Skip to main content
×
Home

Protein characterisation by synchrotron radiation circular dichroism spectroscopy

  • B. A. Wallace (a1)
Abstract
Abstract

Circular dichroism (CD) spectroscopy is a well-established technique for the study of proteins. Synchrotron radiation circular dichroism (SRCD) spectroscopy extends the utility of conventional CD spectroscopy (i.e. using laboratory-based instruments) because the high light flux from a synchrotron enables collection of data to lower wavelengths, detection of spectra with higher signal-to-noise levels and measurements in the presence of strongly absorbing non-chiral components such as salts, buffers, lipids and detergents. This review describes developments in instrumentation, methodologies and bioinformatics that have enabled new applications of the SRCD technique for the study of proteins. It includes examples of the use of SRCD spectroscopy for providing static and dynamic structural information on molecules, including determinations of secondary structures of intact proteins and domains, assessment of protein stability, detection of conformational changes associated with ligand and drug binding, monitoring of environmental effects, examination of the processes of protein folding and membrane insertion, comparisons of mutant and modified proteins, identification of intermolecular interactions and complex formation, determination of the dispositions of proteins in membranes, identification of natively disordered proteins and their binding partners and examination of the carbohydrate components of glycoproteins. It also discusses how SRCD can be used in conjunction with macromolecular crystallography and other biophysical techniques to provide a more complete picture of protein structures and functions, including how proteins interact with other macromolecules and ligands. This review also includes a discussion of potential new applications in structural and functional genomics using SRCD spectroscopy and future instrumentation and bioinformatics developments that will enable such studies. Finally, the appendix describes a number of computational/bioinformatics resources for secondary structure analyses that take advantage of the improved data quality available from SRCD. In summary, this review discusses how SRCD can be used for a wide range of structural and functional studies of proteins.

Copyright
Corresponding author
*Author for correspondence: B. A. Wallace, Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, LondonWC1E 7HX, UK. Tel.:44-207-631-6800; Fax: 44-207-631-6803; Email: b.wallace@mail.cryst.bbk.ac.uk
References
Hide All
Andrade M. A., Chacón P., Merelo J. J. & Morán F. (1993). Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Protein Engineering 6, 383390.
Arndt E. R. & Stevens E. S. (1993). Vacuum-ultraviolet circular dichroism studies of simple saccharides. Journal of the American Chemical Society 115, 78497853.
Bagger H. L., Hoffmann S. V., Fuglsang C. C. & Westh P. (2007). Glycoprotein-surfactant interactions: a calorimetric and spectroscopic investigation of the phytase-SDS system. Biophysical Chemistry 129, 251258.
Balasubramanian S., Schneider T., Gerstein M. & Regan L. (2000). Proteomics of Mycoplasma genitalium: identification and characterization of unannotated and atypical proteins in a small model genome. Nucleic Acids Research 28, 30753082.
Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N. & Bourne P. E. (2000). The protein data bank. Nucleic Acids Research 28, 235242.
Besley N. A. & Hirst J. D. (1999). Theoretical studies toward quantitative protein circular dichroism calculations. Journal of the American Chemical Society 121, 96369644.
Bulheller B. M. & Hirst J. D. (2009). Ab initio calculations for circular dichroism and synchrotron radiation circular dichroism spectroscopy of proteins. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 202215. Amsterdam: IOS Press.
Bulheller B. M., Miles A. J., Wallace B. A. & Hirst J. (2008). Charge-transfer transitions in the vacuum ultraviolet of protein circular dichroism spectra. Journal of Physical Chemistry B 112, 18661874.
Cascio M. & Wallace B. A. (1995). Effects of local environment on the circular dichroism spectra of polypeptides. Analytical Biochemistry 227, 90–100.
Cerasoli E., Kelly S., Coggins J. R., Boam D. J., Clarke D. T. & Price N. C. (2002). The refolding of type II shikamate kinase from Erwinia chrysanthemi after denaturation in urea. European Journal of Biochemistry 269, 21242132.
Chen Y. & Wallace B. A. (1997). Secondary solvent effects on the circular dichroism spectra of polypeptides: influence of polarisation effects on the far ultraviolet spectra of alamethicin. Biophysical Chemistry 65, 6574.
Clarke D. T. & Jones G. R. (1999). Extended circular dichroism measurements using synchrotron radiation show that the assembly of clatherin coats requires no change in secondary structure. Biochemistry 38, 1045710462.
Clarke D. T. & Jones G. R. (2004). CD12: a new high-flux beamline for ultraviolet and vacuum-ultraviolet circular dichroism on the SRS, Daresbury. Journal of Synchrotron Radiation 11, 142149.
Clarke D. T., Doig A. J., Stapeley B. J. & Jones G. R. (1999). The alpha-helix folds on a millisecond time scale. Proceedings of the National Academy of Sciences USA 96, 72327237.
Clarke D. T., Bowler M. A., Fell B. D., Flaherty J. V., Grant A. F., Jones G. R., Martin-Fernandez M. L., Shaw D. A., Todd B., Wallace B. A. & Towns-Andrews E. (2000). A high aperature beamline for vacuum ultraviolet circular dichroism on the SRS. Synchrotron Radiation News 13, 2127.
Compton L. A. & Johnson W. C. Jr., (1986). Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Analytical Biochemistry 155, 155167.
Cowieson N. P., Miles A. J., Robin G., Forwood J. K., Kobe B., Martin J. L. & Wallace B. A. (2008). Evaluating protein: protein complex formation using synchrotron radiation circular dichroism spectroscopy. Proteins: Structure, Function, and Bioinformatics 70, 11421146.
Cronin N., O'Reilly A., Duclohier H. & Wallace B. A. (2003). Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation. Journal of Biological Chemistry 278, 1067510682.
Cronin N. B., O'Reilly A., Duclohier H. & Wallace B. A. (2005). Effects of deglycosylation of sodium channels on their structure and function. Biochemistry 44, 441449.
Dicko C., Knight D., Kenney J. M. & Vollrath F. (2004). Structural conformation of spidroin in solution: a synchrotron radiation circular dichroism study. Biomacromolecules 5, 758767.
Dicko C., Hicks M. R., Dafforn T. R., Vollrath F., Rodger A. & Hoffmann S. V. (2008). Breaking the 200 nm limit for routine flow linear dichroism measurements using UV synchrotron radiation. Biophysical Journal 95, 59745977.
Edwards Y. J., Lobley A., Pentony M. M. & Jones D. T. (2009). Insights into the regulation of intrinsically disordered proteins in the human proteome by analysing sequence and gene expression data. Genome Biology 10, R50.
Evans P., Wyatt K., Wistow G. J., Bateman O. A., Wallace B. A. & Slingsby C. (2004). The P23T cataract mutation causes loss of solubility of folded γD-crystallin. Journal of Molecular Biology 343, 435444.
Evans P., Bateman O. A., Slingsby C. & Wallace B. A. (2007). A reference dataset for circular dichroism spectroscopy tailored for the βγ-crystallin lens proteins. Experimental Eye Research 84, 10011008.
France L. L., Kieleczawa J., Dunn J. J., Hind G. & Sutherland J. C. (1992). Structural analysis of an outer surface protein from the lyme disease spirochete, Borrelia burgdorferi, using circular dichroism and fluorescence spectroscopy. Biochimica Biophysica Acta 1120, 5968.
Fukuyama T., Matsuo K. & Gekko K. (2005). Vacuum-ultraviolet electronic circular dichroism of L-alanine in aqueous solution investigated by time-dependent density functional theory. Journal of Physical Chemistry A 109, 69286933.
Garone L., Albaugh S. & Steiner R. F. (1990). The secondary structure of turkey gizzard myosin light chain kinase and the nature of its interaction with calmodulin. Biopolymers 30, 11391149.
Gilbert A. T. B. & Hirst J. D. (2004). Charge-transfer transitions in protein circular dichroism spectra. Journal of Molecular Structure (Theochem) 675, 5360.
Gitter-Amir A., Rosenheck K. & Schneider A. S. (1976). Angular scattering analysis of the circular dichroism of biological cells. 1. The red blood cell membrane. Biochemistry 15, 31313137.
Gray D. M., Lang D., Kuner E., Vaughan M. & Sutherland J. (1984). A thin quartz cell suitable for vacuum ultraviolet-absorption and circular-dichroism measurements. Analytical Biochemistry 136, 247250.
Grossmann J. G., Hall J. F., Kanbi L. D. & Hasnain S. S. (2002). The N-terminal extension of rusticyanin is not responsible for its acid stability. Biochemistry 41, 36133619.
Guerra-Giraldez C., Moore B., Neves B., Wallace B. A., Svergun D. I., Brown K. A. & Smith D. F. (2005). Structural and functional analysis of the Leishmania infective stage-specific protein, SHERP. 3rd International Congress on Leishmania and Leishmaniasis Abstracts.
GUIDELINE Q6B (2001). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use.
Hoffmann A., Kane A., Nettels D., Hertzog D. E., Baumgärtel P., Lengefeld J., Reichardt G., Horsley D. A., Seckler R., Bakajin O. & Schuler B. (2007). Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proceedings of the National Academy of Sciences USA 104, 105110.
Hoiberg-Nielsen R., Shelton A. P. T., Sorensen K. K., Roessle M., Svergun D. I., Thulstrup P. W., Jensen K. J. & Arleth L. (2008). 3- instead of 4-helix formation in a de novo designed protein in solution revealed by small angle X-ray scattering. Chembiochem 9, 2663–2572.
Janes R. W. (2005). Bioinformatics analyses of circular dichroism protein reference databases. Bioinformatics 21, 42304238.
Janes R. W. & Cuff A. L. (2005). Overcoming protein denaturation caused by a high-flux synchrotron radiation circular dichroism beamline. Journal of Synchrotron Radiation 12, 524529.
Johnson K. H., Gray D. M. & Sutherland J. C. (1991). Vacuum UV CD spectra of homopolymer duplexes and triplexes containing AT or AU base-pairs. Nucleic Acids Research 19, 22752280.
Jones C., Schiffmann D., Knight A. & Windsor S. (2004). Val-CiD best practice guide: CD spectroscopy for the quality control of biopharmaceuticals. National Physical LAB report DQL-AS 008.
Kane A. S., Hoffmann A., Baumgartel P., Seckler R., Reichardt G., Horsley D. A., Schuler B. & Bakajin O. (2008). Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy. Analytical Chemistry 24, 95349541.
Kelly S. M. & Price N. C. (2009). Sample preparation and good practice in circular dichroism spectroscopy. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 91–107. Amsterdam: IOS Press.
Kelly S. M., Jess T. J. & Price N. C. (2005). How to study proteins by circular dichroism. Biochimica Biophysica. Acta 1751, 119139.
Laskowski R. A., Macarthur M. W., Moss D. S. & Thornton J. M. (1993). PROCHECK – a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283291.
Lees J. G. & Janes R. W. (2008). Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations. BMC Bioinformatics 9, 24.
Lees J. & Wallace B. A. (2002). Synchrotron radiation circular dichroism and conventional circular dichroism spectroscopy: a comparison. Spectroscopy 16, 121125.
Lees J. G., Smith B. R., Wien F., Miles A. J. & Wallace B. A. (2004). CDtool – An integrated software package for circular dichroism spectroscopic data processing, analysis and archiving. Analytical Biochemistry 332, 285289.
Lees J. G., Miles A. J., Wien F. & Wallace B. A. (2006a). A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22, 19551962.
Lees J. G., Miles A. J., Janes R. W. & Wallace B. A. (2006b). Optimisation and development of novel methodologies for secondary structure prediction from circular dichroism spectra. BMC Bioinformatics 7, 507517.
Liu H. L., Peng X. H., Zhao F., Zhang G. B., Tao Y., Luo Z. F., Li Y., Teng M. K., Li X. & Wei S. Q. (2009). N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1. Biochemical and Biophysical Research Communications 379, 11201125.
Lobley A., Whitmore L. & Wallace B. A. (2002). DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18, 211212.
Manolopoulos S., Clarke D., Derbyshire G., Jones G., Read P. & Torbet M. (2004). A new multichannel detector for proteomics studies and circular dichroism. Nuclear Instruments and Methods in Physics Research Section A – Accelerators Spectrometers Detectors and Associated Equipment 531, 302306.
Mao D. & Wallace B. A. (1984). Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry 23, 26672673.
Mao D., Wachter E. & Wallace B. A. (1982). Folding of the H+-ATPase proteolipid in phospholipid vesicles. Biochemistry 21, 49604968.
Matsuo K. & Gekko K. (2004). Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry. Carbohydrate Research 339, 591597.
Matsuo K., Sakai K., Matsushima Y., Fukuyama T. & Gekko K. (2003). Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Analytical Sciences 19, 129132.
Matsuo K., Yonehara R. & Gekko K. (2004). Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. Journal of Biochemistry 135, 405411.
Matsuo K., Yonehara R. & Gekko K. (2005). Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. Journal of Biochemistry 138, 7988.
Matsuo K., Sakurada Y., Yonehara R., Kataoka M. & Gekko K. (2007). Secondary structure analysis of denatured proteins by vaccum ultraviolet circular dichroism spectroscopy. Biophysical Journal 92, 40884098.
Matsuo K., Watanabe H. & Gekko K. (2008). Improved sequence-based prediction of protein secondary structures by combining vacuum ultraviolet circular dichroism spectroscopy with neural network. Proteins: Structure Function and Bioinformatics 73, 104112.
Maytum R. & Janes R. W. (2007). Synchrotron radiation circular dichroism spectroscopy reveals a new structural transition in tropomyosin. Biophysical Journal 92, 362a.
Mckibbin C., Farmer N. A., Jeans C., Reeves P. J., Khorana H. G., Wallace B. A., Edwards P. C., Villa C. & Booth P. J. (2007). Opsin stability and folding: modulation by phospholipid bicelles. Journal of Molecular Biology 374, 13191332.
Miles A. J. & Wallace B. A. (2006). Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chemical Society Reviews 35, 3951.
Miles A. J. & Wallace B. A. (2007). Synchrotron radiation circular dichroism (SRCD) spectroscopy: protein fold and supersecondary structure recognition. Biophysical Journal 92, 337a.
Miles A. J. & Wallace B. A. (2009a). Calibration techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 7390. Amsterdam: IOS Press.
Miles A. J. & Wallace B. A. (2009b). Sample preparation and good practice in synchrotron radiation circular dichroism spectroscopy. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 108124. Amsterdam: IOS Press.
Miles A. J., Wien F., Lees J. G., Rodger A., Janes R. W. & Wallace B. A. (2003). Calibration and standardisation of synchrotron radiation circular dichroism and conventional circular dichroism spectrophotometers. Spectroscopy 17, 653661.
Miles A. J., Wien F. & Wallace B. A. (2004). Redetermination of the extinction coefficient of camphor-β-sulfonic acid, a calibration standard for circular dichroism spectroscopy. Analytical Biochemistry 335, 338339.
Miles A. J., Wien F., Lees J. G. & Wallace B. A. (2005a). Calibration and standardisation of synchrotron radiation and conventional circular dichroism spectrometers. Part 2: Factors affecting magnitude and wavelength. Spectroscopy 19, 4351.
Miles A. J., Whitmore L. & Wallace B. A. (2005b). Spectral magnitude effects on the analyses of secondary structure from circular dichroism spectroscopic data. Protein Science 14, 368374.
Miles A. J., Hoffmann S. V., Tao Y., Janes R. W. & Wallace B. A. (2007). Synchrotron radiation circular dichroism (SRCD) spectroscopy: new beamlines and new applications in biology. Spectroscopy 21, 245255.
Miles A. J., Janes R. W., Brown A., Clarke D. T., Sutherland J. C., Tao Y., Wallace B. A. & Hoffmann S. V. (2008a). Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism (SRCD) beamlines. Journal of Synchrotron Radiation 15, 420422.
Miles A. J., Drechsler A., Kristan K., Anderluh G., Norton R. S., Wallace B. A. & Separovic F. (2008b). The effects of lipids on the structure of the eukaryotic cytolysin equinatoxin II: a synchrotron radiation circular dichroism spectroscopic study. Biochimica Biophysica Acta 1778, 20912096.
Miron S., Réfregiers M., Gilles A.-M. & Maurizot J.-C. (2005). New synchrotron radiation circular dichroism end-station on DISCO beamline at SOLEIL synchrotron for biomolecular analysis. Biochimica Biophysica Acta 1725, 425431.
Nesgaard L. W., Hoffmann S. V., Andersen C. B., Malmendal A. & Otzen D. E. (2008). Characterization of dry globular proteins and protein fibrils by synchrotron radiation circular vacuum UV circular dichroism. Biopolymers 89, 779795.
NIH NOTICE NOT-OD-03-032. (2003). Sharing research data.
Oakley M. T. & Hirst J. D. (2006). Charge-transfer transitions in protein circular dichroism calculations. Journal of the American Chemical Society 128, 1241412415.
Oberg K. A., Ruysschaert J. M. & Goormaghtigh E. (2004). The optimization of protein secondary structure determination with infrared and circular dichroism spectra. European Journal of Biochemistry 271, 29372948.
Ojima N., Sakai K., Fukazawa T. & Gekko K. (2000). Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and off-line performance. Chemistry Letters 7, 832833.
O'Reilly A. O., Charalambous K., Nurani G., Powl A. M. & Wallace B. A. (2008). G219S mutagenesis as a means of stabilising conformational flexibility in the bacterial sodium channel NaChBac. Molecular Membrane Biology 25, 670676.
Orengo C. A., Michie A. D., Jones S., Jones D. T., Swindells M. B. & Thornton J. M. (1997). CATH – a hierarchic classification of protein domain structures. Structure 5, 10931108.
Orry A., Janes R. W., Sarra R., Hanlon M. R. & Wallace B. A. (2001). Synchrotron radiation circular dichroism spectroscopy: vacuum ultraviolet irradiation does not damage protein integrity. Journal of Synchrotron Radiation 8, 10271029.
Park K., Perczel A. & Fasman G. D. (1992). Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins. Protein Science 1, 10321049.
Provencher S. W. & Glockner J. (1981). Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, 3337.
Qi X. L., Holt C., McNulty D., Clarke D. T., Brownlow S. & Jones G. R. (1997). Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochemical Journal 324, 341346.
Qian H. J., Yan Y. L. & Tao Y. (2003). Design and calibration of the monochromator in 3B1B beamline. High Energy Physics and Nuclear Physics – Chinese Edition 27, 125128.
Ravi J., Hills A. E. & Knight A. E. (2009). Reproducible circular dichroism measurements for biopharmaceutical applications. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 125140. Amsterdam: IOS Press.
Richards M. W., Hanlon M. R., Berrow N. S., Butcher A., Dolphin A. C. & Wallace B. A. (2002). Synchrotron radiation circular dichroism (SRCD) and CD spectroscopic studies of the voltage-dependent calcium channel beta subunit and its domains. Biophysical Journal 82, 456a.
Rodger A. (2009). Linear dichroism spectroscopy: techniques and applications. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 165182. Amsterdam: IOS Press.
Scott D. J., Grossmann J. G., Tames J. R. H., Byron O., Wilson K. S. & Otto B. R. (2002). Low resolution solution structure of the apo form of Escherichia coli haemoglobin protease Hbp. Journal of Molecular Biology 315, 11791187.
Serrano-Andres L. & Fulscher M. P. (2003). Theoretical study of the electronic spectroscopy of peptides. III. Charge-transfer transitions in polypeptides. Journal of the American Chemical Society 120, 1091210920.
Snyder P. A. & Rowe E. M. (1980). The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements. Nuclear Instruments and Methods in Physics Research 172, 345349.
Sreerama N. & Woody R. W. (1994). Poly(Pro)II type structure in globular proteins – identification and CD analysis. Biochemistry 33, 1002210025.
Sreerama N. & Woody R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry 287, 252260.
Sreerama N. & Woody R. W. (2003). Structural composition of beta(I)- and beta(II)-proteins. Protein Science 12, 384388.
Sreerama N., Venyaminov S. Y. & Woody R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Analytical Biochemistry 287, 243251.
Stanley W. A., Sokolova A., Brown A., Clarke D. T., Wilmanns M. & Svergun D. I. (2004). Synergistic use of synchrotron radiation techniques for biological samples in solution: a case study on protein-ligand recognition by the peroxisomal import receptor Pex5p, Journal of Synchrotron Radiation 11, 490496.
Sutherland J. C. (1996). Circular dichroism using synchrotron radiation. In Circular Dichroism and the Conformational Analysis of Biomolecules (ed. Fasman G. D.), pp. 599633. New York: Plenum Press.
Sutherland J. C. (2002). Simultaneous measurement of circular dichroism and fluorescence polarization anisotropy. Clinical Diagnostic Systems: Technologies and Instrumentation 4625, 126136.
Sutherland J. C. (2009). Measurement of circular dichroism and related spectroscopies with conventional and synchrotron light sources: theory and instrumentation. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 1972. Amsterdam: IOS Press.
Sutherland J. C., Desmond E. J. & Takacs P. Z. (1980). Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm. Nuclear Instruments and Methods in Physics Research 172, 195199.
Sutherland J. C., Emrick A., France L. L., Monteleone D. C. & Trunk J. (1992). Circular dichroism user facility at the National Synchrotron Light Source – estimation of protein secondary structure. Biotechniques 13, 588590.
Symmons M. F., Buchanan S. G. S., Clarke D. T., Jones G. & Gay N. J. (1997). X-ray diffraction and far-UV CD studies of filaments formed by a leucine-rich repeat peptide: structural similarity to the amyloid fibrils of prions and Alzheimer's disease beta-protein. FEBS Letters 412, 397403.
Tanaka M., Yagi-Watanabe K., Yamada T., Kaneko F. & Nakagawa K. (2006). Development of vacuum-ultraviolet circular dichroism measurement system using a polarizing undulator. Chirality 18, 196204.
Tao Y. & Wallace B. A. (2009). SRCD2009. Synchtrotron Radiation News 22, 24.
Teeters C. L., Eccles J. & Wallace B. A. (1987). A theoretical analysis of the effects of sonication on differential absorption flattening in suspensions of membrane sheets. Biophysical Journal 51, 527532.
Thulstrup P. W., Brask J., Jensen K. J. & Larsen E. (2005). Synchrotron radiation circular dichroism spectroscopy applied to metmyoglobin and a 4-alpha-helix bundle carboprotein. Biopolymers 78, 4652.
Toumadje A., Alcorn S. W. & Johnson W. C. Jr., (1992). Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. Analytical Biochemistry 200, 321331.
Van Stokkum I. H. M., Spoelder H. J. W., Bloemendal M., Van Grondelle R. & Groen F. C. A. (1990). Estimation of protein secondary structure and error analysis from CD spectra. Analytical Biochemistry 191, 110118.
Vriend G. (1990). WHATIF – a molecular modeling and drug design program. Journal of Molecular Graphics 8, 5256.
Wallace B. A. (2000a). Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nature Structural Biology 7, 708709.
Wallace B. A. (2000b). Synchrotron radiation circular dichroism spectroscopy as a tool for investigating protein structures. Journal of Synchrotron Radiation 7, 289295.
Wallace B. A. & Janes R. W. (2001). Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition, and structural genomics. Current Opinions in Chemical Biology 5, 567571.
Wallace B. A. & Janes R. W. (2003). Circular dichroism and synchrotron radiation circular dichroism spectroscopy: tools for drug discovery. Biochemical Transactions 31, 631633.
Wallace B. A. & Janes R. W., eds. (2009). Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy. Amsterdam: IOS Press.
Wallace B. A. & Janes R. W. (2010). Synchrotron radiation circular dichroism (SRCD) spectroscopy – An enhanced method for examining protein conformations and protein interactions. Biochemical Society Transactions, in press.
Wallace B. A. & Mao D. (1984). Circular dichroism analyses of membrane proteins: an examination of light scattering and absorption flattening in large membrane vesicles and membrane sheets. Analytical Biochemistry 142, 317328.
Wallace B. A. & Teeters C. L. (1987). Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry 26, 6570.
Wallace B. A., Lees J., Orry A. J. W., Lobley A. & Janes R. W. (2003). Analyses of circular dichroism spectra of membrane proteins. Protein Science 12, 875884.
Wallace B. A., Wien F., Miles A. J., Lees J. G., Hoffmann S. V., Evans P., Wistow G. J. & Slingsby C. (2004). Biomedical applications of synchrotron radiation circular dichroism spectroscopy: identification of mutant proteins associated with disease and development of a reference database for fold motifs. Faraday Discussions 17, 653661.
Wallace B. A., Whitmore L. & Janes R. W. (2006). The protein circular dichroism data bank (PCDDB): a bioinformatics and spectroscopic resource. Proteins: Structure, Function and Bioinformatics 62, 13.
Warne T., Serrano-Vega M. J., Tate C. G. & Schertler G. F. X. (2009). Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expression and Purification 65, 204213.
Wien F. & Wallace B. A. (2005). Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy. Applied Spectroscopy 59, 11091113.
Wien F., Miles A. J., Lees J. G., Hoffmann S. V. & Wallace B. A. (2005). VUV irradiation effects on proteins in high flux synchrotron radiation circular dichroism (SRCD) spectroscopy. Journal of Synchrotron Radiation 12, 517523.
Whitmore L. & Wallace B. A. (2004). DICHROWEB, An online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research 32, W668W673.
Whitmore L. & Wallace B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392400.
Whitmore L. & Wallace B. A. (2009). Methods of analysis for circular dichroism spectroscopy of proteins and the DichroWeb server. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (eds. Wallace B. A. & Janes R. W.), pp. 165182. Amsterdam: IOS Press.
Whitmore L., Janes R. W. & Wallace B. A. (2006). Protein circular dichroism data bank (PCDDB): data bank and website design. Chirality 18, 426429.
Woody R. W. (1996). Theory of circular dichroism of proteins. In Circular Dichroism and the Conformational Analysis of Biomolecules (ed. Fasman G. D.), pp. 2567. New York: Plenum Press.
Yagi-Watanabe K., Tanaka M., Yamada T., Kaneko F., Nakagawa K. & Yuri M. (2005). A vacuum ultraviolet polarimeter with quadruple-reflectors: polarization measurements at the TERAS BL-5 beamline. Nuclear Instruments and Methods in Physics Research Section A –Accelerators Spectrometers Detectors and Associated Equipment 553, 620626.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 11
Total number of PDF views: 77 *
Loading metrics...

Abstract views

Total abstract views: 455 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.