Skip to main content
×
×
Home

The molecular choreography of protein synthesis: translational control, regulation, and pathways

  • Jin Chen (a1) (a2), Junhong Choi (a1) (a2), Seán E. O'Leary (a1), Arjun Prabhakar (a1) (a3), Alexey Petrov (a1), Rosslyn Grosely (a1), Elisabetta Viani Puglisi (a1) and Joseph D. Puglisi (a1)...
Abstract

Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.

Copyright
Corresponding author
* Author for correspondence: Joseph D. Puglisi, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA. Tel.: 650-723-9151; Email: puglisi@stanford.edu
References
Hide All
Abaeva, I. S., Marintchev, A., Pisareva, V. P., Hellen, C. U. & Pestova, T. V. (2011). Bypassing of stems versus linear base-by-base inspection of mammalian mRNAs during ribosomal scanning. The EMBO Journal 30, 115129.
Abramson, R. D., Dever, T. E., Lawson, T. G., Ray, B. K., Thach, R. E. & Merrick, W. C. (1987). The ATP-dependent interaction of eukaryotic initiation factors with mRNA. The Journal of Biological Chemistry 262, 38263832.
Acker, M. G., Kolitz, S. E., Mitchell, S. F., Nanda, J. S. & Lorsch, J. R. (2007). Reconstitution of yeast translation initiation. Methods in Enzymology 430, 111145.
Acker, M. G., Shin, B. S., Nanda, J. S., Saini, A. K., Dever, T. E. & Lorsch, J. R. (2009). Kinetic analysis of late steps of eukaryotic translation initiation. Journal of Molecular Biology 385, 491506.
Adams, J. M. & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255, 2833.
Afonina, Z. A., Myasnikov, A. G., Shirokov, V. A., Klaholz, B. P. & Spirin, A. S. (2014). Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study. Nucleic Acids Research 42, 94619469.
Agirrezabala, X. & Frank, J. (2009). Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Quarterly Reviews of Biophysics 42, 159200.
Agirrezabala, X., Lei, J., Brunelle, J. L., Ortiz-Meoz, R. F., Green, R. & Frank, J. (2008). Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Molecular Cell 32, 190197.
Aitken, C. E. & Lorsch, J. R. (2012). A mechanistic overview of translation initiation in eukaryotes. Nature Structural & Molecular Biology 19, 568576.
Aitken, C. E. & Puglisi, J. D. (2010). Following the intersubunit conformation of the ribosome during translation in real time. Nature Structural & Molecular Biology 17, 793800.
Akabayov, S. R., Akabayov, B., Richardson, C. C. & Wagner, G. (2013). Molecular crowding enhanced ATPase activity of the RNA helicase eIF4A correlates with compaction of its quaternary structure and association with eIF4G. Journal of the American Chemical Society 135, 1004010047.
Alekhina, O. M. & Vassilenko, K. S. (2012). Translation initiation in eukaryotes: versatility of the scanning model. Biochemistry (Mosc) 77, 14651477.
Algire, M. A., Maag, D. & Lorsch, J. R. (2005). Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Molecular Cell 20, 251262.
Algire, M. A., Maag, D., Savio, P., Acker, M. G., Tarun, S. Z., Sachs, A. B., Asano, K., Nielsen, K. H., Olsen, D. S., Phan, L., Hinnebusch, A. G. & Lorsch, J. R. (2002). Development and characterization of a reconstituted yeast translation initiation system. RNA 8, 382397.
Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L. & Pestova, T. V. (2006). In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125, 11251136.
Altmann, M., Edery, I., Sonenberg, N. & Trachsel, H. (1985). Purification and characterization of protein synthesis initiation factor eIF-4E from the yeast Saccharomyces cerevisiae . Biochemistry 24, 60856089.
Altmann, M., Handschin, C. & Trachsel, H. (1987). mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae . Molecular and Cellular Biology 7, 9981003.
Altmann, M., Müller, P. P., Pelletier, J., Sonenberg, N. & Trachsel, H. (1989). A mammalian translation initiation factor can substitute for its yeast homologue in vivo . The Journal of Biological Chemistry 264, 1214512147.
Altmann, M., Wittmer, B., Methot, N., Sonenberg, N. & Trachsel, H. (1995). The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. The EMBO Journal 14, 38203827.
Amrani, N., Ghosh, S., Mangus, D. A. & Jacobson, A. (2008). Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453, 12761280.
Anand, M., Balar, B., Ulloque, R., Gross, S. R. & Kinzy, T. G. (2006). Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. The Journal of Biological Chemistry 281, 3231832326.
Anand, M., Chakraburtty, K., Marton, M. J., Hinnebusch, A. G. & Kinzy, T. G. (2003). Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. The Journal of Biological Chemistry 278, 69856991.
Andersen, C. B., Becker, T., Blau, M., Anand, M., Halic, M., Balar, B., Mielke, T., Boesen, T., Pedersen, J. S., Spahn, C. M., Kinzy, T. G., Andersen, G. R. & Beckmann, R. (2006). Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 443, 663668.
Andreou, A. Z. & Klostermeier, D. (2013). The DEAD-box helicase eIF4A: paradigm or the odd one out? RNA Biology 10, 1932.
Andreou, A. Z. & Klostermeier, D. (2014). eIF4B and eIF4 G jointly stimulate eIF4A ATPase and unwinding activities by modulation of the eIF4A conformational cycle. Journal of Molecular Biology 426, 5161.
Antoun, A., Pavlov, M. Y., Andersson, K., Tenson, T. & Ehrenberg, M. (2003). The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. The EMBO Journal 22, 55935601.
Aspden, J. L. & Jackson, R. J. (2010). Differential effects of nucleotide analogs on scanning-dependent initiation and elongation of mammalian mRNA translation in vitro . RNA 16, 11301137.
Bai, X. C., Fernandez, I. S., Mcmullan, G. & Scheres, S. H. (2013). Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461.
Bauer, J. W., Brandl, C., Haubenreisser, O., Wimmer, B., Weber, M., Karl, T., Klausegger, A., Breitenbach, M., Hintner, H., Von Der Haar, T., Tuite, M. F. & Breitenbach-Koller, L. (2013). Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS ONE 8, e67609.
Bellsolell, L., Cho-Park, P. F., Poulin, F., Sonenberg, N. & Burley, S. K. (2006). Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1. Structure 14, 913923.
Benne, R. & Hershey, J. W. (1978). The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. The Journal of Biological Chemistry 253, 30783087.
Berset, C., Zurbriggen, A., Djafarzadeh, S., Altmann, M. & Trachsel, H. (2003). RNA-binding activity of translation initiation factor eIF4G1 from Saccharomyces cerevisiae . RNA 9, 871880.
Berthelot, K., Muldoon, M., Rajkowitsch, L., Hughes, J. & Mccarthy, J. E. (2004). Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Molecular Microbiology 51, 9871001.
Beznoskova, P., Cuchalova, L., Wagner, S., Shoemaker, C. J., Gunisova, S., von der Haar, T. & Valasek, L. S. (2013). Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genetics 9, e1003962.
Blaha, G., Stanley, R. E. & Steitz, T. A. (2009). Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966970.
Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. (2004a). tRNA selection and kinetic proofreading in translation. Nature Structural & Molecular Biology 11, 10081014.
Blanchard, S. C., Kim, H. D., Gonzalez, R. L. Jr., Puglisi, J. D. & Chu, S. (2004b). tRNA dynamics on the ribosome during translation. Proceedings of the National Academy of Sciences of the United States of America 101, 1289312898.
Blum, S., Mueller, M., Schmid, S. R., Linder, P. & Trachsel, H. (1989). Translation in Saccharomyces cerevisiae: initiation factor 4A-dependent cell-free system. Proceedings of the National Academy of Sciences of the United States of America 86, 60436046.
Bock, L. V., Blau, C., Schroder, G. F., Davydov, I. I., Fischer, N., Stark, H., Rodnina, M. V., Vaiana, A. C. & Grubmuller, H. (2013). Energy barriers and driving forces in tRNA translocation through the ribosome. Nature Structural & Molecular Biology 20, 13901396.
Bonven, B. & Gullov, K. (1979). Peptide chain elongation rate and ribosomal activity in Saccharomyces cerevisiae as a function of the growth rate. Molecular and General Genetics 170, 225230.
Brandt, F., Carlson, L. A., Hartl, F. U., Baumeister, W. & Grunewald, K. (2010). The three-dimensional organization of polyribosomes in intact human cells. Molecular Cell 39, 560569.
Brandt, F., Etchells, S. A., Ortiz, J. O., Elcock, A. H., Hartl, F. U. & Baumeister, W. (2009). The native 3D organization of bacterial polysomes. Cell 136, 261271.
Budkevich, T., Giesebrecht, J., Altman, R. B., Munro, J. B., Mielke, T., Nierhaus, K. H., Blanchard, S. C. & Spahn, C. M. (2011). Structure and dynamics of the mammalian ribosomal pretranslocation complex. Molecular Cell 44, 214224.
Budkevich, T. V., Giesebrecht, J., Behrmann, E., Loerke, J., Ramrath, D. J., Mielke, T., Ismer, J., Hildebrand, P. W., Tung, C. S., Nierhaus, K. H., Sanbonmatsu, K. Y. & Spahn, C. M. (2014). Regulation of the mammalian elongation cycle by subunit rolling: a eukaryotic-specific ribosome rearrangement. Cell 158, 121131.
Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. (2010). Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proceedings of the National Academy of Sciences of the United States of America 107, 1715817163.
Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F. & Rodnina, M. V. (2014). Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 157, 16191631.
Caliskan, N., Peske, F. & Rodnina, M. V. (2015). Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting. Trends in Biochemical Sciences 40, 265274.
Carberry, S. E., Rhoads, R. E. & Goss, D. J. (1989). A spectroscopic study of the binding of m7GTP and m7GpppG to human protein synthesis initiation factor 4E. Biochemistry 28, 80788083.
Caruthers, J. M., Johnson, E. R. & Mckay, D. B. (2000). Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proceedings of the National Academy of Sciences of the United States of America 97, 1308013085.
Castello, A., Alvarez, E. & Carrasco, L. (2006). Differential cleavage of eIF4GI and eIF4GII in mammalian cells. Effects on translation. The Journal of Biological Chemistry 281, 3320633216.
Chan, C. C., Dostie, J., Diem, M. D., Feng, W., Mann, M., Rappsilber, J. & Dreyfuss, G. (2004). eIF4A3 is a novel component of the exon junction complex. RNA 10, 200209.
Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., Deponte, D. P., Weierstall, U., Doak, R. B., Maia, F. R., Martin, A. V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Homke, A., Reich, C., Pietschner, D., Struder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kuhnel, K. U., Messerschmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jonsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schroter, C. D., Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T. R., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. (2011). Femtosecond X-ray protein nanocrystallography. Nature 470, 7377.
Chen, C., Stevens, B., Kaur, J., Cabral, D., Liu, H., Wang, Y., Zhang, H., Rosenblum, G., Smilansky, Z., Goldman, Y. E. & Cooperman, B. S. (2011a). Single-molecule fluorescence measurements of ribosomal translocation dynamics. Molecular Cell 42, 367377.
Chen, C., Stevens, B., Kaur, J., Smilansky, Z., Cooperman, B. S. & Goldman, Y. E. (2011b). Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proceedings of the National Academy of Sciences of the United States of America 108, 1698016985.
Chen, C., Zhang, H., Broitman, S. L., Reiche, M., Farrell, I., Cooperman, B. S. & Goldman, Y. E. (2013a). Dynamics of translation by single ribosomes through mRNA secondary structures. Nature Structural & Molecular Biology 20, 582588.
Chen, J., Coakley, A., O'CONNOR, M., Petrov, A., O'Leary, S. E., Atkins, J. F. & Puglisi, J. D. (2015). Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions. Cell 163, 12671280.
Chen, J., Dalal, R. V., Petrov, A. N., Tsai, A., O'LEARY, S. E., Chapin, K., Cheng, J., Ewan, M., Hsiung, P. L., Lundquist, P., Turner, S. W., Hsu, D. R. & Puglisi, J. D. (2013b). High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proceedings of the National Academy of Sciences of the United States of America 111, 664669.
Chen, J., Petrov, A., Johansson, M., Tsai, A., O'Leary, S. E. & Puglisi, J. D. (2014). Dynamic pathways of -1 translational frameshifting. Nature 512, 328332.
Chen, J., Petrov, A., Tsai, A., O'Leary, S. E. & Puglisi, J. D. (2013c). Coordinated conformational and compositional dynamics drive ribosome translocation. Nature Structural & Molecular Biology 20, 718727.
Chen, J., Tsai, A., O'LEARY, S. E., Petrov, A. & Puglisi, J. D. (2012a). Unraveling the dynamics of ribosome translocation. Current Opinion in Structural Biology 22, 804814.
Chen, J., Tsai, A., Petrov, A. & Puglisi, J. D. (2012b). Nonfluorescent quenchers to correlate single-molecule conformational and compositional dynamics. Journal of the American Chemical Society 134, 57345737.
Chen, Y., Potratz, J. P., Tijerina, P., Del Campo, M., Lambowitz, A. M. & Russell, R. (2008). DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proceedings of the National Academy of Sciences of the United States of America 105, 2020320208.
Cheng, S. & Gallie, D. R. (2007). eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains. The Journal of Biological Chemistry 282, 2524725258.
Choi, J., Ieong, K. W., Demirci, H., Chen, J., Petrov, A., Prabhakar, A., O'Leary, S. E., Dominissini, D., Rechavi, G., Soltis, S. M., Ehrenberg, M. & Puglisi, J. D. (2016). N-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nature Structural & Molecular Biology 23, 110115.
Chuang, R. Y., Weaver, P. L., Liu, Z. & Chang, T. H. (1997). Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275, 14681471.
Clarkson, B. K., Gilbert, W. V. & Doudna, J. A. (2010). Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae . PLoS ONE 5, e9114.
Comstock, M. J., Ha, T. & Chemla, Y. R. (2011). Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nature Methods 8, 335340.
Cooper, H. L., Park, M. H., Folk, J. E., Safer, B. & Braverman, R. (1983). Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proceedings of the National Academy of Sciences of the United States of America 80, 18541857.
Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Ha, T. (2008). Spontaneous intersubunit rotation in single ribosomes. Molecular Cell 30, 578588.
Cornish, P. V., Ermolenko, D. N., Staple, D. W., Hoang, L., Hickerson, R. P., Noller, H. F. & Ha, T. (2009). Following movement of the L1 stalk between three functional states in single ribosomes. Proceedings of the National Academy of Sciences of the United States of America 106, 25712576.
de la Cruz, J., Iost, I., Kressler, D. & Linder, P. (1997). The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae . Proceedings of the National Academy of Sciences of the United States of America 94, 52015206.
Deardorff, J. A. & Sachs, A. B. (1997). Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A)-binding protein. Journal of Molecular Biology 269, 6781.
Deng, X., Chen, K., Luo, G. Z., Weng, X., Ji, Q., Zhou, T. & He, C. (2015). Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Research 43, 65576567.
Dever, T. E. & Green, R. (2012). The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harbor Perspectives in Biology 4, a013706.
Dever, T. E., Gutierrez, E. & Shin, B. S. (2014). The hypusine-containing translation factor eIF5A. Critical Reviews in Biochemistry and Molecular Biology 49, 413425.
Dhote, V., Sweeney, T. R., Kim, N., Hellen, C. U. & Pestova, T. V. (2012). Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Proceedings of the National Academy of Sciences of the United States of America 109, E3150E3159.
Doerfel, L. K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H. & Rodnina, M. V. (2013). EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 8588.
Doerfel, L. K., Wohlgemuth, I., Kubyshkin, V., Starosta, A. L., Wilson, D. N., Budisa, N. & Rodnina, M. V. (2015). Entropic contribution of elongation factor P to proline positioning at the catalytic center of the Ribosome. Journal of the American Chemical Society 137, 1299713006.
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R. & Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201206.
Dorner, S., Brunelle, J. L., Sharma, D. & Green, R. (2006). The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nature Structural & Molecular Biology 13, 234241.
Dorywalska, M., Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. (2005). Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Research 33, 182189.
Dunkle, J. A. & Cate, J. H. (2010). Ribosome structure and dynamics during translocation and termination. Annual Review of Biophysics 39, 227244.
Dunkle, J. A., Wang, L., Feldman, M. B., Pulk, A., Chen, V. B., Kapral, G. J., Noeske, J., Richardson, J. S., Blanchard, S. C. & Cate, J. H. (2011). Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981984.
Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. (2010). Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proceedings of the National Academy of Sciences of the United States of America 107, 1715217157.
Dupuis, N. F., Holmstrom, E. D. & Nesbitt, D. J. (2014). Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proceedings of the National Academy of Sciences of the United States of America 111, 84648469.
Edelmann, P. & Gallant, J. (1977). Mistranslation in E. coli . Cell 10, 131137.
Eiler, D., Lin, J., Simonetti, A., Klaholz, B. P. & Steitz, T. A. (2013). Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases. Proceedings of the National Academy of Sciences of the United States of America 110, 1566215667.
EL'SKAYA, A. V., Ovcharenko, G. V., Palchevskii, S. S., Petrushenko, Z. M., Triana-Alonso, F. J. & Nierhaus, K. H. (1997). Three tRNA binding sites in rabbit liver ribosomes and role of the intrinsic ATPase in 80S ribosomes from higher eukaryotes. Biochemistry 36, 1049210497.
Elvekrog, M. M. & Gonzalez, R. L. Jr. (2013). Conformational selection of translation initiation factor 3 signals proper substrate selection. Nature Structural & Molecular Biology 20, 628633.
Ermolenko, D. N., Majumdar, Z. K., Hickerson, R. P., Spiegel, P. C., Clegg, R. M. & Noller, H. F. (2007). Observation of intersubunit movement of the ribosome in solution using FRET. Journal of Molecular Biology 370, 530540.
Ermolenko, D. N. & Noller, H. F. (2011). mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nature Structural & Molecular Biology 18, 457462.
Erzberger, J. P., Stengel, F., Pellarin, R., Zhang, S., Schaefer, T., Aylett, C. H., Cimermancic, P., Boehringer, D., Sali, A., Aebersold, R. & Ban, N. (2014). Molecular architecture of the 40SeIF1eIF3 translation initiation complex. Cell 158, 11231135.
Fei, J., Bronson, J. E., Hofman, J. M., Srinivas, R. L., Wiggins, C. H. & Gonzalez, R. L. Jr. (2009). Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proceedings of the National Academy of Sciences of the United States of America 106, 1570215707.
Fei, J., Kosuri, P., Macdougall, D. D. & Gonzalez, R. L. Jr. (2008). Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Molecular Cell 30, 348359.
Fei, J., Richard, A. C., Bronson, J. E. & Gonzalez, R. L. Jr. (2011). Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis. Nature Structural & Molecular Biology 18, 10431051.
Ferguson, A., Wang, L., Altman, R. B., Terry, D. S., Juette, M. F., Burnett, B. J., Alejo, J. L., Dass, R. A., Parks, M. M., Vincent, C. T. & Blanchard, S. C. (2015). Functional dynamics within the human ribosome regulate the rate of active protein synthesis. Molecular Cell 60, 475486.
Fernández, I. S., Bai, X. C., Hussain, T., Kelley, A. C., Lorsch, J. R., Ramakrishnan, V. & Scheres, S. H. (2013). Molecular architecture of a eukaryotic translational initiation complex. Science 342, 1240585.
Fernandez, I. S., Bai, X. C., Murshudov, G., Scheres, S. H. & Ramakrishnan, V. (2014). Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 157, 823831.
Ferraiuolo, M. A., Lee, C. S., Ler, L. W., Hsu, J. L., Costa-Mattioli, M., Luo, M. J., Reed, R. & Sonenberg, N. (2004). A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proceedings of the National Academy of Sciences of the United States of America 101, 41184123.
Firczuk, H., Kannambath, S., Pahle, J., Claydon, A., Beynon, R., Duncan, J., Westerhoff, H., Mendes, P. & Mccarthy, J. E. (2013). An in vivo control map for the eukaryotic mRNA translation machinery. Molecular Systems Biology 9, 635.
Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V. & Stark, H. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329333.
Fischer, N., Neumann, P., Konevega, A. L., Bock, L. V., Ficner, R., Rodnina, M. V. & Stark, H. (2015). Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature 520, 567570.
Fluman, N., Navon, S., Bibi, E. & Pilpel, Y. (2014). mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. eLife 3, e03440.
Frank, J. & Agrawal, R. K. (2000). A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318322.
Frank, J., Gao, H., Sengupta, J., Gao, N. & Taylor, D. J. (2007). The process of mRNA-tRNA translocation. Proceedings of the National Academy of Sciences of the United States of America 104, 1967119678.
Frank, J. & Gonzalez, R. L. Jr. (2010). Structure and dynamics of a processive Brownian motor: the translating ribosome. Annual Review of Biochemistry 79, 381412.
Fraser, C. S. (2015). Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie 114, 5871.
Freistroffer, D. V., Pavlov, M. Y., Macdougall, J., Buckingham, R. H. & Ehrenberg, M. (1997). Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. The EMBO Journal 16, 41264133.
Frolova, L., le Goff, X., Zhouravleva, G., Davydova, E., Philippe, M. & Kisselev, L. (1996). Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2, 334341.
Fronczek, D. N., Quammen, C., Wang, H., Kisker, C., Superfine, R., Taylor, R., Erie, D. A. & Tessmer, I. (2011). High accuracy FIONA-AFM hybrid imaging. Ultramicroscopy 111, 350355.
Furuichi, Y. & Miura, K. (1975). A blocked structure at the 5′ terminus of mRNA from cytoplasmic polyhedrosis virus. Nature 253, 374375.
Furuichi, Y., Morgan, M., Muthukrishnan, S. & Shatkin, A. J. (1975). Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m-7G(5′)ppp(5′)G-MpCp-. Proceedings of the National Academy of Sciences of the United States of America 72, 362366.
Gagnon, M. G., Lin, J., Bulkley, D. & Steitz, T. A. (2014). Ribosome structure. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome. Science 345, 684687.
Galicia-Vázquez, G., Cencic, R., Robert, F., Agenor, A. Q. & Pelletier, J. (2012). A cellular response linking eIF4AI activity to eIF4AII transcription. RNA 18, 13731384.
Gao, H., Zhou, Z., Rawat, U., Huang, C., Bouakaz, L., Wang, C., Cheng, Z., Liu, Y., Zavialov, A., Gursky, R., Sanyal, S., Ehrenberg, M., Frank, J. & Song, H. (2007). RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129, 929941.
Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C. & Ramakrishnan, V. (2009). The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694699.
García-García, C., Frieda, K. L., Feoktistova, K., Fraser, C. S. & Block, S. M. (2015). RNA BIOCHEMISTRY. Factor-dependent processivity in human eIF4A DEAD-box helicase. Science 348, 14861488.
Gosselin, P., Oulhen, N., Jam, M., Ronzca, J., Cormier, P., Czjzek, M. & Cosson, B. (2011). The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Research 39, 34963503.
Goyer, C., Altmann, M., Lee, H. S., Blanc, A., Deshmukh, M., Woolford, J. L., Trachsel, H. & Sonenberg, N. (1993). TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Molecular and Cellular Biology 13, 48604874.
Goyer, C., Altmann, M., Trachsel, H. & Sonenberg, N. (1989). Identification and characterization of cap-binding proteins from yeast. The Journal of Biological Chemistry 264, 76037610.
Graber, T. E., Hebert-Seropian, S., Khoutorsky, A., David, A., Yewdell, J. W., Lacaille, J. C. & Sossin, W. S. (2013). Reactivation of stalled polyribosomes in synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America 110, 1620516210.
Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S. & Sonenberg, N. (1998). A novel functional human eukaryotic translation initiation factor 4G. Molecular and Cellular Biology 18, 334342.
Graves, E. T., Duboc, C., Fan, J., Stransky, F., Leroux-Coyau, M. & Strick, T. R. (2015). A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nature Structural & Molecular Biology 22, 452457.
Gray, N. K., Coller, J. M., Dickson, K. S. & Wickens, M. (2000). Multiple portions of poly(A)-binding protein stimulate translation in vivo . The EMBO Journal 19, 47234733.
Grifo, J. A., Tahara, S. M., Leis, J. P., Morgan, M. A., Shatkin, A. J. & Merrick, W. C. (1982). Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. The Journal of Biological Chemistry 257, 52465252.
Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J. & Merrick, W. C. (1983). New initiation factor activity required for globin mRNA translation. The Journal of Biological Chemistry 258, 58045810.
Groft, C. M. & Burley, S. K. (2002). Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Molecular Cell 9, 12731283.
Gromadski, K. B. & Rodnina, M. V. (2004). Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Molecular Cell 13, 191200.
Gross, J. D., Moerke, N. J., von der Haar, T., Lugovskoy, A. A., Sachs, A. B., Mccarthy, J. E. & Wagner, G. (2003). Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115, 739750.
Guo, Z. & Noller, H. F. (2012). Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proceedings of the National Academy of Sciences of the United States of America 109, 2039120394.
Gutierrez, E., Shin, B. S., Woolstenhulme, C. J., Kim, J. R., Saini, P., Buskirk, A. R. & Dever, T. E. (2013). eIF5A promotes translation of polyproline motifs. Molecular Cell 51, 3545.
Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. (1995). Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. The EMBO Journal 14, 57015709.
Hanawa-Suetsugu, K., Sekine, S., Sakai, H., Hori-Takemoto, C., Terada, T., Unzai, S., Tame, J. R., Kuramitsu, S., Shirouzu, M. & Yokoyama, S. (2004). Crystal structure of elongation factor P from Thermus thermophilus HB8. Proceedings of the National Academy of Sciences of the United States of America 101, 95959600.
Harms, U., Andreou, A. Z., Gubaev, A. & Klostermeier, D. (2014). eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Research 42, 79117922.
Hashem, Y., des Georges, A., Dhote, V., Langlois, R., Liao, H. Y., Grassucci, R. A., Hellen, C. U., Pestova, T. V. & Frank, J. (2013). Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153, 11081119.
He, H., von der Haar, T., Singh, C. R., Ii, M., Li, B., Hinnebusch, A. G., Mccarthy, J. E. & Asano, K. (2003). The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Molecular and Cellular Biology 23, 54315445.
Henderson, A. & Hershey, J. W. (2011). Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae . Proceedings of the National Academy of Sciences of the United States of America 108, 64156419.
Herr, A. J., Atkins, J. F. & Gesteland, R. F. (2000a). Coupling of open reading frames by translational bypassing. Annual Review of Biochemistry 69, 343372.
Herr, A. J., Gesteland, R. F. & Atkins, J. F. (2000b). One protein from two open reading frames: mechanism of a 50 nt translational bypass. The EMBO Journal 19, 26712680.
Herr, A. J., Wills, N. M., Nelson, C. C., Gesteland, R. F. & Atkins, J. F. (2004). Factors that influence selection of coding resumption sites in translational bypassing: minimal conventional peptidyl-tRNA:mRNA pairing can suffice. The Journal of Biological Chemistry 279, 1108111087.
Hershey, J. W., Smit-Mcbride, Z. & Schnier, J. (1990). The role of mammalian initiation factor eIF-4D and its hypusine modification in translation. Biochimica et Biophysica Acta 1050, 160162.
Hershey, P. E., Mcwhirter, S. M., Gross, J. D., Wagner, G., Alber, T. & Sachs, A. B. (1999). The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. The Journal of Biological Chemistry 274, 2129721304.
Hilbert, M., Kebbel, F., Gubaev, A. & Klostermeier, D. (2011). eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Research 39, 22602270.
Hilliker, A., Gao, Z., Jankowsky, E. & Parker, R. (2011). The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Molecular Cell 43, 962972.
Hinnebusch, A. G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annual Review of Microbiology 59, 407450.
Hinnebusch, A. G. (2006). eIF3: a versatile scaffold for translation initiation complexes. Trends in Biochemical Sciences 31, 553562.
Hinnebusch, A. G. (2011). Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiology and Molecular Biology Reviews 75, 434467, first page of table of contents.
Hinnebusch, A. G. & Lorsch, J. R. (2012). The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harbor Perspectives in Biology 4.
Hinton, T. M., Coldwell, M. J., Carpenter, G. A., Morley, S. J. & Pain, V. M. (2007). Functional analysis of individual binding activities of the scaffold protein eIF4G. The Journal of Biological Chemistry 282, 16951708.
Hirokawa, G., Nijman, R. M., Raj, V. S., Kaji, H., Igarashi, K. & Kaji, A. (2005). The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA 11, 13171328.
Hofmann, W., Reichart, B., Ewald, A., Muller, E., Schmitt, I., Stauber, R. H., Lottspeich, F., Jockusch, B. M., Scheer, U., Hauber, J. & Dabauvalle, M. C. (2001). Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. The Journal of Cell Biology 152, 895910.
Holtkamp, W., Wintermeyer, W. & Rodnina, M. V. (2014). Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 36, 908918.
Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proceedings of the National Academy of Sciences of the United States of America 71, 41354139.
Horan, L. H. & Noller, H. F. (2007). Intersubunit movement is required for ribosomal translocation. Proceedings of the National Academy of Sciences of the United States of America 104, 48814885.
Huang, W. M., Ao, S. Z., Casjens, S., Orlandi, R., Zeikus, R., Weiss, R., Winge, D. & Fang, M. (1988). A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239, 10051012.
Hussain, T., Llácer, J. L., Fernández, I. S., Munoz, A., Martin-Marcos, P., Savva, C. G., Lorsch, J. R., Hinnebusch, A. G. & Ramakrishnan, V. (2014). Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 159, 597607.
Imataka, H., Gradi, A. & Sonenberg, N. (1998). A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal 17, 74807489.
Imataka, H. & Sonenberg, N. (1997). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Molecular and Cellular Biology 17, 69406947.
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218223.
Ingolia, N. T., Lareau, L. F. & Weissman, J. S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789802.
Ito, K. & Chiba, S. (2013). Arrest peptides: cis-acting modulators of translation. Annual Review of Biochemistry 82, 171202.
Ito, K., Ebihara, K. & Nakamura, Y. (1998). The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4, 958972.
Ito, K., Ebihara, K., Uno, M. & Nakamura, Y. (1996). Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proceedings of the National Academy of Sciences of the United States of America 93, 54435448.
Jacks, T., Madhani, H. D., Masiarz, F. R. & Varmus, H. E. (1988a). Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55, 447458.
Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J. & Varmus, H. E. (1988b). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280283.
Jackson, R. J. (2013). The current status of vertebrate cellular mRNA IRESs. Cold Spring Harbor Perspectives in Biology 5.
Jackson, R. J., Hellen, C. U. & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews. Molecular Cell Biology 11, 113127.
Jackson, R. J., Hellen, C. U. & Pestova, T. V. (2012). Termination and post-termination events in eukaryotic translation. Advances in Protein Chemistry and Structural Biology 86, 4593.
Jao, D. L. & Chen, K. Y. (2006). Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. Journal of Cellular Biochemistry 97, 583598.
Jenner, L. B., Demeshkina, N., Yusupova, G. & Yusupov, M. (2010). Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nature Structural & Molecular Biology 17, 555560.
Johansson, M., Bouakaz, E., Lovmar, M. & Ehrenberg, M. (2008). The kinetics of ribosomal peptidyl transfer revisited. Molecular Cell 30, 589598.
Johansson, M., Chen, J., Tsai, A., Kornberg, G. & Puglisi, J. D. (2014). Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Cell Reports 7, 15341546.
Johansson, M., Zhang, J. & Ehrenberg, M. (2012). Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proceedings of the National Academy of Sciences of the United States of America 109, 131136.
Kahvejian, A., Roy, G. & Sonenberg, N. (2001). The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harbor Symposia on Quantitative Biology 66, 293300.
Kahvejian, A., Svitkin, Y. V., Sukarieh, R., M'Boutchou, M. N. & Sonenberg, N. (2005). Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes & Development 19, 104113.
Kang, H. A. & Hershey, J. W. (1994). Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae . The Journal of Biological Chemistry 269, 39343940.
Kannan, K., Kanabar, P., Schryer, D., Florin, T., Oh, E., Bahroos, N., Tenson, T., Weissman, J. S. & Mankin, A. S. (2014). The general mode of translation inhibition by macrolide antibiotics. Proceedings of the National Academy of Sciences of the United States of America 111, 1595815963.
Karaskova, M., Gunisova, S., Herrmannova, A., Wagner, S., Munzarova, V. & Valasek, L. (2012). Functional characterization of the role of the N-terminal domain of the c/Nip1 subunit of eukaryotic initiation factor 3 (eIF3) in AUG recognition. The Journal of Biological Chemistry 287, 2842028434.
Karim, M. M., Svitkin, Y. V., Kahvejian, A., de Crescenzo, G., Costa-Mattioli, M. & Sonenberg, N. (2006). A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proceedings of the National Academy of Sciences of the United States of America 103, 94949499.
Karimi, R., Pavlov, M. Y., Buckingham, R. H. & Ehrenberg, M. (1999). Novel roles for classical factors at the interface between translation termination and initiation. Molecular Cell 3, 601609.
Kaye, N. M., Emmett, K. J., Merrick, W. C. & Jankowsky, E. (2009). Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap. The Journal of Biological Chemistry 284, 1774217750.
Keiler, K. C., Waller, P. R. & Sauer, R. T. (1996). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990993.
Kemper, W. M., Berry, K. W. & Merrick, W. C. (1976). Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. The Journal of Biological Chemistry 251, 55515557.
Khoshnevis, S., Gunisova, S., Vlckova, V., Kouba, T., Neumann, P., Beznoskova, P., Ficner, R. & Valasek, L. S. (2014). Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Research 42, 41234139.
Kiel, M. C., Aoki, H. & Ganoza, M. C. (1999). Identification of a ribosomal ATPase in Escherichia coli cells. Biochimie 81, 10971108.
Kiel, M. C. & Ganoza, M. C. (2001). Functional interactions of an Escherichia coli ribosomal ATPase. European Journal of Biochemistry 268, 278286.
Kim, H. D., Puglisi, J. D. & Chu, S. (2007). Fluctuations of transfer RNAs between classical and hybrid states. Biophysical Journal 93, 35753582.
Kim, H. K., Liu, F., Fei, J., Bustamante, C., Gonzalez, R. L. Jr. & Tinoco, I. Jr. (2014). A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proceedings of the National Academy of Sciences of the United States of America 111, 55385543.
Kim, H. S., Wilce, M. C., Yoga, Y. M., Pendini, N. R., Gunzburg, M. J., Cowieson, N. P., Wilson, G. M., Williams, B. R., Gorospe, M. & Wilce, J. A. (2011). Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Research 39, 11171130.
Knoops, K., Schoehn, G. & Schaffitzel, C. (2012). Cryo-electron microscopy of ribosomal complexes in cotranslational folding, targeting, and translocation. Wiley Interdisciplinary Reviews, RNA 3, 429441.
Koh, C. S., Brilot, A. F., Grigorieff, N. & Korostelev, A. A. (2014). Taura syndrome virus IRES initiates translation by binding its tRNA–mRNA-like structural element in the ribosomal decoding center. Proceedings of the National Academy of Sciences of the United States of America 111, 91399144.
Kolupaeva, V. G., Unbehaun, A., Lomakin, I. B., Hellen, C. U. & Pestova, T. V. (2005). Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11, 470486.
Korostelev, A., Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J., Trakhanov, S., Scott, W. G. & Noller, H. F. (2008). Crystal structure of a translation termination complex formed with release factor RF2. Proceedings of the National Academy of Sciences of the United States of America 105, 1968419689.
Koutmou, K. S., Mcdonald, M. E., Brunelle, J. L. & Green, R. (2014). RF3:GTP promotes rapid dissociation of the class 1 termination factor. RNA 20, 609620.
Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 134.
Kuhle, B. & Ficner, R. (2014a). eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. The EMBO Journal 33, 11771191.
Kuhle, B. & Ficner, R. (2014b). Structural insight into the recognition of amino-acylated initiator tRNA by eIF5B in the 80S initiation complex. BMC Structural Biology 14, 20.
Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. (1995). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4 G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. The Journal of Biological Chemistry 270, 2197521983.
Lang, B. F., Jakubkova, M., Hegedusova, E., Daoud, R., Forget, L., Brejova, B., Vinar, T., Kosa, P., Fricova, D., Nebohacova, M., Griac, P., Tomaska, L., Burger, G. & Nosek, J. (2014). Massive programmed translational jumping in mitochondria. Proceedings of the National Academy of Sciences of the United States of America 111, 59265931.
Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M. (2004). Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods 1, 133139.
Laurberg, M., Asahara, H., Korostelev, A., Zhu, J., Trakhanov, S. & Noller, H. F. (2008). Structural basis for translation termination on the 70S ribosome. Nature 454, 852857.
Lax, S., Fritz, W., Browning, K. & Ravel, J. (1985). Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5′-triphosphate inhibition of polypeptide synthesis. Proceedings of the National Academy of Sciences of the United States of America 82, 330333.
Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. (2013). A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proceedings of the National Academy of Sciences of the United States of America 110, 324329.
Lefebvre, A. K., Korneeva, N. L., Trutschl, M., Cvek, U., Duzan, R. D., Bradley, C. A., Hershey, J. W. & Rhoads, R. E. (2006). Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. The Journal of Biological Chemistry 281, 2291722932.
Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G. & Webb, W. W. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682686.
Li, G. W., Oh, E. & Weissman, J. S. (2012). The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538541.
Li, W., Ross-Smith, N., Proud, C. G. & Belsham, G. J. (2001). Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. FEBS Letters 507, 15.
Lin, J., Fabian, M., Sonenberg, N. & Meller, A. (2012). Nanopore detachment kinetics of poly(A) binding proteins from RNA molecules reveals the critical role of C-terminus interactions. Biophysical Journal 102, 14271434.
Linder, P. & Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nature Reviews. Molecular Cell Biology 12, 505516.
Liu, C. Y., Qureshi, M. T. & Lee, T. H. (2011). Interaction strengths between the ribosome and tRNA at various steps of translocation. Biophysical Journal 100, 22012208.
Liu, F., Putnam, A. & Jankowsky, E. (2008). ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proceedings of the National Academy of Sciences of the United States of America 105, 2020920214.
Liu, T., Kaplan, A., Alexander, L., Yan, S., Wen, J. D., Lancaster, L., Wickersham, C. E., Fredrik, K., Noller, H., Tinoco, I. & Bustamante, C. J. (2014a). Direct measurement of the mechanical work during translocation by the ribosome. eLife 3, e03406.
Liu, Y., Neumann, P., Kuhle, B., Monecke, T., Schell, S., Chari, A. & Ficner, R. (2014b). Translation initiation factor eIF3b contains a nine-bladed beta-propeller and interacts with the 40S ribosomal subunit. Structure 22, 923930.
Lomakin, I. B. & Steitz, T. A. (2013). The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500, 307311.
Lorsch, J. R. & Herschlag, D. (1998a). The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 21802193.
Lorsch, J. R. & Herschlag, D. (1998b). The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 21942206.
Lucic, V., Rigort, A. & Baumeister, W. (2013). Cryo-electron tomography: the challenge of doing structural biology in situ. The Journal of Cell Biology 202, 407419.
Maag, D., Algire, M. A. & Lorsch, J. R. (2006). Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection. Journal of Molecular Biology 356, 724737.
Maag, D., Fekete, C. A., Gryczynski, Z. & Lorsch, J. R. (2005). A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Molecular Cell 17, 265275.
Maag, D. & Lorsch, J. R. (2003). Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. Journal of Molecular Biology 330, 917924.
MacDougall, D. D. & Gonzalez, R. L. (2011). Exploring the structural dynamics of the translational machinery using single-molecule fluorescence resonance energy transfer. Ribosomes: Structure, Function, and Dynamics, 273293.
Mader, S., Lee, H., Pause, A. & Sonenberg, N. (1995). The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Molecular and Cellular Biology 15, 49904997.
Mallam, A. L., Del Campo, M., Gilman, B., Sidote, D. J. & Lambowitz, A. M. (2012). Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490, 121125.
Mandal, A., Mandal, S. & Park, M. H. (2014). Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS ONE 9, e111800.
Mao, Y., Liu, H., Liu, Y. & Tao, S. (2014). Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae . Nucleic Acids Research 42, 48134822.
Marcinkiewicz, C., Gajko, A. & Galasinski, W. (1991). Purification and properties of the heterogeneous subunits of elongation factor EF-1 from Guerin epithelioma cells. Acta Biochimica Polonica 38, 129134.
Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. (1997). Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89, 951961.
Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. (1999). Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Molecular Cell 3, 707716.
Marintchev, A., Edmonds, K. A., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Herdy, B., Sonenberg, N. & Wagner, G. (2009). Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136, 447460.
Marintchev, A. & Wagner, G. (2004). Translation initiation: structures, mechanisms and evolution. Quarterly Reviews of Biophysics 37, 197284.
Marquez, V., Wilson, D. N., Tate, W. P., Triana-Alonso, F. & Nierhaus, K. H. (2004). Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118, 4555.
Marsden, S., Nardelli, M., Linder, P. & Mccarthy, J. E. (2006). Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. Journal of Molecular Biology 361, 327335.
Marshall, R. A., Aitken, C. E. & Puglisi, J. D. (2009). GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Molecular Cell 35, 3747.
Marshall, R. A., Dorywalska, M. & Puglisi, J. D. (2008). Irreversible chemical steps control intersubunit dynamics during translation. Proceedings of the National Academy of Sciences of the United States of America 105, 1536415369.
Marzi, S., Myasnikov, A. G., Serganov, A., Ehresmann, C., Romby, P., Yusupov, M. & Klaholz, B. P. (2007). Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 10191031.
Masuda, T., Petrov, A. N., Iizuka, R., Funatsu, T., Puglisi, J. D. & Uemura, S. (2012). Initiation factor 2, tRNA, and 50S subunits cooperatively stabilize mRNAs on the ribosome during initiation. Proceedings of the National Academy of Sciences of the United States of America 109, 48814885.
Mathews, M. B. & Hershey, J. W. (2015). The translation factor eIF5A and human cancer. Biochimica et Biophysica Acta 1849, 836844.
Matsuo, H., Li, H., Mcguire, A. M., Fletcher, C. M., Gingras, A. C., Sonenberg, N. & Wagner, G. (1997). Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nature Structural Biology 4, 717724.
Mccarthy, J. E. (1998). Posttranscriptional control of gene expression in yeast. Microbiology and Molecular Biology Reviews 62, 14921553.
Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G. & Yusupov, M. (2012). One core, two shells: bacterial and eukaryotic ribosomes. Nature Structural & Molecular Biology 19, 560567.
Merrick, W. C. (2015). eIF4F: a retrospective. The Journal of Biological Chemistry 290, 2409124099.
Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 16351646.
Milon, P., Maracci, C., Filonava, L., Gualerzi, C. O. & Rodnina, M. V. (2012). Real-time assembly landscape of bacterial 30S translation initiation complex. Nature Structural & Molecular Biology 19, 609615.
Milon, P. & Rodnina, M. V. (2012). Kinetic control of translation initiation in bacteria. Critical Reviews in Biochemistry and Molecular Biology 47, 334348.
Mitarai, N., Sneppen, K. & Pedersen, S. (2008). Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. Journal of Molecular Biology 382, 236245.
Mitchell, S. F., Walker, S. E., Algire, M. A., Park, E. H., Hinnebusch, A. G. & Lorsch, J. R. (2010). The 5′−7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Molecular Cell 39, 950962.
Mittermaier, A. & Kay, L. E. (2006). New tools provide new insights in NMR studies of protein dynamics. Science 312, 224228.
Moerke, N. J., Aktas, H., Chen, H., Cantel, S., Reibarkh, M. Y., Fahmy, A., Gross, J. D., Degterev, A., Yuan, J., Chorev, M., Halperin, J. A. & Wagner, G. (2007). Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257267.
Moll, I., Grill, S., Gualerzi, C. O. & Blasi, U. (2002). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Molecular Microbiology 43, 239246.
Moore, S. D. & Sauer, R. T. (2007). The tmRNA system for translational surveillance and ribosome rescue. Annual Review of Biochemistry 76, 101124.
Morino, S., Imataka, H., Svitkin, Y. V., Pestova, T. V. & Sonenberg, N. (2000). Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Molecular and Cellular Biology 20, 468477.
Muhs, M., Hilal, T., Mielke, T., Skabkin, M. A., Sanbonmatsu, K. Y., Pestova, T. V. & Spahn, C. M. (2015). Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Molecular Cell 57, 422432.
Munro, J. B., Altman, R. B., O'CONNOR, N. & Blanchard, S. C. (2007). Identification of two distinct hybrid state intermediates on the ribosome. Molecular Cell 25, 505517.
Munro, J. B., Altman, R. B., Tung, C. S., Sanbonmatsu, K. Y. & Blanchard, S. C. (2010a). A fast dynamic mode of the EF-G-bound ribosome. The EMBO Journal 29, 770781.
Munro, J. B., Sanbonmatsu, K. Y., Spahn, C. M. & Blanchard, S. C. (2009). Navigating the ribosome's metastable energy landscape. Trends in Biochemical Sciences 34, 390400.
Munro, J. B., Wasserman, M. R., Altman, R. B., Wang, L. & Blanchard, S. C. (2010b). Correlated conformational events in EF-G and the ribosome regulate translocation. Nature Structural & Molecular Biology 17, 14701477.
Myasnikov, A. G., Afonina, Z. A., Menetret, J. F., Shirokov, V. A., Spirin, A. S. & Klaholz, B. P. (2014). The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes. Nat Communications 5, 5294.
Nakamura, Y., Ito, K. & Isaksson, L. A. (1996). Emerging understanding of translation termination. Cell 87, 147150.
Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. & Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244247.
Nanda, J. S., Saini, A. K., Munoz, A. M., Hinnebusch, A. G. & Lorsch, J. R. (2013). Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. The Journal of Biological Chemistry 288, 53165329.
Neff, C. L. & Sachs, A. B. (1999). Eukaryotic translation initiation factors 4 G and 4A from Saccharomyces cerevisiae interact physically and functionally. Molecular and Cellular Biology 19, 55575564.
Niederberger, N., Trachsel, H. & Altmann, M. (1998). The RNA recognition motif of yeast translation initiation factor Tif3/eIF4B is required but not sufficient for RNA strand-exchange and translational activity. RNA 4, 12591267.
Niedzwiecka, A., Marcotrigiano, J., Stepinski, J., Jankowska-Anyszka, M., Wyslouch-Cieszynska, A., Dadlez, M., Gingras, A. C., Mak, P., Darzynkiewicz, E., Sonenberg, N., Burley, S. K. & Stolarski, R. (2002). Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. Journal of Molecular Biology 319, 615635.
Nierhaus, K. H. (1990). The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29, 49975008.
Nilsen, T. W. (2014). Molecular biology. Internal mRNA methylation finally finds functions. Science 343, 12071208.
Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie 57, 587595.
Niu, Y., Zhao, X., Wu, Y. S., Li, M. M., Wang, X. J. & Yang, Y. G. (2013). N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics, Proteomics & Bioinformatics 11, 817.
Noriega, T. R., Chen, J., Walter, P. & Puglisi, J. D. (2014a). Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3, e04418.
Noriega, T. R., Tsai, A., Elvekrog, M. M., Petrov, A., Neher, S. B., Chen, J., Bradshaw, N., Puglisi, J. D. & Walter, P. (2014b). Signal recognition particle-ribosome binding is sensitive to nascent chain length. The Journal of Biological Chemistry 289, 1929419305.
Nosek, J., Tomaska, L., Burger, G. & Lang, B. F. (2015). Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends in Genetics 31, 187194.
O'Leary, S. E., Petrov, A., Chen, J. & Puglisi, J. D. (2013). Dynamic recognition of the mRNA cap by Saccharomyces cerevisiae eIF4E. Structure 21, 21972207.
Oberer, M., Marintchev, A. & Wagner, G. (2005). Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes & Development 19, 22122223.
Ogle, J. M., Brodersen, D. E., Clemons, W. M. Jr., Tarry, M. J., Carter, A. P. & Ramakrishnan, V. (2001). Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897902.
Oliveira, C. C., van den Heuvel, J. J. & Mccarthy, J. E. (1993). Inhibition of translational initiation in Saccharomyces cerevisiae by secondary structure: the roles of the stability and position of stem-loops in the mRNA leader. Molecular Microbiology 9, 521532.
Otero, L. J., Ashe, M. P. & Sachs, A. B. (1999). The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. The EMBO Journal 18, 31533163.
Ozes, A. R., Feoktistova, K., Avanzino, B. C. & Fraser, C. S. (2011). Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. Journal of Molecular Biology 412, 674687.
Palmer, A. G. III (2014). Chemical exchange in biomacromolecules: past, present, and future. Journal of Magnetic Resonance 241, 317.
Pan, C., Potratz, J. P., Cannon, B., Simpson, Z. B., Ziehr, J. L., Tijerina, P. & Russell, R. (2014). DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. PLoS Biology 12, e1001981.
Papadopoulos, E., Jenni, S., Kabha, E., Takrouri, K. J., Yi, T., Salvi, N., Luna, R. E., Gavathiotis, E., Mahalingam, P., Arthanari, H., Rodriguez-Mias, R., Yefidoff-Freedman, R., Aktas, B. H., Chorev, M., Halperin, J. A. & Wagner, G. (2014). Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G. Proceedings of the National Academy of Sciences of the United States of America 111, E31873195.
Pape, T., Wintermeyer, W. & Rodnina, M. V. (1998). Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. The EMBO Journal 17, 74907497.
Park, E. H., Walker, S. E., Lee, J. M., Rothenburg, S., Lorsch, J. R. & Hinnebusch, A. G. (2011). Multiple elements in the eIF4G1 N-terminus promote assembly of eIF4G1•PABP mRNPs in vivo . The EMBO Journal 30, 302316.
Park, E. H., Walker, S. E., Zhou, F., Lee, J. M., Rajagopal, V., Lorsch, J. R. & Hinnebusch, A. G. (2013). Yeast eukaryotic initiation factor 4B (eIF4B) enhances complex assembly between eIF4A and eIF4G in vivo . The Journal of Biological Chemistry 288, 23402354.
Park, M. H., Nishimura, K., Zanelli, C. F. & Valentini, S. R. (2010). Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491500.
Park, S., Myszka, D. G., Yu, M., Littler, S. J. & Laird-Offringa, I. A. (2000). HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Molecular and Cellular Biology 20, 47654772.
Parker, J. (1989). Errors and alternatives in reading the universal genetic code. Microbiological Reviews 53, 273298.
Parsyan, A., Shahbazian, D., Martineau, Y., Petroulakis, E., Alain, T., Larsson, O., Mathonnet, G., Tettweiler, G., Hellen, C. U., Pestova, T. V., Svitkin, Y. V. & Sonenberg, N. (2009). The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 106, 2221722222.
Parsyan, A., Svitkin, Y., Shahbazian, D., Gkogkas, C., Lasko, P., Merrick, W. C. & Sonenberg, N. (2011). mRNA helicases: the tacticians of translational control. Nature Reviews. Molecular Cell Biology 12, 235245.
Passmore, L. A., Schmeing, T. M., Maag, D., Applefield, D. J., Acker, M. G., Algire, M. A., Lorsch, J. R. & Ramakrishnan, V. (2007). The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Molecular Cell 26, 4150.
Pech, M., Karim, Z., Yamamoto, H., Kitakawa, M., Qin, Y. & Nierhaus, K. H. (2011). Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proceedings of the National Academy of Sciences of the United States of America 108, 31993203.
Peil, L., Starosta, A. L., Lassak, J., Atkinson, G. C., Virumae, K., Spitzer, M., Tenson, T., Jung, K., Remme, J. & Wilson, D. N. (2013). Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proceedings of the National Academy of Sciences of the United States of America 110, 1526515270.
Pelletier, J., Graff, J., Ruggero, D. & Sonenberg, N. (2015). Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Research 75, 250263.
Perez, C. E. & Gonzalez, R. L. JR. (2011). In vitro and in vivo single-molecule fluorescence imaging of ribosome-catalyzed protein synthesis. Current Opinion in Chemical Biology 15, 853863.
Peske, F., Kuhlenkoetter, S., Rodnina, M. V. & Wintermeyer, W. (2014). Timing of GTP binding and hydrolysis by translation termination factor RF3. Nucleic Acids Research 42, 18121820.
Peske, F., Rodnina, M. V. & Wintermeyer, W. (2005). Sequence of steps in ribosome recycling as defined by kinetic analysis. Molecular Cell 18, 403412.
Pestova, T. V., Borukhov, S. I. & Hellen, C. U. (1998). Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854859.
Pestova, T. V., Lomakin, I. B., Lee, J. H., Choi, S. K., Dever, T. E. & Hellen, C. U. (2000). The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332335.
Petropoulos, A. D. & Green, R. (2012). Further in vitro exploration fails to support the “allosteric three-site model”. The Journal of Biological Chemistry 287, 1164211648.
Petrov, A., Chen, J., O'Leary, S., Tsai, A. & Puglisi, J. D. (2012). Single-molecule analysis of translational dynamics. Cold Spring Harbor Perspectives in Biology 4, a011551.
Pisarev, A. V., Hellen, C. U. & Pestova, T. V. (2007). Recycling of eukaryotic posttermination ribosomal complexes. Cell 131, 286299.
Pisarev, A. V., Kolupaeva, V. G., Yusupov, M. M., Hellen, C. U. & Pestova, T. V. (2008). Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. The EMBO Journal 27, 16091621.
Pisarev, A. V., Skabkin, M. A., Pisareva, V. P., Skabkina, O. V., Rakotondrafara, A. M., Hentze, M. W., Hellen, C. U. & Pestova, T. V. (2010). The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Molecular Cell 37, 196210.
Pisareva, V. P., Pisarev, A. V., Komar, A. A., Hellen, C. U. & Pestova, T. V. (2008). Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135, 12371250.
Prat, A., Schmid, S. R., Buser, P., Blum, S., Trachsel, H., Nielsen, P. J. & Linder, P. (1990). Expression of translation initiation factor 4A from yeast and mouse in Saccharomyces cerevisiae . Biochimica et Biophysica Acta 1050, 140145.
Precup, J., Ulrich, A. K., Roopnarine, O. & Parker, J. (1989). Context specific misreading of phenylalanine codons. Molecular and General Genetics 218, 397401.
Ptushkina, M., von der Haar, T., Karim, M. M., Hughes, J. M. & Mccarthy, J. E. (1999). Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. The EMBO Journal 18, 40684075.
Ptushkina, M., von der Haar, T., Vasilescu, S., Frank, R., Birkenhager, R. & Mccarthy, J. E. (1998). Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5′ cap in yeast involves a site partially shared by p20. The EMBO Journal 17, 47984808.
Pulk, A. & Cate, J. H. (2013). Control of ribosomal subunit rotation by elongation factor G. Science 340, 1235970.
Qin, P., Yu, D., Zuo, X. & Cornish, P. V. (2014). Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Reports 15, 185190.
Qu, X., Wen, J. D., Lancaster, L., Noller, H. F., Bustamante, C. & Tinoco, I. Jr. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118121.
Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. (2011). Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730736.
Rajagopal, V., Park, E. H., Hinnebusch, A. G. & Lorsch, J. R. (2012). Specific domains in yeast translation initiation factor eIF4G strongly bias RNA unwinding activity of the eIF4F complex toward duplexes with 5′-overhangs. The Journal of Biological Chemistry 287, 2030120312.
Ramrath, D. J., Yamamoto, H., Rother, K., Wittek, D., Pech, M., Mielke, T., Loerke, J., Scheerer, P., Ivanov, P., Teraoka, Y., Shpanchenko, O., Nierhaus, K. H. & Spahn, C. M. (2012). The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature 485, 526529.
Ratje, A. H., Loerke, J., Mikolajka, A., Brunner, M., Hildebrand, P. W., Starosta, A. L., Donhofer, A., Connell, S. R., Fucini, P., Mielke, T., Whitford, P. C., Onuchic, J. N., Yu, Y., Sanbonmatsu, K. Y., Hartmann, R. K., Penczek, P. A., Wilson, D. N. & Spahn, C. M. (2010). Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713716.
Ravera, E., Salmon, L., Fragai, M., Parigi, G., Al-Hashimi, H. & Luchinat, C. (2014). Insights into domain-domain motions in proteins and RNA from solution NMR. Accounts of Chemical Research 47, 31183126.
Ray, B. K., Lawson, T. G., Kramer, J. C., Cladaras, M. H., Grifo, J. A., Abramson, R. D., Merrick, W. C. & Thach, R. E. (1985). ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. The Journal of Biological Chemistry 260, 76517658.
Richman, N. & Bodley, J. W. (1972). Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Proceedings of the National Academy of Sciences of the United States of America 69, 686689.
Richter, J. D. & Sonenberg, N. (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477480.
Richter, N. J., Rogers, G. W., Hensold, J. O. & Merrick, W. C. (1999). Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H. The Journal of Biological Chemistry 274, 3541535424.
Richter-Cook, N. J., Dever, T. E., Hensold, J. O. & Merrick, W. C. (1998). Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. The Journal of Biological Chemistry 273, 75797587.
Rodnina, M. V. (2012). Quality control of mRNA decoding on the bacterial ribosome. Advances in Protein Chemistry and Structural Biology 86, 95128.
Rodnina, M. V. (2013). The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Current Opinion in Structural Biology 23, 595602.
Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. (1997). Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 3741.
Rodnina, M. V., Serebryanik, A. I., Ovcharenko, G. V. & El'Skaya, A. V. (1994). ATPase strongly bound to higher eukaryotic ribosomes. European Journal of Biochemistry 225, 305310.
Rodnina, M. V. & Wintermeyer, W. (2001a). Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annual Review of Biochemistry 70, 415435.
Rodnina, M. V. & Wintermeyer, W. (2001b). Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends in Biochemical Sciences 26, 124130.
Rogers, G. W., Lima, W. F. & Merrick, W. C. (2001a). Further characterization of the helicase activity of eIF4A. Substrate specificity. The Journal of Biological Chemistry 276, 1259812608.
Rogers, G. W., Richter, N. J., Lima, W. F. & Merrick, W. C. (2001b). Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. The Journal of Biological Chemistry 276, 3091430922.
Rogers, G. W., Richter, N. J. & Merrick, W. C. (1999). Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. The Journal of Biological Chemistry 274, 1223612244.
Roll-Mecak, A., Cao, C., Dever, T. E. & Burley, S. K. (2000). X-ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103, 781792.
Roost, C., Lynch, S. R., Batista, P. J., Qu, K., Chang, H. Y. & Kool, E. T. (2015). Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. Journal of the American Chemical Society 137, 21072115.
Rosenblum, G., Chen, C., Kaur, J., Cui, X., Zhang, H., Asahara, H., Chong, S., Smilansky, Z., Goldman, Y. E. & Cooperman, B. S. (2013). Quantifying elongation rhythm during full-length protein synthesis. Journal of the American Chemical Society 135, 1132211329.
Rossi, D., Kuroshu, R., Zanelli, C. F. & Valentini, S. R. (2014). eIF5A and EF-P: two unique translation factors are now traveling the same road. Wiley Interdisciplinary Reviews, RNA 5, 209222.
Roy, R., Hohng, S. & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods 5, 507516.
Rozen, F., Edery, I., Meerovitch, K., Dever, T. E., Merrick, W. C. & Sonenberg, N. (1990). Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Molecular and Cellular Biology 10, 11341144.
Rozovsky, N., Butterworth, A. C. & Moore, M. J. (2008). Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 14, 21362148.
Saini, A. K., Nanda, J. S., Lorsch, J. R. & Hinnebusch, A. G. (2010). Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes & Development 24, 97110.
Saini, P., Eyler, D. E., Green, R. & Dever, T. E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118121.
Salmon, L., Yang, S. & Al-Hashimi, H. M. (2014). Advances in the determination of nucleic acid conformational ensembles. Annual Review of Physical Chemistry 65, 293316.
Samatova, E., Konevega, A. L., Wills, N. M., Atkins, J. F. & Rodnina, M. V. (2014). High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nature Communications 5, 4459.
Sander, G. (1983). Ribosomal protein L1 from Escherichia coli. Its role in the binding of tRNA to the ribosome and in elongation factor g-dependent GTP hydrolysis. The Journal of Biological Chemistry 258, 1009810103.
Sarnow, P., Cevallos, R. C. & Jan, E. (2005). Takeover of host ribosomes by divergent IRES elements. Biochemical Society Transactions 33(Pt 6), 14791482.
Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W. & Plitzko, J. M. (2007). Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. Journal of Structural Biology 160, 135145.
Savelsbergh, A., Katunin, V. I., Mohr, D., Peske, F., Rodnina, M. V. & Wintermeyer, W. (2003). An elongation factor G-induced ribosome rearrangement precedes tRNA–mRNA translocation. Molecular Cell 11, 15171523.
Scheper, G. C., van Kollenburg, B., Hu, J., Luo, Y., Goss, D. J. & Proud, C. G. (2002). Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. The Journal of Biological Chemistry 277, 33033309.
Schmeing, T. M. & Ramakrishnan, V. (2009). What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 12341242.
Schmeing, T. M., Voorhees, R. M., Kelley, A. C., Gao, Y. G., Murphy, F. V. T., Weir, J. R. & Ramakrishnan, V. (2009). The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688694.
Schreier, M. H., Erni, B. & Staehelin, T. (1977). Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. Journal of Molecular Biology 116, 727753.
Schutz, P., Bumann, M., Oberholzer, A. E., Bieniossek, C., Trachsel, H., Altmann, M. & Baumann, U. (2008). Crystal structure of the yeast eIF4A–eIF4G complex: an RNA-helicase controlled by protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America 105, 95649569.
Seidelt, B., Innis, C. A., Wilson, D. N., Gartmann, M., Armache, J. P., Villa, E., Trabuco, L. G., Becker, T., Mielke, T., Schulten, K., Steitz, T. A. & Beckmann, R. (2009). Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326, 14121415.
Sekiyama, N., Arthanari, H., Papadopoulos, E., Rodriguez-Mias, R. A., Wagner, G. & Léger-Abraham, M. (2015). Molecular mechanism of the dual activity of 4EGI-1: dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proceedings of the National Academy of Sciences of the United States of America 112, E4036E4045.
Selmer, M., Dunham, C. M., Murphy, F. V. T., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R. & Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 19351942.
Senissar, M., Saux, A. L., Belgareh-Touze, N., Adam, C., Banroques, J. & Tanner, N. K. (2014). The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Research 42, 1000510022.
Shah, P., Ding, Y., Niemczyk, M., Kudla, G. & Plotkin, J. B. (2013). Rate-limiting steps in yeast protein translation. Cell 153, 15891601.
Sharma, D. & Jankowsky, E. (2014). The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Critical Reviews in Biochemistry and Molecular Biology 49, 343360.
Shatkin, A. J. (1976). Capping of eucaryotic mRNAs. Cell 9(4 Pt 2), 645653.
Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S. O. (2012). Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271275.
Shiba, T., Mizote, H., Kaneko, T., Nakajima, T. & Kakimoto, Y. (1971). Hypusine, a new amino acid occurring in bovine brain. Isolation and structural determination. Biochimica et Biophysica Acta 244, 523531.
Shih, J. W., Wang, W. T., Tsai, T. Y., Kuo, C. Y., Li, H. K. & Wu Lee, Y. H. (2012). Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. The Biochemical Journal 441, 119129.
Shoemaker, C. J. & Green, R. (2011). Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proceedings of the National Academy of Sciences of the United States of America 108, E1392E1398.
Siddiqui, N., Tempel, W., Nedyalkova, L., Volpon, L., Wernimont, A. K., Osborne, M. J., Park, H. W. & Borden, K. L. (2012). Structural insights into the allosteric effects of 4EBP1 on the eukaryotic translation initiation factor eIF4E. Journal of Molecular Biology 415, 781792.
Singh, C. R., Watanabe, R., Chowdhury, W., Hiraishi, H., Murai, M. J., Yamamoto, Y., Miles, D., Ikeda, Y., Asano, M. & Asano, K. (2012). Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Molecular and Cellular Biology 32, 39783989.
Siwiak, M. & Zielenkiewicz, P. (2010). A comprehensive, quantitative, and genome-wide model of translation. PLoS Computational Biology 6, e1000865.
Skabkin, M. A., Skabkina, O. V., Hellen, C. U. & Pestova, T. V. (2013). Reinitiation and other unconventional posttermination events during eukaryotic translation. Molecular Cell 51, 249264.
Slepenkov, S. V., Darzynkiewicz, E. & Rhoads, R. E. (2006). Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. The Journal of Biological Chemistry 281, 1492714938.
Slepenkov, S. V., Korneeva, N. L. & Rhoads, R. E. (2008). Kinetic mechanism for assembly of the m7GpppG.eIF4E.eIF4G complex. The Journal of Biological Chemistry 283, 2522725237.
Sokabe, M. & Fraser, C. S. (2014). Human eukaryotic initiation factor 2 (eIF2)–GTP–Met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. The Journal of Biological Chemistry 289, 3182731836.
Sonenberg, N. (2008). eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochemistry and Cell Biology 86, 178183.
Sonenberg, N., Morgan, M. A., Merrick, W. C. & Shatkin, A. J. (1978). A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proceedings of the National Academy of Sciences of the United States of America 75, 48434847.
Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A. & Barford, D. (2000). The crystal structure of human eukaryotic release factor eRF1 – mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311321.
Soto-Rifo, R., Rubilar, P. S., Limousin, T., de Breyne, S., Décimo, D. & Ohlmann, T. (2012). DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. The EMBO Journal 31, 37453756.
Spirin, A. S. (1969). A model of the functioning ribosome: locking and unlocking of the ribosome subparticles. Cold Spring Harbor Symposia on Quantitative Biology 34, 197207.
Spirin, A. S. (2009). How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mRNA? Brownian Ratchet model. Biochemistry 48, 1068810692.
Stark, H., Rodnina, M. V., Wieden, H. J., van Heel, M. & Wintermeyer, W. (2000). Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301309.
Sternberg, S. H., Fei, J., Prywes, N., Mcgrath, K. A. & Gonzalez, R. L. Jr. (2009). Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nature Structural & Molecular Biology 16, 861868.
Sun, Y., Atas, E., Lindqvist, L., Sonenberg, N., Pelletier, J. & Meller, A. (2012). The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase. Nucleic Acids Research 40, 61996207.
Sun, Y., Atas, E., Lindqvist, L. M., Sonenberg, N., Pelletier, J. & Meller, A. (2014). Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding. Structure 22, 941948.
Svidritskiy, E., Brilot, A. F., Koh, C. S., Grigorieff, N. & Korostelev, A. A. (2014). Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure 22, 12101218.
Svitkin, Y. V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G. J. & Sonenberg, N. (2001). The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382394.
Tait, S., Dutta, K., Cowburn, D., Warwicker, J., Doig, A. J. & Mccarthy, J. E. (2010). Local control of a disorder–order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proceedings of the National Academy of Sciences of the United States of America 107, 1762717632.
Takyar, S., Hickerson, R. P. & Noller, H. F. (2005). mRNA helicase activity of the ribosome. Cell 120, 4958.
Tang, M., Comellas, G. & Rienstra, C. M. (2013). Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Accounts of Chemical Research 46, 20802088.
Tarn, W. Y. & Chang, T. H. (2009). The current understanding of Ded1p/DDX3 homologs from yeast to human. RNA Biology 6, 1720.
Tarun, S. Z. & Sachs, A. B. (1996). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. The EMBO Journal 15, 71687177.
Taylor, D., Unbehaun, A., Li, W., Das, S., Lei, J., Liao, H. Y., Grassucci, R. A., Pestova, T. V. & Frank, J. (2012). Cryo-EM structure of the mammalian eukaryotic release factor eRF1–eRF3-associated termination complex. Proceedings of the National Academy of Sciences of the United States of America 109, 1841318418.
Taylor, D. J., Nilsson, J., Merrill, A. R., Andersen, G. R., Nissen, P. & Frank, J. (2007). Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. The EMBO Journal 26, 24212431.
Thomas, A., Goumans, H., Voorma, H. O. & Benne, R. (1980a). The mechanism of action of eukaryotic initiation factor 4C in protein synthesis. European Journal of Biochemistry 107, 3945.
Thomas, A., Spaan, W., van Steeg, H., Voorma, H. O. & Benne, R. (1980b). Mode of action of protein synthesis initiation factor eIF-1 from rabbit reticulocytes. FEBS Letters 116, 6771.
Tinoco, I. Jr. Kim, H. K. & Yan, S. (2013). Frameshifting dynamics. Biopolymers 99, 11471166.
Todd, G. C. & Walter, N. G. (2013). Secondary structure of bacteriophage T4 gene 60 mRNA: implications for translational bypassing. RNA 19, 685700.
Tomoo, K., Matsushita, Y., Fujisaki, H., Abiko, F., Shen, X., Taniguchi, T., Miyagawa, H., Kitamura, K., Miura, K. & Ishida, T. (2005). Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochimica et Biophysica Acta 1753, 191208.
Tomoo, K., Shen, X., Okabe, K., Nozoe, Y., Fukuhara, S., Morino, S., Ishida, T., Taniguchi, T., Hasegawa, H., Terashima, A., Sasaki, M., Katsuya, Y., Kitamura, K., Miyoshi, H., Ishikawa, M. & Miura, K. (2002). Crystal structures of 7-methylguanosine 5′-triphosphate (m(7)GTP)- and P(1)-7-methylguanosine-P(3)-adenosine-5′,5′-triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region. The Biochemical Journal 362(Pt 3), 539544.
Tong, Y., Park, I., Hong, B. S., Nedyalkova, L., Tempel, W. & Park, H. W. (2009). Crystal structure of human eIF5A1: insight into functional similarity of human eIF5A1 and eIF5A2. Proteins 75, 10401045.
Topisirovic, I., Svitkin, Y. V., Sonenberg, N. & Shatkin, A. J. (2011). Cap and cap-binding proteins in the control of gene expression. Wiley Interdisciplinary Reviews, RNA 2, 277298.
Toprak, E., Kural, C. & Selvin, P. R. (2010). Super-accuracy and super-resolution getting around the diffraction limit. Methods Enzymol 475, 126.
Tourigny, D. S., Fernandez, I. S., Kelley, A. C. & Ramakrishnan, V. (2013). Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490.
Trabuco, L. G., Harrison, C. B., Schreiner, E. & Schulten, K. (2010). Recognition of the regulatory nascent chain TnaC by the ribosome. Structure 18, 627637.
Triana-Alonso, F. J., Chakraburtty, K. & Nierhaus, K. H. (1995). The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. The Journal of Biological Chemistry 270, 2047320478.
Tsai, A., Kornberg, G., Johansson, M., Chen, J. & Puglisi, J. D. (2014). The dynamics of SecM-induced translational stalling. Cell Reports 7, 15211533.
Tsai, A., Petrov, A., Marshall, R. A., Korlach, J., Uemura, S. & Puglisi, J. D. (2012). Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487, 390393.
Tsai, A., Uemura, S., Johansson, M., Puglisi, E. V., Marshall, R. A., Aitken, C. E., Korlach, J., Ehrenberg, M. & Puglisi, J. D. (2013). The impact of aminoglycosides on the dynamics of translation elongation. Cell Reports 3, 497508.
Tu, D., Blaha, G., Moore, P. B. & Steitz, T. A. (2005). Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257270.
Ude, S., Lassak, J., Starosta, A. L., Kraxenberger, T., Wilson, D. N. & Jung, K. (2013). Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 8285.
Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W. & Puglisi, J. D. (2010). Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 10121017.
Uemura, S., Dorywalska, M., Lee, T. H., Kim, H. D., Puglisi, J. D. & Chu, S. (2007). Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature 446, 454457.
Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., Ueda, T., Puglisi, J. D. & Funatsu, T. (2008). Single-molecule imaging of full protein synthesis by immobilized ribosomes. Nucleic Acids Research 36, e70.
Valásek, L. S. (2012). ‘Ribozoomin’–translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Current Protein & Peptide Science 13, 305330.
Valiente-Echeverría, F., Hermoso, M. A. & Soto-Rifo, R. (2015). RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Reviews in Medical Virology 25, 286299.
Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M. & Frank, J. (2003). Locking and unlocking of ribosomal motions. Cell 114, 123134.
Vassilenko, K. S., Alekhina, O. M., Dmitriev, S. E., Shatsky, I. N. & Spirin, A. S. (2011). Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Research 39, 55555567.
Vazquez-Laslop, N., Thum, C. & Mankin, A. S. (2008). Molecular mechanism of drug-dependent ribosome stalling. Molecular Cell 30, 190202.
Vega Laso, M. R., Zhu, D., Sagliocco, F., Brown, A. J., Tuite, M. F. & Mccarthy, J. E. (1993). Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. The Journal of Biological Chemistry 268, 64536462.
Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A. C., Engelberg-Kulka, H. & Moll, I. (2011). Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli . Cell 147, 147157.
Vestergaard, B., Van, L. B., Andersen, G. R., Nyborg, J., Buckingham, R. H. & Kjeldgaard, M. (2001). Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Molecular Cell 8, 13751382.
Villa, N., Do, A., Hershey, J. W. & Fraser, C. S. (2013). Human eukaryotic initiation factor 4 G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. The Journal of Biological Chemistry 288, 3293232940.
Volpon, L., Osborne, M. J., Topisirovic, I., Siddiqui, N. & Borden, K. L. (2006). Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands. The EMBO Journal 25, 51385149.
von der Haar, T., Ball, P. D. & Mccarthy, J. E. (2000). Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′-cap by domains of eIF4G. The Journal of Biological Chemistry 275, 3055130555.
von der Haar, T., Oku, Y., Ptushkina, M., Moerke, N., Wagner, G., Gross, J. D. & Mccarthy, J. E. (2006). Folding transitions during assembly of the eukaryotic mRNA cap-binding complex. Journal of Molecular Biology 356, 982992.
Wakiyama, M., Imataka, H. & Sonenberg, N. (2000). Interaction of eIF4 G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Current Biology 10, 11471150.
Walker, S. E., Zhou, F., Mitchell, S. F., Larson, V. S., Valasek, L., Hinnebusch, A. G. & Lorsch, J. R. (2013). Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. RNA 19, 191207.
Wang, Y., Rader, A. J., Bahar, I. & Jernigan, R. L. (2004). Global ribosome motions revealed with elastic network model. Journal of Structural Biology 147, 302314.
Weiss, R. B., Huang, W. M. & Dunn, D. M. (1990). A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62, 117126.
Weisser, M., Voigts-Hoffmann, F., Rabl, J., Leibundgut, M. & Ban, N. (2013). The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nature Structural & Molecular Biology 20, 10151017.
Weixlbaumer, A., Jin, H., Neubauer, C., Voorhees, R. M., Petry, S., Kelley, A. C. & Ramakrishnan, V. (2008). Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953956.
Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Molecular Cell 2, 135140.
Wen, J. D., Lancaster, L., Hodges, C., Zeri, A. C., Yoshimura, S. H., Noller, H. F., Bustamante, C. & Tinoco, I. (2008). Following translation by single ribosomes one codon at a time. Nature 452, 598603.
Wills, N. M., O'CONNOR, M., Nelson, C. C., Rettberg, C. C., Huang, W. M., Gesteland, R. F. & Atkins, J. F. (2008). Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. The EMBO Journal 27, 25332544.
Wilson, D. N. & Doudna Cate, J. H. (2012). The structure and function of the eukaryotic ribosome. Cold Spring Harbor Perspectives in Biology 4.
Wimberly, B. T., Brodersen, D. E., Clemons, W. M. Jr. Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T. & Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407, 327339.
Woolstenhulme, C. J., Parajuli, S., Healey, D. W., Valverde, D. P., Petersen, E. N., Starosta, A. L., Guydosh, N. R., Johnson, W. E., Wilson, D. N. & Buskirk, A. R. (2013). Nascent peptides that block protein synthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America 110, E878E887.
Xue, S. & Barna, M. (2012). Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature Reviews. Molecular Cell Biology 13, 355369.
Yamamoto, H., Collier, M., Loerke, J., Ismer, J., Schmidt, A., Hilal, T., Sprink, T., Yamamoto, K., Mielke, T., Bürger, J., Shaikh, T. R., Dabrowski, M., Hildebrand, P. W., Scheerer, P. & Spahn, C. M. (2015). Molecular architecture of the ribosome-bound Hepatitis C virus internal ribosomal entry site RNA. The EMBO Journal 34, 30423058.
Yamamoto, H., Unbehaun, A., Loerke, J., Behrmann, E., Collier, M., Bürger, J., Mielke, T. & Spahn, C. M. (2014). Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nature Structural & Molecular Biology 21, 721727.
Yanagiya, A., Svitkin, Y. V., Shibata, S., Mikami, S., Imataka, H. & Sonenberg, N. (2009). Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Molecular and Cellular Biology 29, 16611669.
Yang, J. R., Chen, X. & Zhang, J. (2014). Codon-by-codon modulation of translational speed and accuracy via mRNA folding. PLoS Biology 12, e1001910.
Yang, Q., del Campo, M., Lambowitz, A. M. & Jankowsky, E. (2007). DEAD-box proteins unwind duplexes by local strand separation. Molecular Cell 28, 253263.
Yang, Q. & Jankowsky, E. (2006). The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature Structural & Molecular Biology 13, 981986.
Yao, L., Li, Y., Tsai, T. W., Xu, S. & Wang, Y. (2013). Noninvasive measurement of the mechanical force generated by motor protein EF-G during ribosome translocation. Angewandte Chemie (International ed. in English) 52, 1404114044.
Yildiz, A., Forkey, J. N., Mckinney, S. A., Ha, T., Goldman, Y. E. & Selvin, P. R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1·5-nm localization. Science 300, 20612065.
Young, R. & Bremer, H. (1976). Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. The Biochemical Journal 160, 185194.
Yu, Y., Marintchev, A., Kolupaeva, V. G., Unbehaun, A., Veryasova, T., Lai, S. C., Hong, P., Wagner, G., Hellen, C. U. & Pestova, T. V. (2009). Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Research 37, 51675182.
Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. & Noller, H. F. (2001). Crystal structure of the ribosome at 5·5 A resolution. Science 292, 883896.
Yusupova, G. Z., Yusupov, M. M., Cate, J. H. & Noller, H. F. (2001). The path of messenger RNA through the ribosome. Cell 106, 233241.
Zaher, H. S. & Green, R. (2009). Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746762.
Zanelli, C. F., Maragno, A. L., Gregio, A. P., Komili, S., Pandolfi, J. R., Mestriner, C. A., Lustri, W. R. & Valentini, S. R. (2006). eIF5A binds to translational machinery components and affects translation in yeast. Biochemical and Biophysical Research Communications 348, 13581366.
Zavialov, A. V., Buckingham, R. H. & Ehrenberg, M. (2001). A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107, 115124.
Zavialov, A. V. & Ehrenberg, M. (2003). Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114, 113122.
Zavialov, A. V., Mora, L., Buckingham, R. H. & Ehrenberg, M. (2002). Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Molecular Cell 10, 789798.
Zeng, X., Chugh, J., Casiano-Negroni, A., Al-Hashimi, H. M. & Brooks, C. L. III (2014). Flipping of the ribosomal A-site adenines provides a basis for tRNA selection. Journal of Molecular Biology 426, 32013213.
Zhang, F., Saini, A. K., Shin, B. S., Nanda, J. & Hinnebusch, A. G. (2015). Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes. Nucleic Acids Research 43, 22932312.
Zhang, W., Dunkle, J. A. & Cate, J. H. (2009). Structures of the ribosome in intermediate states of ratcheting. Science 325, 10141017.
Zhou, F., Walker, S. E., Mitchell, S. F., Lorsch, J. R. & Hinnebusch, A. G. (2014). Identification and characterization of functionally critical, conserved motifs in the internal repeats and N-terminal domain of yeast translation initiation factor 4B (yeIF4B). The Journal of Biological Chemistry 289, 17041722.
Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. (2013). Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086.
Zhouravleva, G., Frolova, L., le Goff, X., le Guellec, R., Inge-Vechtomov, S., Kisselev, L. & Philippe, M. (1995). Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. The EMBO Journal 14, 40654072.
Zuk, D. & Jacobson, A. (1998). A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. The EMBO Journal 17, 29142925.