, C. M. (2006). Animal cytokinesis: from parts list to mechanisms. Annual Review of Biochemistry 75, 543566.Google Scholar
Firtel, R. A., Sasaki, A. T., Janetopoulos, C., Lee, S., Charest, P. G., Takeda, K., Sundheimer, L. W., Meili, R. & Devreotes, P. N. (2007). G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. Journal of Cell Biology 178, 185191.Google Scholar
Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1, 445466.Google Scholar
Gerisch, G. (2010). Self-organizing actin waves that simulate phagocytic cup structures. PMC Biophysics 3, 9.Google Scholar
Gerisch, G., Bretschneider, T., Muller-Taubenberger, A., Simmeth, E., Ecke, M., Diez, S. & Anderson, K. (2004). Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophysical Journal 87, 34933503.Google Scholar
Gerisch, G., Ecke, M., Wischnewski, D. & Schroth-Diez, B. (2011). Different modes of state transitions determine pattern in the phosphatidylinositide-actin system. BMC Cell Biology 12, 42:41–15.Google Scholar
Gerisch, G., Schroth-Diez, B., Muller-Taubenberger, A. & Ecke, M. (2012). PIP3 waves and PTEN dynamics in the emergence of cell polarity. Biophysical Journal 103, 11701178.Google Scholar
Giannone, G., Dubin-Thaler, B. J., Dobereiner, H. G., Kieffer, N., Bresnick, A. R. & Sheetz, M. P. (2004). Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431443.Google Scholar
Gierer, A. & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12, 3039.Google Scholar
Goehring, N. W. & Grill, S. W. (2013). Cell polarity: mechanochemical patterning. Trends in Cell Biology 23, 7280.Google Scholar
Hawkins, R. J., Poincloux, R., Benichou, O., Piel, M., Chavrier, P. & Voituriez, R. (2011). Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophysical Journal 101, 10411045.Google Scholar
He, X. & Dembo, M. (1997). On the mechanics of the first cleavage division of the sea urchin egg. Experimental Cell Research 233, 252273.Google Scholar
Holmes, W. R., Carlsson, A. E. & Edelstein-Keshet, L. (2012). Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour. Physical Biology 9, 046005.Google Scholar
Houk, A. R., Jilkine, A., Mejean, C. O., Boltyanskiy, R., Dufresne, E. R., Angenent, S. B., Altschuler, S. J., Wu, L. F. & Weiner, O. D. (2012). Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175188.Google Scholar
Huang, C. H., Tang, M., Shi, C. J., Iglesias, P. A. & Devreotes, P. N. (2013). An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nature Cell Biology 15, 13071316.Google Scholar
Huang, Y., Yan, H. & Balasubramanian, M. K. (2008). Assembly of normal actomyosin rings in the absence of Mid1p and cortical nodes in fission yeast. Journal of Cell Biology 183, 979988.Google Scholar
Huber, F., Schnauss, J., Ronicke, S., Rauch, P., Muller, K., Futterer, C. & Kas, J. (2013). Emergent complexity of the cytoskeleton: from single filaments to tissue. Advances in Physics 62, 1112.Google Scholar
Iglesias, P. A. & Devreotes, P. N. (2008). Navigating through models of chemotaxis. Current Opinion in Cell Biology 20, 3540.Google Scholar
Insall, R. H. & Weiner, O. D. (2001). PIP3, PIP2, and cell movement – similar messages, different meanings? Developmental Cell 1, 743747.Google Scholar
Jilkine, A. & Edelstein-Keshet, L. (2011). A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Computational Biology 7, e1001121.Google Scholar
Johnson, J. M., Jin, M. & Lew, D. J. (2011). Symmetry breaking and the establishment of cell polarity in budding yeast. Current Opinion in Genetics and Development 21, 740746.Google Scholar
Kabacoff, C., Xiong, Y., Musib, R., Reichl, E. M., Kim, J., Iglesias, P. A. & Robinson, D. N. (2007). Dynacortin facilitates polarization of chemotaxing cells. BMC Biology 5, 53.Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. (2005). A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305320.Google Scholar
Kamasaki, T., Osumi, M. & Mabuchi, I. (2007). Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. Journal of Cell Biology 178, 765771.Google Scholar
Kee, Y. S., Ren, Y. X., Dorfman, D., Iijima, M., Firtel, R., Iglesias, P. A. & Robinson, D. N. (2012). A mechanosensory system governs myosin II accumulation in dividing cells. Molecular Biology of the Cell 23, 15101523.Google Scholar
Khamviwath, V., Hu, J. & Othmer, H. G. (2013). A continuum model of actin waves in Dictyostelium discoideum. Plos One 8, e64272:64271–64224.Google Scholar
Kozlov, M. M. & Mogilner, A. (2007). Model of polarization and bistability of cell fragments. Biophysical Journal 93, 38113819.Google Scholar
Kruse, K., Joanny, J. F., Jülicher, F., Prost, J., & Sekimoto, K. (2005). Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. European Physical Journal. E Soft Matter 16, 516.Google Scholar
Lee, S., Shen, Z. X., Robinson, D. N., Briggs, S. & Firtel, R. A. (2010). Involvement of the cytoskeleton in controlling leading-edge function during chemotaxis. Molecular Biology of the Cell 21, 18101824.Google Scholar
Lieber, A. D., Yehudai-Resheff, S., Barnhart, E. L., Theriot, J. A. & Keren, K. (2013). Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Current Biology 23, 14091417.Google Scholar
Luo, T. Z., Mohan, K., Iglesias, P. A. & Robinson, D. N. (2013). Molecular mechanisms of cellular mechanosensing. Nature Materials 12, 10631070.Google Scholar
Lutkenhaus, J. (2007). Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annual Review of Biochemistry 76, 539562.Google Scholar
Marsland, D. (1950). The mechanisms of cell division–temperature-pressure experiments on the cleaving eggs of arbacia punctulata. Journal of Cellular and Comparative Physiology 36, 205227.Google Scholar
May, K. M., Watts, F. Z., Jones, N. & Hyams, J. S. (1997). Type II myosin involved in cytokinesis in the fission yeast, Schizosaccharomyces pombe. Cell Motility and Cytoskeleton 38, 385396.Google Scholar
Mayer, M., Depken, M., Bois, J. S., Julicher, F. & Grill, S. W. (2010). Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617.Google Scholar
Millius, A., Dandekar, S. N., Houk, A. R. & Weiner, O. D. (2009). Neutrophils establish rapid and robust WAVE complex polarity in an actin-dependent fashion. Current Biology 19, 253259.Google Scholar
Mitchison, J. M. & Swann, M. M. (1955). The mechanical properties of the cell surface .3. The sea-urchin egg from fertilization to cleavage. Journal of Experimental Biology 32, 734750.Google Scholar
Mogilner, A., Allard, J. & Wollman, R. (2012). Cell polarity: quantitative modeling as a tool in cell biology. Science 336, 175179.Google Scholar
Mogilner, A. & Craig, E. (2010). Towards a quantitative understanding of mitotic spindle assembly and mechanics. Journal of Cell Science 123, 34353445.Google Scholar
Mogilner, A., Wollman, R., Civelekoglu-Scholey, G. & Scholey, J. (2006). Modeling mitosis. Trends in Cell Biology 16, 8896.Google Scholar
Mogilner, A. & Zhu, J. (2012). Cell polarity: tension quenches the rear. Current Biology 22, R48R51.Google Scholar
Mohan, K., Iglesias, P. A. & Robinson, D. N. (2012). Separation anxiety: stress, tension and cytokinesis. Experimental Cell Research 318, 14281434.Google Scholar
Mori, Y., Jilkine, A. & Edelstein-Keshet, L. (2008). Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophysical Journal 94, 36843697.Google Scholar
Mullins, R. D. (2010). Cytoskeletal mechanisms for breaking cellular symmetry. Cold Spring Harbor Perspectives in Biology 2, a003392.Google Scholar
Narang, A. (2006). Spontaneous polarization in eukaryotic gradient sensing: a mathematical model based on mutual inhibition of frontness and backness pathways. Journal of Theoretical Biology 240538553.Google Scholar
Nishimura, S. I., Ueda, M. & Sasai, M. (2009). Cortical factor feedback model for cellular locomotion and cytofission. Plos Computational Biology 5, e1000310.Google Scholar
O'connell, C. B., Warner, A. K. & Wang, Y. (2001). Distinct roles of the equatorial and polar cortices in the cleavage of adherent cells. Current Biology 11, 702707.Google Scholar
Ofera, N., Mogilner, A. & Keren, K. (2011). Actin disassembly clock determines shape and speed of lamellipodial fragments. Proceedings of the National Academy of Sciences of the United States of America 108, 2039420399.Google Scholar
Onsum, M. D. & Rao, C. V. (2009). Calling heads from tails: the role of mathematical modeling in understanding cell polarization. Current Opinion in Cell Biology 21, 7481.Google Scholar
Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A. & Kuroda, S. (2007). A mass conserved reaction-diffusion system captures properties of cell polarity. Plos Computational Biology 3, e108.Google Scholar
Padte, N. N., Martin, S. G., Howard, M. & Chang, F. (2006). The cell-end factor pom1p inhibits mid1p in specification of the cell division plane in fission yeast. Current Biology 16, 24802487.Google Scholar
Pelham, R. J. & Chang, F. (2002). Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419, 8286.Google Scholar
Poirier, C. C., Ng, W. P., Robinson, D. N. & Iglesias, P. A. (2012). Deconvolution of the cellular force-generating subsystems that govern cytokinesis furrow ingression. PLoS Computational Biology 8, e1002467.Google Scholar
Pollard, T. D. (2010). Mechanics of cytokinesis in eukaryotes. Current Opinion in Cell Biology 22, 5056.Google Scholar
Pollard, T. D. & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453465.Google Scholar
Pollard, T. D. & Wu, J. Q. (2010). Understanding cytokinesis: lessons from fission yeast. Nature Reviews Molecular Cell Biology 11, 149155.Google Scholar
Raftopoulou, M. & Hall, A. (2004). Cell migration: rho GTPases lead the way. Developmental Biology 265, 2332.Google Scholar
Rappaport, R. (1999). Absence of furrowing activity following regional cortical tension reduction in sand dollar blastomere and fertilized egg fragment surfaces. Development Growth and Differentiation 41, 441447.Google Scholar
Recho, P., Putelat, T. & Truskinovsky, L. (2013). Contraction-driven cell motility. Physical Review Letters 111, 108102.Google Scholar
Reichl, E. M., Effler, J. C. & Robinson, D. N. (2005). The stress and strain of cytokinesis. Trends in Cell Biology 15, 200206.Google Scholar
Robinson, D. N. (2001). Cell division: biochemically controlled mechanics. Current Biology 11, R737R740.Google Scholar
Robinson, D. N., Kee, Y.-S., Luo, T. & Surcel, A. (2012). Understanding how dividing cells change shape. In Comprehensive Biophysics, vol. 7 (ed. Egelman, E. H.), pp. 4872. Amsterdam: Elsevier.Google Scholar
Ryan, G. L., Watanabe, N. & Vavylonis, D. (2012). A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton 69, 195206.Google Scholar
Salbreux, G., Joanny, J. F., Prost, J. & Pullarkat, P. (2007). Shape oscillations of non-adhering fibroblast cells. Physical Biology 4, 268284.Google Scholar
Salbreux, G., Prost, J. & Joanny, J. F. (2009). Hydrodynamics of cellular cortical flows and the formation of contractile rings. Physical Review Letters 103, 58102.Google Scholar
Sambeth, R. & Baumgaertner, A. (2001). Autocatalytic polymerization generates persistent random walk of crawling cells. Physical Review Letters 86, 51965199.Google Scholar
Sedzinski, J., Biro, M., Oswald, A., Tinevez, J. Y., Salbreux, G. & Paluch, E. (2011). Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462466.Google Scholar
Semplice, M., Veglio, A., Naldi, G., Serini, G. & Gamba, A. (2012). A bistable model of cell polarity. Plos One 7, e30977.Google Scholar
Shao, D. Y., Levine, H. & Rappel, W. J. (2012). Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proceedings of the National Academy of Sciences of the United States of America 109, 68516856.Google Scholar
Shi, C. J., Huang, C. H., Devreotes, P. N. & Iglesias, P. A. (2013). Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells. Plos Computational Biology 9, e1003122.Google Scholar
Shlomovitz, R. & Gov, N. S. (2008). Physical model of contractile ring initiation in dividing cells. Biophysical Journal 94, 11551168.Google Scholar
Taniguchi, D., Ishihara, S., Oonuki, T., Honda-Kitahara, M., Kaneko, K. & Sawai, S. (2013). Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proceedings of the National Academy of Sciences of the United States of America 110, 50165021.Google Scholar
Thompson, B. J. (2013). Cell polarity: models and mechanisms from yeast, worms and flies. Development 140, 1321.Google Scholar
Vasiev, B. N. (2004). Classification of patterns in excitable systems with lateral inhibition. Physics Letters A 323, 194203.Google Scholar
Vavylonis, D., Wu, J. Q., Hao, S., O'shaughnessy, B. & Pollard, T. D. (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319, 97100.Google Scholar
Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. (1999). Self-polarization and directional motility of cytoplasm. Current Biology 9, 1120.Google Scholar
Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J. & Kirschner, M. W. (2007). An actin-based wave generator organizes cell motility. Plos Biology 5, 20532063.Google Scholar
Welf, E. S. & Haugh, J. M. (2011). Signaling pathways that control cell migration: models and analysis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 3, 231240.Google Scholar
Westendorf, C., Negrete, J., Bae, A. J., Sandmann, R., Bodenschatz, E. & Beta, C. (2013). Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. Proceedings of the National Academy of Sciences of the United States of America 110, 38533858.Google Scholar
Whitelam, S., Bretschneider, T. & Burroughs, N. (2009). Transformation from spots to waves in a model of actin pattern formation. Physical Review Letters 102, 198103:198101198104.Google Scholar
Wilson, C. A., Tsuchida, M. A., Allen, G. M., Barnhart, E. L., Applegate, K. T., Yam, P. T., Ji, L., Keren, K., Danuser, G. & Theriot, J. A. (2010). Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465, 373.Google Scholar
Xiong, Y., Huang, C.-H., Iglesias, P. A. & Devreotes, P. N. (2010). Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proceedings of the National Academy of Sciences of the United States of America 107, 1707917086.Google Scholar
Yang, H. W., Shin, M. G., Lee, S., Kim, J. R., Park, W. S., Cho, K. H., Meyer, T. & Heo, W. D. (2012). Cooperative activation of PI3K by Ras and Rho family small GTPases. Molecular Cell 47, 281290.Google Scholar
Yonetani, A., Lustig, R. J., Moseley, J. B., Takeda, T., Goode, B. L. & Chang, F. (2008). Regulation and targeting of the fission yeast formin cdc12p in cytokinesis. Molecular Biology of the Cell 19, 22082219.Google Scholar
Zang, J. H., Cavet, G., Sabry, J. H., Wagner, P., Moores, S. L. & Spudich, J. A. (1997). On the role of myosin-II in cytokinesis: division of dictyostelium cells under adhesive and nonadhesive conditions. Molecular Biology of the Cell 8, 26172629.Google Scholar
Zeng, Y., Lai, T., Koh, C. G., Leduc, P. R. & Chiam, K. H. (2011). Investigating circular dorsal ruffles through varying substrate stiffness and mathematical modeling. Biophysical Journal 101, 21222130.Google Scholar
Zhang, W. & Robinson, D. N. (2005). Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proceedings of the National Academy of Sciences of the United States of America 102, 71867191.Google Scholar
Zhou, Q. Q., Kee, Y. S., Poirier, C. C., Jelinek, C., Osborne, J., Divi, S., Surcel, A., Will, M. E., Eggert, U. S., Muller-Taubenberger, A., Iglesias, P. A., Cotter, R. J. & Robinson, D. N. (2010). 14–3–3 coordinates microtubules, rac, and myosin ii to control cell mechanics and cytokinesis. Current Biology 20, 18811889.Google Scholar
Zumdieck, A., Kruse, K., Bringmann, H., Hyman, A. A. & Julicher, F. (2007). Stress generation and filament turnover during actin ring constriction. PLoS One 2, e696.Google Scholar