Skip to main content
×
×
Home

SAIL – stereo-array isotope labeling

  • Masatsune Kainosho (a1) (a2) (a3) and Peter Güntert (a1) (a3) (a4)
Abstract

Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

Copyright
Corresponding author
*Author for correspondence: Prof. M. Kainosho, Center of Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo192-0397, Japan. Tel.: 81-42-677-4873; Fax: 81-42-677-4873; Email: kainosho@nmr.chem.metro-u.ac.jp
References
Hide All
Aberhart, D. J. & Russell, D. J. (1984). Steric course of ketopantoate hydroxymethyltransferase in E. coli. Journal of the American Chemical Society 106, 49024906.
Aghazadeh, B., Zhu, K., Kubiseski, T. J., Liu, G. A., Pawson, T., Zheng, Y. & Rosen, M. K. (1998). Structure and mutagenesis of the Dbl homology domain. Nature Structural Biology 5, 10981107.
Akke, M., Carr, P. A. & Palmer, A. G. (1994). Heteronuclear-correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection, and sensitivity enhancement using z rotations. Journal of Magnetic Resonance Series B 104, 298302.
Arata, Y., Kato, K., Takahashi, H. & Shimada, I. (1994). Nuclear magnetic resonance study of antibodies – a multinuclear approach. Methods in Enzymology 239, 440464.
Arnesano, F., Banci, L., Bertini, I., Felli, I. C., Luchinat, C. & Thompsett, A. R. (2003). A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas syringae. Journal of the American Chemical Society 125, 72007208.
Arnold, L. D., Kalantar, T. H. & Vederas, J. C. (1985). Conversion of serine to stereochemically pure β-substituted α-amino acids via β-lactones. Journal of the American Chemical Society 107, 71057109.
Arnold, L. D., May, R. G. & Vederas, J. C. (1988). Synthesis of optically pure α-amino acids via salts of α-amino-β-propiolactone. Journal of the American Chemical Society 110, 22372241.
Arrowsmith, C. H. & Wu, Y. S. (1998). NMR of large (>25 kDa) proteins and protein complexes. Progress in Nuclear Magnetic Resonance Spectroscopy 32, 277286.
Atreya, H. S. & Chary, K. V. R. (2001). Selective ‘unlabeling’ of amino acids in fractionally 13C labeled proteins: an approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues. Journal of Biomolecular NMR 19, 267272.
Axelsson, B. S., Otoole, K. J., Spencer, P. A. & Young, D. W. (1991). A versatile synthesis of stereospecifically labelled D-amino acids and related enzyme inhibitors. Journal of the Chemical Society-Chemical Communications 10851086.
Bartels, C., Billeter, M., Güntert, P. & Wüthrich, K. (1996). Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. Journal of Biomolecular NMR 7, 207213.
Bartels, C., Güntert, P., Billeter, M. & Wüthrich, K. (1997). GARANT – a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. Journal of Computational Chemistry 18, 139149.
Bax, A., Clore, G. M. & Gronenborn, A. M. (1990). 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. Journal of Magnetic Resonance 88, 425431.
Bax, A. & Pochapsky, S. S. (1992). Optimized recording of heteronuclear multidimensional NMR spectra using pulsed field gradients. Journal of Magnetic Resonance 99, 638643.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research 28, 235242.
Bermel, W., Bertini, I., Duma, L., Felli, I. C., Emsley, L., Pierattelli, R. & Vasos, P. R. (2005). Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angewandte Chemie – International Edition 44, 30893092.
Bertini, I., Duma, L., Felli, I. C., Fey, M., Luchinat, C., Pierattelli, R. & Vasos, P. R. (2004). A heteronuclear direct-detection NMR spectroscopy experiment for protein-backbone assignment. Angewandte Chemie – International Edition 43, 22572259.
Betton, J. M. (2003). Rapid translation system (RTS): a promising alternative for recombinant protein production. Current Protein & Peptide Science 4, 7380.
Beyer, J., Lang-Fugmann, S., Mühlbauer, A. & Steglich, W. (1998). A convenient synthesis of 4-hydroxy[1-13C]benzoic acid and related ring-labelled phenolic compounds. Synthesis-Stuttgart 10471051.
Brenzel, S., Kurpiers, T. & Mootz, H. D. (2006). Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry 45, 15711578.
Burk, M. J. (1991). C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions. Journal of the American Chemical Society 113, 85188519.
Burk, M. J., Feaster, J. E., Nugent, W. A. & Harlow, R. L. (1993). Preparation and use of C2-symmetric bis(phospholanes): production of α-amino acid derivatives via highly enantioselective hydrogenation reactions. Journal of the American Chemical Society 115, 1012510138.
Burk, M. J., Kalberg, C. S. & Pizzano, A. (1998). Rh-DuPHOS-catalyzed enantioselective hydrogenation of enol esters. Application to the synthesis of highly enantioenriched α-hydroxy esters and 1,2-diols. Journal of the American Chemical Society 120, 43454353.
Burz, D. S., Dutta, K., Cowburn, D. & Shekhtman, A. (2006). Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nature Methods 3, 9193.
Busche, A. E., Aranko, A. S., Talebzadeh-Farooji, M., Bernhard, F., Dötsch, V. & Iwai, H. (2009). Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angewandte Chemie (English Edition) 48, 61286131.
Campbell, I. D., Dobson, C. M., Moore, G. R., Perkins, S. J. & Williams, R. J. (1976). Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome C. FEBS Letters 70, 96100.
Cavanagh, J., Fairbrother, W. J., Palmer, A. G. III, Skelton, N. J. & Rance, M. (2006). Protein NMR Spectroscopy. Principles and Practice, 2nd edn.San Diego, CA: Academic Press.
Cavanagh, J., Palmer, A. G., Wright, P. E. & Rance, M. (1991). Sensitivity improvement in proton-detected 2-dimensional heteronuclear relay spectroscopy. Journal of Magnetic Resonance 91, 429436.
Chandonia, J. M. & Brenner, S. E. (2006). The impact of structural genomics: expectations and outcomes. Science 311, 347351.
Chattopadhyaya, R., Meador, W. E., Means, A. R. & Quiocho, F. A. (1992). Calmodulin structure refined at 1·7 Å resolution. Journal of Molecular Biology 228, 11771192.
Chou, J. J., Li, S. P., Klee, C. B. & Bax, A. (2001). Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nature Structural Biology 8, 990997.
Chrunyk, B. A., Evans, J., Lillquist, J., Young, P. & Wetzel, R. (1993). Inclusion body formation and protein stability in sequence variants of interleukin-1β. Journal of Biological Chemistry 268, 1805318061.
Clemens, M. J. & Prujin, G. J. (1999). Protein Synthesis in Eukaryotic Cell-Free Systems. New York: Oxford University Press.
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society 117, 51795197.
Coughlin, P. E., Anderson, F. E., Oliver, E. J., Brown, J. M., Homans, S. W., Pollak, S. & Lustbader, J. W. (1999). Improved resolution and sensitivity of triple-resonance NMR methods for the structural analysis of proteins by use of a backbone-labeling strategy. Journal of the American Chemical Society 121, 1187111874.
Cowburn, D., Shekhtman, A., Xu, R., Ottesen, J. J. & Muir, T. W. (2004). Segmental isotopic labeling for structural biological applications of NMR. Methods in Molecular Biology 278, 4756.
Crespi, H. L., Rosenberg, R. M. & Katz, J. J. (1968). Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science 161, 795796.
Davanloo, P., Rosenberg, A. H., Dunn, J. J. & Studier, F. W. (1984). Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences USA 81, 20352039.
Ding, K. & Gronenborn, A. M. (2004). Sensitivity-enhanced IPAP experiments for measuring one-bond 13C′-13Cα and 13Cα-1Hα residual dipolar couplings in proteins. Journal of Magnetic Resonance 167, 253258.
Duan, X. Q., Gimble, F. S. & Quiocho, F. A. (1997). Crystal structure of PI-Scel, a homing endonuclease with protein splicing activity. Cell 89, 555564.
Edison, A. S., Abildgaard, F., Westler, W. M., Mooberry, E. S. & Markley, J. L. (1994). Practical introduction to theory and implementation of multinuclear, multidimensional nuclear magnetic resonance experiments. Methods in Enzymology 239, 379.
Edwards, K. J., Ollis, D. L. & Dixon, N. E. (1997). Crystal structure of cytoplasmic Escherichia coli peptidyl-prolyl isomerase: Evidence for decreased mobility of loops upon complexation. Journal of Molecular Biology 271, 258265.
Erlenmeyer, E. (1893). Über die Condensation der Hippursäure mit Phtalsäureanhydrid und mit Benzaldehyd. Justus Liebigs Annalen der Chemie 275, 120.
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). The Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press.
Fernández, C., Hilty, C., Wider, G., Güntert, P. & Wüthrich, K. (2004). NMR structure of the integral membrane protein OmpX. Journal of Molecular Biology 336, 12111221.
Fesik, S. W. & Zuiderweg, E. R. P. (1988). Heteronuclear 3-dimensional NMR spectroscopy – a strategy for the simplification of homonuclear two-dimensional NMR spectra. Journal of Magnetic Resonance 78, 588593.
Fiaux, J., Bertelsen, E. B., Horwich, A. L. & Wuthrich, K. (2002). NMR analysis of a 900K GroEL-GroES complex. Nature 418, 207211.
Folmer, R. H. A., Hilbers, C. W., Konings, R. N. H. & Hallenga, K. (1995). A 13C double-filtered NOESY with strongly reduced artefacts and improved sensitivity. Journal of Biomolecular NMR 5, 427432.
Gani, D. & Young, D. W. (1983). Synthesis of l-serine stereospecifically labelled at C-3 with deuterium. Journal of the Chemical Society – Perkin Transactions 1 23932398.
Gardner, K. H. & Kay, L. E. (1997). Production and incorporation of 15N, 13C, 2H (1H-δ1 Methyl) isoleucine into proteins for multidimensional NMR studies. Journal of the American Chemical Society 119, 75997600.
Gardner, K. H. & Kay, L. E. (1998). The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annual Review of Biophysics and Biomolecular Structure 27, 357406.
Gardner, K. H., Zhang, X. C., Gehring, K. & Kay, L. E. (1998). Solution NMR studies of a 42 kDa Escherichia coli maltose binding protein β-cyclodextrin complex: chemical shift assignments and analysis. Journal of the American Chemical Society 120, 1173811748.
Garrett, D. S., Seok, Y. J., Liao, D. I., Peterkofsky, A., Gronenborn, A. M. & Clore, G. M. (1997). Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry 36, 25172530.
Goff, S. A. & Goldberg, A. L. (1987). An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. Journal of Biological Chemistry 262, 45084515.
Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C. & Kay, L. E. (1999). A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. Journal of Biomolecular NMR 13, 369374.
Goto, N. K. & Kay, L. E. (2000). New developments in isotope labeling strategies for protein solution NMR spectroscopy. Current Opinion in Structural Biology 10, 585592.
Griesinger, C., Sørensen, O. W. & Ernst, R. R. (1987a). Novel 3-dimensional NMR techniques for studies of peptides and biological macromolecules. Journal of the American Chemical Society 109, 72277228.
Griesinger, C., Sørensen, O. W. & Ernst, R. R. (1987b). A practical approach to 3-dimensional NMR spectroscopy. Journal of Magnetic Resonance 73, 574579.
Gronwald, W. & Kalbitzer, H. R. (2004). Automated structure determination of proteins by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 44, 3396.
Grzesiek, S., Anglister, J., Ren, H. & Bax, A. (1993). 13C line narrowing by 2H decoupling in 2H/13C/15N-enriched proteins. Application to triple-resonance 4D J-connectivity of sequential amides. Journal of the American Chemical Society 115, 43694370.
Grzesiek, S. & Bax, A. (1992a). Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. Journal of the American Chemical Society 114, 62916293.
Grzesiek, S. & Bax, A. (1992b). An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. Journal of Magnetic Resonance 99, 201207.
Grzesiek, S., Cordier, F., Jaravine, V. & Barfield, M. (2004). Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy 45, 275300.
Güntert, P. (2003). Automated NMR protein structure calculation. Progress in Nuclear Magnetic Resonance Spectroscopy 43, 105125.
Güntert, P. (2009). Automated structure determination from NMR spectra. European Biophysics Journal 38, 129143.
Güntert, P., Berndt, K. D. & Wüthrich, K. (1993). The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination. Journal of Biomolecular NMR 3, 601606.
Güntert, P., Braun, W., Billeter, M. & Wüthrich, K. (1989). Automated stereospecific 1H NMR assignments and their impact on the precision of protein structure determinations in solution. Journal of the American Chemical Society 111, 39974004.
Güntert, P., Braun, W. & Wüthrich, K. (1991a). Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. Journal of Molecular Biology 217, 517530.
Güntert, P., Mumenthaler, C. & Wüthrich, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. Journal of Molecular Biology 273, 283298.
Güntert, P., Qian, Y. Q., Otting, G., Müller, M., Gehring, W. & Wüthrich, K. (1991b). Structure determination of the Antp(C39S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA. Journal of Molecular Biology 217, 531540.
Güntert, P. & Wüthrich, K. (1991). Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. Journal of Biomolecular NMR 1, 447456.
Guignard, L., Ozawa, K., Pursglove, S. E., Otting, G. & Dixon, N. E. (2002). NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. FEBS Letters 524, 159162.
Henrich, B., Lubitz, W. & Plapp, R. (1982). Lysis of Escherichia coli by induction of cloned phi X174 genes. Molecular and General Genetics 185, 493497.
Herrmann, T., Güntert, P. & Wüthrich, K. (2002). Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. Journal of Molecular Biology 319, 209227.
Hirata, R., Nakano, A., Kawasaki, H., Suzuki, K. & Anraku, Y. (1990). Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry 265, 67266733.
Huang, Y. P. J., Moseley, H. N. B., Baran, M. C., Arrowsmith, C., Powers, R., Tejero, R., Szyperski, T. & Montelione, G. T. (2005). An integrated platform for automated analysis of protein NMR structures. Methods in Enzymology 394, 111141.
Ikeya, T., Takeda, M., Yoshida, H., Terauchi, T., Jee, J., Kainosho, M. & Güntert, P. (2009). Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. Journal of Biomolecular NMR 44, 261272.
Ikeya, T., Terauchi, T., Güntert, P. & Kainosho, M. (2006). Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA. Magnetic Resonance in Chemistry 44, S152S157.
Ikura, M. & Bax, A. (1992). Isotope-filtered 2D NMR of a protein-peptide complex: study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. Journal of the American Chemical Society 114, 24332440.
Ikura, M., Kay, L. E. & Bax, A. (1990). A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 46594667.
Ikura, M., Spera, S., Barbato, G., Kay, L. E., Krinks, M. & Bax, A. (1991). Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR-spectroscopy. Biochemistry 30, 92169228.
Ishima, R., Louis, J. M. & Torchia, D. A. (2001). Optimized labeling of 13CHD2 methyl isotopomers in perdeuterated proteins: potential advantages for 13C relaxation studies of methyl dynamics of larger proteins. Journal of Biomolecular NMR 21, 167171.
Iwai, H. & Plückthun, A. (1999). Circular β-lactamase: stability enhancement by cyclizing the backbone. FEBS Letters 459, 166172.
Iwai, H., Züger, S., Jin, J. & Tam, P. H. (2006). Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Letters 580, 18531858.
Jardetzky, O. & Roberts, G. C. K. (1981). NMR in Molecular Biology. New York: Academic Press.
Jee, J. & Güntert, P. (2003). Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. Journal of Structural and Functional Genomics 4, 179189.
Johnson, B. A. (2004). Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods in Molecular Biology 278, 313352.
Kainosho, M. (1997). Isotope labelling of macromolecules for structural determinations. Nature Structural Biology 4, 858861.
Kainosho, M. & Ajisaka, K. (1975). Conformational analysis of amino acids and peptides using specific isotope substitution. II. Conformation of serine, tyrosine, phenylalanine, aspartic acid, asparagine, and asparatic acid β-methyl ester in various ionization states. Journal of the American Chemical Society 97, 56305631.
Kainosho, M., Torizawa, T., Iwashita, Y., Terauchi, T., Ono, A. M. & Güntert, P. (2006). Optimal isotope labelling for NMR protein structure determinations. Nature 440, 5257.
Kainosho, M. & Tsuji, T. (1982). Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 62736279.
Kalbitzer, H. R., Leberman, R. & Wittinghofer, A. (1985). 1H-NMR spectroscopy on elongation factor Tu from Escherichia coli – resolution enhancement by perdeuteration. FEBS Letters 180, 4042.
Kane, P. M., Yamashiro, C. T., Wolczyk, D. F., Neff, N., Goebl, M. & Stevens, T. H. (1990). Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase Science 250, 651657.
Kariya, E., Ohki, S., Hayano, T. & Kainosho, M. (2000). Backbone 1H, 13C, and 15N resonance assignments of an 18·2 kDa protein, E. coli peptidyl-prolyl cis-trans isomerase b (EPPIb). Journal of Biomolecular NMR 18, 7576.
Kay, L. E. (2005). NMR studies of protein structure and dynamics. Journal of Magnetic Resonance 173, 193207.
Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. (1990). Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. Journal of Magnetic Resonance 89, 496514.
Kay, L. E., Keifer, P. & Saarinen, T. (1992a). Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. Journal of the American Chemical Society 114, 1066310665.
Kay, L. E., Nicholson, L. K., Delaglio, F., Bax, A. & Torchia, D. A. (1992b). Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanism on the measurement of heteronuclear T 1 and T 2 values in proteins. Journal of Magnetic Resonance 97, 359375.
Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. & Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662666.
Kigawa, T., Muto, Y. & Yokoyama, S. (1995). Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. Journal of Biomolecular NMR 6, 129134.
Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. & Yokoyama, S. (1999). Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Letters 442, 1519.
Kim, D. M., Kigawa, T., Choi, C. Y. & Yokoyama, S. (1996). A highly efficient cell-free protein synthesis system from Escherichia coli. European Journal of Biochemistry 239, 881886.
Kim, D. M. & Swartz, J. R. (2000). Prolonging cell-free protein synthesis by selective reagent additions. Biotechnology Progress 16, 385390.
Klabunde, T., Sharma, S., Telenti, A., Jacobs, W. R. & Sacchettini, J. C. (1998). Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nature Structural Biology 5, 3136.
Klammt, C., Löhr, F., Schäfer, B., Haase, W., Dötsch, V., Rüterjans, H., Glaubitz, C. & Bernhard, F. (2004). High level cell-free expression and specific labeling of integral membrane proteins. European Journal of Biochemistry 271, 568580.
Kobayashi, M., Yagi, H., Yamazaki, T., Yoshida, M. & Akutsu, H. (2008). Dynamic inter-subunit interactions in thermophilic F-1-ATPase subcomplexes studied by cross-correlated relaxation-enhanced polarization transfer NMR. Journal of Biomolecular NMR 40, 165174.
Koradi, R., Billeter, M., Engeli, M., Güntert, P. & Wüthrich, K. (1998). Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. Journal of Magnetic Resonance 135, 288297.
Koradi, R., Billeter, M. & Güntert, P. (2000). Point-centered domain decomposition for parallel molecular dynamics simulation. Computer Physics Communications 124, 139147.
Kramer, G., Kudlicki, W. & Hardesty, B. (1999). Cell-Free Coupled Transcription-Translation Systems from Escherichia coli. New York: Oxford University Press.
Lang, M., Lang-Fugmann, S. & Steglich, W. (2002). Organic Syntheses 78, 113122.
Lee, W., Revington, M. J., Arrowsmith, C. & Kay, L. E. (1994). A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Letters 350, 8790.
LeMaster, D. M., LaIuppa, J. C. & Kushlan, D. M. (1994). Differential deuterium isotope shifts and one bond 1H-13C scalar couplings in the conformational analysis of protein glycine residues. Journal of Biomolecular NMR 4, 863870.
LeMaster, D. M. & Richards, F. M. (1988). NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27, 142150.
Li, G. G., Patel, D. & Hruby, V. J. (1993). An efficient procedure for the demethylation of aryl-methyl ethers in optically pure unusual amino acids. Tetrahedron Letters 34, 53935396.
Lian, L. Y. & Middleton, D. A. (2001). Labelling approaches for protein structural studies by solution-state and solid-state NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 39, 171190.
López-Méndez, B. & Güntert, P. (2006). Automated protein structure determination from NMR spectra. Journal of the American Chemical Society 128, 1311213122.
Luginbühl, P., Güntert, P., Billeter, M. & Wüthrich, K. (1996). The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules. Journal of Biomolecular NMR 8, 136146.
Machonkin, T. E., Westler, W. M. & Markley, J. L. (2002). 13C{13C} 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates. Journal of the American Chemical Society 124, 32043205.
Madin, K., Sawasaki, T., Ogasawara, T. & Endo, Y. (2000). A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proceedings of the National Academy of Sciences USA 97, 559564.
Malmodin, D., Papavoine, C. H. M. & Billeter, M. (2003). Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. Journal of Biomolecular NMR 27, 6979.
Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. (1989). Three-dimensional heteronuclear NMR of 15N labeled proteins. Journal of the American Chemical Society 111, 15151517.
Markley, J. L., Putter, I. & Jardetzky, O. (1968). High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161, 12491251.
Matsuo, H., Kupce, E., Li, H. J. & Wagner, G. (1996a). Increased sensitivity in HNCA and HN(CO)CA experiments by selective Cβ decoupling. Journal of Magnetic Resonance Series B 113, 9196.
Matsuo, H., Kupce, E. & Wagner, G. (1996b). Resolution and sensitivity gain in HCCH-TOCSY experiments by homonuclear Cβ decoupling. Journal of Magnetic Resonance Series B 113, 190194.
Maurizi, M. R. (1987). Degradation in vitro of bacteriophage lambda N protein by Lon protease from Escherichia coli. Journal of Biological Chemistry 262, 26962703.
McIntosh, L. P. & Dahlquist, F. W. (1990). Biosynthetic incorporation of N-15 and C-13 for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Quarterly Reviews of Biophysics 23, 138.
Medek, A., Olejniczak, E. T., Meadows, R. P. & Fesik, S. W. (2000). An approach for high-throughput structure determination of proteins by NMR spectroscopy. Journal of Biomolecular NMR 18, 229238.
Melacini, G. (2000). Separation of intra- and intermolecular NOEs through simultaneous editing and J-compensated filtering: a 4D quadrature-free constant-time J-resolved approach. Journal of the American Chemical Society 122, 97359738.
Metzler, W. J., Wittekind, M., Goldfarb, V., Mueller, L. & Farmer, B. T. II (1996). Incorporation of 1H/13C/15N-{Ile, Leu, Val} into a perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. Journal of the American Chemical Society 118, 68006801.
Montelione, G. T., Zheng, D. Y., Huang, Y. P. J., Gunsalus, K. C. & Szyperski, T. (2000). Protein NMR spectroscopy in structural genomics. Nature Structural Biology 7, 982985.
Mueller, G. A., Choy, W. Y., Yang, D., Forman-Kay, J. D., Venters, R. A. & Kay, L. E. (2000). Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Journal of Molecular Biology 300, 197212.
Muona, M., Aranko, A. S. & Iwai, H. (2008). Segmental isotopic labelling of a multidomain protein by protein ligation by protein prans-splicing. ChemBioChem: A European Journal of Chemical Biology 9, 29582961.
Murray, A. III & Williams, D. L. (1958). Organic Syntheses with Isotopes. Part II: Organic Compounds Labeled with Isotopes of the Halogens, Hydrogen, Nitrogen, Oxygen, Phosphorus and Sulfur. New York: Interscience.
Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. (1989). Sterospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 75107516.
Nilges, M. (1995). Calculation of protein structures with ambiguous distance restraints – Automated assignment of ambiguous NOE crosspeaks and disulfide connectivities. Journal of Molecular Biology 245, 645660.
Nishiyama, K., Oba, M., Ueno, R., Morita, A., Nakamura, Y. & Kainosho, M. (1994). Synthesis of phenylalanines regiospecifically labelled with deuterium in the aromatic ring. Journal of Labelled Compounds & Radiopharmaceuticals 34, 831837.
O'Donoghue, S. I. & Nilges, M. (1999). Calculation of symmetric oligomer structures from NMR data. In Structure Computation and Dynamics in Protein NMR, vol. 17(eds. Krishna, N. R. & Berliner, L. J.), pp. 131161. New York: Kluwer Academic/Plenum Publishers.
Oba, M., Iwasaki, A., Hitokawa, H., Ikegame, T., Banba, H., Ura, K., Takamura, T. & Nishiyama, K. (2006). Preparation of l-serine and l-cystine stereospecifically labeled with deuterium at the β-position. Tetrahedron-Asymmetry 17, 18901894.
Oba, M., Kobayashi, M., Oikawa, F., Nishiyama, K. & Kainosho, M. (2001). Synthesis of 13C/D doubly labeled L-leucines: probes for conformational analysis of the leucine side-chain. Journal of Organic Chemistry 66, 59195922.
Oba, M., Terauchi, T., Miyakawa, A., Kamo, H. & Nishiyama, K. (1998). Stereoselective deuterium-labelling of diastereotopic methyl and methylene protons of L-leucine. Tetrahedron Letters 39, 15951598.
Oba, M., Terauchi, T., Miyakawa, A. & Nishiyama, K. (1999). Asymmetric synthesis of L-proline regio- and stereoselectively labelled wiith deuterium. Tetrahedron-Asymmetry 10, 937945.
Ogura, K., Terasawa, H. & Inagaki, F. (1996). An improved double-tuned and isotope-filtered pulse scheme based on a pulsed field gradient and a wide-band inversion shaped pulse. Journal of Biomolecular NMR 8, 492498.
Ohki, S. Y., Eto, M., Kariya, E., Hayano, T., Hayashi, Y., Yazawa, M., Brautigan, D. & Kainosho, M. (2001). Solution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformational changes responsible for activation. Journal of Molecular Biology 314, 839849.
Ohki, S. Y. & Kainosho, M. (2008). Stable isotope labeling methods for protein NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 53, 208226.
Ojima, I., Kato, K., Nakahashi, K., Fuchikami, T. & Fujita, M. (1989). New and effective routes to fluoro analogues of aliphatic and aromatic amino acids. Journal of Organic Chemistry 54, 45114522.
Okuma, K., Ono, A. M., Tsuchiya, S., Oba, M., Nishiyama, K., Kainosho, M. & Terauchi, T. (2009). Assymetric synthesis of (2S,3R)- and (2S,3S)-[2-13C;3-2H] glutamic acid. Tetrahedron Letters 50, 14821484.
Olejniczak, E. T., Xu, R. X. & Fesik, S. W. (1992). A 4D-HCCH-TOCSY experiment for assigning the side-chain 1H-resonance and 13C-resonance of proteins. Journal of Biomolecular NMR 2, 655659.
Ollerenshaw, J. E., Tugarinov, V., Skrynnikov, N. R. & Kay, L. E. (2005). Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins. Journal of Biomolecular NMR 33, 2541.
Oschkinat, H., Cieslar, C., Holak, T. A., Clore, G. M. & Gronenborn, A. M. (1989). Practical and theoretical aspects of 3-dimensional homonuclear Hartmann-Hahn-nuclear Overhauser enhancement spectroscopy of proteins. Journal of Magnetic Resonance 83, 450472.
Ostler, G., Soteriou, A., Moody, C. M., Khan, J. A., Birdsall, B., Carr, M. D., Young, D. W. & Feeney, J. (1993). Stereospecific assignments of the leucine methyl resonances in the 1H NMR spectrum of Lactobacillus casei dihydrofolate reductase. FEBS Letters 318, 177180.
Otomo, T., Ito, N., Kyogoku, Y. & Yamazaki, T. (1999a). NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38, 1604016044.
Otomo, T., Teruya, K., Uegaki, K., Yamazaki, T. & Kyogoku, Y. (1999b). Improved segmental isotope labeling of proteins and application to a larger protein. Journal of Biomolecular NMR 14, 105114.
Otting, G. & Wüthrich, K. (1990). Heteronuclear filters in two-dimensional [1H,1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Quarterly Reviews of Biophysics 23, 3996.
Palmer, A. G., Cavanagh, J., Byrd, R. A. & Rance, M. (1992). Sensitivity improvement in 3-dimensional heteronuclear correlation NMR spectroscopy. Journal of Magnetic Resonance 96, 416424.
Palmer, A. G., Cavanagh, J., Wright, P. E. & Rance, M. (1991a). Sensitivity improvement in proton-detected 2-dimensional heteronuclear correlation NMR spectroscopy. Journal of Magnetic Resonance 93, 151170.
Palmer, A. G., Cavanagh, J., Wright, P. E. & Rance, M. (1991b). Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. Journal of Magnetic Resonance 93, 151170.
Pervushin, K. & Eletsky, A. (2003). A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment. Journal of Biomolecular NMR 25, 147152.
Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. (1997). Attenuated T 2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proceedings of the National Academy of Sciences USA 94, 1236612371.
Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. (1998). Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. Journal of the American Chemical Society 120, 63946400.
Pratt, J. M. (1984). Transcription and Translation: A Practical Approach. New York: IRL Press.
Prestegard, J. H., Bougault, C. M. & Kishore, A. I. (2004). Residual dipolar couplings in structure determination of biomolecules. Chemical Reviews 104, 35193540.
Rajesh, S., Nietlispach, D., Nakayama, H., Takio, K., Laue, E. D., Shibata, T. & Ito, Y. (2003). A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp. Journal of Biomolecular NMR 27, 8186.
Ramer, S. E., Moore, R. N. & Vederas, J. C. (1986). Mechanism of formation of serine β-lactones by Mitsunobu cyclization: synthesis and use of l-serine stereospecifically labelled with deuteriun at C-3. Canadian Journal of Chemistry 64, 706713.
Riegel, E. & Zwilgmeyer, F. (1943). Organic Syntheses II, 126.
Riek, R., Wider, G., Pervushin, K. & Wüthrich, K. (1999). Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proceedings of the National Academy of Sciences USA 96, 49184923.
Romanelli, A., Shekhtman, A., Cowburn, D. & Muir, T. W. (2004). Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proceedings of the National Academy of Sciences USA 101, 63976402.
Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T. & Kay, L. E. (1996). Selective methyl group protonation of perdeuterated proteins. Journal of Molecular Biology 263, 627636.
Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wüthrich, K. (1998). TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proceedings of the National Academy of Sciences of the United States of America 95, 1358513590.
Santoro, J. & King, G. C. (1992). A constant-time 2D overbodenhausen experiment for inverse correlation of isotopically enriched species. Journal of Magnetic Resonance 97, 202207.
Seeholzer, S. H., Cohn, M., Putkey, J. A., Means, A. R. & Crespi, H. L. (1986). NMR studies of a complex of deuterated calmodulin with melittin. Proceedings of the National Academy of Sciences USA 83, 36343638.
Shan, X., Gardner, K. H., Muhandiram, D. R., Rao, N. S., Arrowsmith, C. H. & Kay, L. E. (1996). Assignment of 15N, 13Cα, 13Cβ, and HN resonances in an 15N, 13C, 2H labeled 64 kDa trp repressor-operator complex using triple-resonance NMR spectroscopy and 2H-decoupling. Journal of the American Chemical Society 118, 65706579.
Sharff, A. J., Rodseth, L. E. & Quiocho, F. A. (1993). Refined 1·8-Å structure reveals the mode of binding of β-cyclodextrin to the maltodextrin binding protein. Biochemistry 32, 1055310559.
Shi, J., Pelton, J. G., Cho, H. S. & Wemmer, D. E. (2004). Protein signal assignments using specific labeling and cell-free synthesis. Journal of Biomolecular NMR 28, 235247.
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. & Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology 19, 751755.
Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. (1996). Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 15311534.
Skrisovska, L. & Allain, F. H. T. (2008). Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. Journal of Molecular Biology 375, 151164.
Smith, B. O., Ito, Y., Raine, A., Teichmann, S., BenTovim, L., Nietlispach, D., Broadhurst, R. W., Terada, T., Kelly, M., Oschkinat, H., Shibata, T., Yokoyama, S. & Laue, E. D. (1996). An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types. Journal of Biomolecular NMR 8, 360368.
Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y. & Alakhov, Y. B. (1988). A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 11621164.
Sprangers, R. & Kay, L. E. (2007). Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618622.
Staunton, D., Owen, J. & Campbell, I. D. (2003). NMR and structural genomics. Accounts of Chemical Research 36, 207214.
Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. & Shimada, I. (2000). A novel NMR method for determining the interfaces of large protein-protein complexes. Nature Structural Biology 7, 220223.
Takeda, M., Chang, C. K., Ikeya, T., Güntert, P., Chang, Y. H., Hsu, Y. L., Huang, T. H. & Kainosho, M. (2008a). Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein determined by the SAIL-NMR method. Implications for RNA packaging as revealed by nucleic acid interactions. Journal of Molecular Biology 380, 608622.
Takeda, M., Ikeya, T., Güntert, P. & Kainosho, M. (2007). Automated structure determination of proteins with the SAIL-FLYA NMR method. Nature Protocols 2, 28962902.
Takeda, M., Ono, A. M., Terauchi, T. & Kainosho, M. (2009). Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. Journal of Biomolecular NMR 44, 261265.
Takeda, M., Sugimori, N., Torizawa, T., Terauchi, T., Ono, A. M., Yagi, H., Yamaguchi, Y., Kato, K., Ikeya, T., Jee, J., Güntert, P., Aceti, D. J., Markley, J. L. & Kainosho, M. (2008b). Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS Journal 275, 58735884.
Tate, S., Ushioda, T., Utsunomiya-Tate, N., Shibuya, K., Ohyama, Y., Nakano, Y., Kaji, H., Inagaki, F., Samejima, T. & Kainosho, M. (1995). Solution structure of a human cystatin A variant, cystatin A2–98 M65L, by NMR spectroscopy. A possible role of the interactions between the N- and C-termini to maintain the inhibitory active form of cystatin A. Biochemistry 34, 1463714648.
Terauchi, T., Kobayashi, K., Okuma, K., Oba, M., Nishiyama, K. & Kainosho, M. (2008). Stereoselective synthesis of triply isotope-labeled Ser, Cys, and Ala: Amino acids for stereoarray isotope labeling technology. Organic Letters 10, 27852787.
Torchia, D. A., Sparks, S. W. & Bax, A. (1988). Delineation of α-helical domains in deuteriated Staphylococcal nuclease by 2D NOE NMR spectroscopy. Journal of the American Chemical Society 110, 23202321.
Torizawa, T., Ono, A. M., Terauchi, T. & Kainosho, M. (2005). NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. Journal of the American Chemical Society 127, 1262012626.
Torizawa, T., Shimizu, M., Taoka, M., Miyano, H. & Kainosho, M. (2004). Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. Journal of Biomolecular NMR 30, 311325.
Trbovic, N., Klammt, C., Koglin, A., Löhr, F., Bernhard, F. & Dötsch, V. (2005). Efficient strategy for the rapid backbone assignment of membrane proteins. Journal of the American Chemical Society 127, 1350413505.
Tugarinov, V., Choy, W. Y., Orekhov, V. Y. & Kay, L. E. (2005). Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proceedings of the National Academy of Sciences USA 102, 622627.
Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C. F., Tolmie, D. E., Wenger, R. K., Yao, H. Y. & Markley, J. L. (2008). BioMagResBank. Nucleic Acids Research 36, D402D408.
Viswanatha, V. & Hruby, V. J. (1980). Conversion of l-tyrosine to l-phenylalanine. Preparation of l-[3′,5′-13C2]phenylalanine. Journal of Organic Chemistry 45, 20102012.
Vitali, F., Henning, A., Oberstrass, F. C., Hargous, Y., Auweter, S. D., Erat, M. & Allain, F. H. T. (2006). Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO Journal 25, 150162.
Vuister, G. W., Kim, S. J., Wu, C. & Bax, A. (1994). 2D and 3D NMR study of phenylalanine residues in proteins by reverse isotopic labeling. Journal of the American Chemical Society 116, 92069210.
Wagner, G., DeMarco, A. & Wüthrich, K. (1976). Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies. Biophysics of Structure and Mechanism 2, 139158.
Wang, H., Janowick, D. A., Schkeryantz, J. M., Liu, X. H. & Fesik, S. W. (1999). A method for assigning phenylalanines in proteins. Journal of the American Chemical Society 121, 16111612.
Williams, N. K., Liepinsh, E., Watt, S. J., Prosselkov, P., Matthews, J. M., Attard, P., Beck, J. L., Dixon, N. E. & Otting, G. (2005). Stabilization of native protein fold by intein-mediated covalent cyclization. Journal of Molecular Biology 346, 10951108.
Williams, N. K., Prosselkov, P., Liepinsh, E., Line, I., Sharipo, A., Littler, D. R., Curmi, P. M. G., Otting, G. & Dixon, N. E. (2002). In vivo protein cyclization promoted by a circularly permuted Synechocystis sp PCC6803 DnaB mini-intein. Journal of Biological Chemistry 277, 77907798.
Williams, R. M. (1989). Synthesis of Optically Active α-Amino Acids. Chapter 2: Homologation of the β-carbon, in Organic Chemistry Series, Ed. Baldwin, J. E.Pergamon Press: Oxford 7, 134166.
Wittekind, M. & Mueller, L. (1993). HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. Journal of Magnetic Resonance Series B 101, 201205.
Wu, P. S. C., Ozawa, K., Lim, S. P., Vasudevan, S. G., Dixon, N. E. & Otting, G. (2007). Cell-free transcription/translation from PCR-amplified DNA for high-throughput NMR studies. Angewandte Chemie-International Edition 46, 33563358.
Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. New York: Wiley.
Wüthrich, K. (1998). The second decade – into the third millennium. Nature Structural Biology 5, 492495.
Xu, R., Ayers, B., Cowburn, D. & Muir, T. W. (1999). Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proceedings of the National Academy of Sciences USA 96, 388393.
Yagi, H., Tsujimoto, T., Yamazaki, T., Yoshida, M. & Akutsu, H. (2004). Conformational change of H+-ATPase β monomer revealed on segmental isotope labeling NMR spectroscopy. Journal of the American Chemical Society 126, 1663216638.
Yamazaki, T., Forman-Kay, J. D. & Kay, L. E. (1993). Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. Journal of the American Chemical Society 115, 1105411055.
Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R. & Kay, L. E. (1994). A suite of triple-resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high-sensitivity. Journal of the American Chemical Society 116, 1165511666.
Yamazaki, T., Otomo, T., Oda, N., Kyogoku, Y., Uegaki, K., Ito, N., Ishino, Y. & Nakamura, H. (1998). Segmental isotope labeling for protein NMR using peptide splicing. Journal of the American Chemical Society 120, 55915592.
Yamazaki, T., Tochio, H., Furui, J., Aimoto, S. & Kyogoku, Y. (1997). Assignment of backbone resonances for larger proteins using the 13C-1H coherence of a 1Hα-, 2H, 13C, and 15N-labeled sample. Journal of the American Chemical Society 119, 872880.
Yee, A., Chang, X. Q., Pineda-Lucena, A., Wu, B., Semesi, A., Le, B., Ramelot, T., Lee, G. M., Bhattacharyya, S., Gutierrez, P., Denisov, A., Lee, C. H., Cort, J. R., Kozlov, G., Liao, J., Finak, G., Chen, L., Wishart, D., Lee, W., McIntosh, L. P., Gehring, K., Kennedy, M. A., Edwards, A. M. & Arrowsmith, C. H. (2002). An NMR approach to structural proteomics. Proceedings of the National Academy of Sciences USA 99, 18251830.
Yee, A., Pardee, K., Christendat, D., Savchenko, A., Edwards, A. M. & Arrowsmith, C. H. (2003). Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Accounts of Chemical Research 36, 183189.
Yokoyama, S., Hirota, H., Kigawa, T., Yabuki, T., Shirouzu, M., Terada, T., Ito, Y., Matsuo, Y., Kuroda, Y., Nishimura, Y., Kyogoku, Y., Miki, K., Masui, R. & Kuramitsu, S. (2000). Structural genomics projects in Japan. Nature Structural Biology 7, 943945.
Yoshida, H., Furuya, N., Lin, Y. J., Güntert, P., Komano, T. & Kainosho, M. (2008). Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. Journal of Molecular Biology 384, 690701.
Zangger, K., Oberer, M., Keller, W. & Sterk, H. (2003). X-filtering for a range of coupling constants: application to the detection of intermolecular NOEs. Journal of Magnetic Resonance 160, 97106.
Zhao, W. T., Zhang, Y. H., Cui, C. X., Li, Q. Q. & Wang, J. J. (2008). An efficient on-column expressed protein ligation strategy: application to segmental triple labeling of human apolipoprotein E3. Protein Science 17, 736747.
Zubay, G. (1973). In vitro synthesis of protein in microbial systems. Annual Review of Genetics 7, 267287.
Züger, S. & Iwai, H. (2005). Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nature Biotechnology 23, 736740.
Zwahlen, C., Legault, P., Vincent, S. J. F., Greenblatt, J., Konrat, R. & Kay, L. E. (1997). Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. Journal of the American Chemical Society 119, 67116721.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed