Skip to main content
×
×
Home

Single particle electron cryomicroscopy: trends, issues and future perspective

  • Kutti R. Vinothkumar (a1) and Richard Henderson (a1)
Abstract

There has been enormous progress during the last few years in the determination of three-dimensional biological structures by single particle electron cryomicroscopy (cryoEM), allowing maps to be obtained with higher resolution and from fewer images than required previously. This is due principally to the introduction of a new type of direct electron detector that has 2- to 3-fold higher detective quantum efficiency than available previously, and to the improvement of the computational algorithms for image processing. In spite of the great strides that have been made, quantitative analysis shows that there are still significant gains to be made provided that the problems associated with image degradation can be solved, possibly by minimising beam-induced specimen movement and charge build up during imaging. If this can be achieved, it should be possible to obtain near atomic resolution structures of smaller single particles, using fewer images and resolving more conformational states than at present, thus realising the full potential of the method. The recent popularity of cryoEM for molecular structure determination also highlights the need for lower cost microscopes, so we encourage development of an inexpensive, 100 keV electron cryomicroscope with a high-brightness field emission gun to make the method accessible to individual groups or institutions that cannot afford the investment and running costs of a state-of-the-art 300 keV installation. A key requisite for successful high-resolution structure determination by cryoEM includes interpretation of images and optimising the biochemistry and grid preparation to obtain nicely distributed macromolecules of interest. We thus include in this review a gallery of cryoEM micrographs that shows illustrative examples of single particle images of large and small macromolecular complexes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Single particle electron cryomicroscopy: trends, issues and future perspective
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Single particle electron cryomicroscopy: trends, issues and future perspective
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Single particle electron cryomicroscopy: trends, issues and future perspective
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Author for correspondence: Richard Henderson, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. Email: rh15@mrc-lmb.cam.ac.uk
References
Hide All
Adrian, M., Dubochet, J., Lepault, J. & Mcdowall, A. W. (1984). Cryo-electron microscopy of viruses. Nature 308, 3236.
Allegretti, M., Mills, D. J., McMullan, G., Kühlbrandt, W. & Vonck, J. (2014). Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3, e01963.
Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. (2015). The structure of the human mitochondrial ribosome. Science 348, 9598.
Armache, J. P., Jarasch, A., Anger, A. M., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Soding, J., Westhof, E., Wilson, D. N. & Beckmann, R. (2010). Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-angstrom resolution. Proceedings of the National Academy of Sciences of the United States of America 107, 1974819753.
Bai, X. C., Fernandez, I. S., McMullan, G. & Scheres, S. H. W. (2013). Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461.
Berriman, J. A. & Rosenthal, P. B. (2012). Paraxial charge compensator for electron cryomicroscopy. Ultramicroscopy 116, 106114.
Booy, F. P. & Pawley, J. B. (1993). Cryo-crinkling - what happens to carbon-films on copper Grids at low-temperature. Ultramicroscopy 48, 273280.
Bottcher, B., Wynne, S. A. & Crowther, R. A. (1997). Determination of the fold of the core protein of hepatitis B virus ky electron cryomicroscopy. Nature 386, 8891.
Brilot, A. F., Chen, J. Z., Cheng, A. C., Pan, J. H., Harrison, S. C., Potter, C. S., Carragher, B., Henderson, R. & Grigorieff, N. (2012). Beam-induced motion of vitrified specimen on holey carbon film. Journal of Structural Biology 177, 630637.
Brink, J., Sherman, M. B., Berriman, J. & Chiu, W. (1998). Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy 72, 4152.
Bullough, P. & Henderson, R. (1987). Use of spot-scan procedure for recording low-dose micrographs of Beam-sensitive specimens. Ultramicroscopy 21, 223229.
Campbell, M. G., Cheng, A. C., Brilot, A. F., Moeller, A., Lyumkis, D., Veesler, D., Pan, J. H., Harrison, S. C., Potter, C. S., Carragher, B. & Grigorieff, N. (2012). Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20, 18231828.
Carragher, B., Kisseberth, N., Kriegman, D., Milligan, R. A., Potter, C. S., Pulokas, J. & Reilein, A. (2000). Leginon: an automated system for acquisition of images from vitreous ice specimens. Journal of Structural Biology 132, 3345.
Chen, S. X., McMullan, G., Faruqi, A. R., Murshudov, G. N., Short, J. M., Scheres, S. H. W. & Henderson, R. (2013). High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 2435.
Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P. T., Stahl, S. J. & Steven, A. C. (1997). Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 9194.
Crowther, R. A., Derosier, D. J. & Klug, A. (1970). Reconstruction of 3 dimensional structure from projections and its application to electron microscopy. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 317, 319–&.
Curtis, G. H. & Ferrier, R. P. (1969). The electric charging of electron-microscope specimens. British Journal of Applied Physics (Journal of Physics D) 2, 10351040.
Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. (2014). Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proceedings of the National Academy of Sciences of the United States of America 111, 1563515640.
De Ruijter, W. J. (1995). Imaging properties and applications of slow-scan charge-coupled-device cameras suitable for electron-microscopy. Micron 26, 247275.
Dejong, A. F. & Vandyck, D. (1993). Ultimate resolution and information in electron-microscopy. 2. The information limit of transmission electron-microscopes. Ultramicroscopy 49, 6680.
Dove, D. B. (1964). Image contrasts in thin carbon films observed by shadow electron microscopy. Journal of Applied Physics 35, 16521653.
Downing, K. H. (1988). Observations of restricted beam-induced specimen motion with small-spot illumination. Ultramicroscopy 24, 387398.
Downing, K. H. (1991). Spot-scan imaging in transmission electron-microscopy. Science 251, 5359.
Downing, K. H. & Hendrickson, F. M. (1999). Performance of a 2k CCD camera designed for electron crystallography at 400 kV. Ultramicroscopy 75, 215233.
Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., Mcdowall, A. W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quarterly Reviews of Biophysics 21, 129228.
Dubochet, J., Adrian, M., Teixeira, J., Alba, C. M., Kadiyala, R. K., Macfarlane, D. R. & Angell, C. A. (1984). Glass-forming microemulsions- vitrification of simple liquids and electron-microscope probing of droplet-packing modes. Journal of Physical Chemistry 88, 67276732.
Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J. C. (1982). Electron-microscopy of frozen water and aqueous-solutions. Journal of Microscopy-Oxford 128, 219237.
Egelman, E. H. (2007). Single-particle reconstruction from EM images of helical filaments. Current Opinion in Structural Biology 17, 556561.
Egelman, E. H. (2015). Three-dimensional reconstruction of helical polymers. Archives of Biochemistry and Biophysics 581, 5458.
Elmlund, D. & Elmlund, H. (2012). SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. Journal of Structural Biology 180, 420427.
Elmlund, H., Elmlund, D. & Bengio, S. (2013). PRIME: probabilistic Initial 3D model generation for single-particle cryo-electron microscopy. Structure 21, 12991306.
Ermantraut, E., Wohlfart, K., Schulz, T. & Tichelaar, W. (1997). Quantifoil: a support foil with holes of pre-defined size, shape and arrangement. European Journal of Cell Biology 74, 9797.
Ermantraut, E., Wohlfart, K. & Tichelaar, W. (1998). Perforated support foils with pre-defined hole size, shape and arrangement. Ultramicroscopy 74, 7581.
Faruqi, A. R., Henderson, R., Pryddetch, M., Allport, P. & Evans, A. (2005). Direct single electron detection with a CMOS detector for electron microscopy. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 546, 170175.
Faruqi, A. R., Henderson, R. & Subramaniam, S. (1999). Cooled CCD detector with tapered fibre optics for recording electron diffraction patterns. Ultramicroscopy 75, 235250.
Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V. & Stark, H. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329333.
Frank, J., Penczek, P., Grassucci, R. & Srivastava, S. (1991). 3-dimensional reconstruction of the 70s Escherichia-coli ribosome in ice - the distribution of Ribosomal-Rna. Journal of Cell Biology 115, 597605.
Frank, J., Shimkin, B. & Dowse, H. (1981). Spider - a modular software system for electron image-processing. Ultramicroscopy 6, 343357.
Frank, J. & van Heel, M. (1982). Correspondence-analysis of aligned images of biological particles. Journal of Molecular Biology 161, 134137.
Fujiyoshi, Y. (1998). The structural study of membrane proteins by electron crystallography. Advances in Biophysics 35, 2580.
Gabashvili, I. S., Agrawal, R. K., Spahn, C. M. T., Grassucci, R. A., Svergun, D. I., Frank, J. & Penczek, P. (2000). Solution structure of the E. coli 70S ribosome at 11.5 angstrom resolution. Cell 100, 537549.
Gan, L. & Jensen, G. J. (2012). Electron tomography of cells. Quarterly Reviews of Biophysics 45, 2756.
Glaeser, R. M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. Journal of Ultrastructure Research 36, 466–&.
Glaeser, R. M. (1992). Specimen flatness of thin crystalline arrays - influence of the substrate. Ultramicroscopy 46, 3343.
Glaeser, R. M. (1999). Review: electron crystallography: present excitement, a nod to the past, anticipating the future. Journal of Structural Biology 128, 314.
Glaeser, R. M. (2013). Invited review article: methods for imaging weak-phase objects in electron microscopy. Review of Scientific Instruments 84, 111101, 117.
Glaeser, R. M. (2016). How good can cryo-EM become? Nature Methods 13, 2832.
Glaeser, R. M., Han, B.-G., Csencsits, R., Killilea, A., Pulk, A. & Cate, J. H. D. (2016). Factors that influence the formation and stability of thin, cryo-EM specimens. Biophysical Journal 110, 749755.
Glaeser, R. M., McMullan, G., Faruqi, A. R. & Henderson, R. (2011). Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion. Ultramicroscopy 111, 90100.
Grant, T. & Grigorieff, N. (2015). Measuring the optimal exposure for single particle cryo-EM using a 2.6 °A reconstruction of rotavirus VP6. eLife 4, e06980.
Grigorieff, N. (1998). Three-dimensional structure of bovine NADH: ubiquinone oxidoreductase (Complex I) at 22 angstrom in ice. Journal of Molecular Biology 277, 10331046.
Grigorieff, N. (2000). Resolution measurement in structures derived from single particles. Acta Crystallographica Section D-Biological Crystallography 56, 12701277.
Grigorieff, N. (2007). FREALIGN: high-resolution refinement of single particle structures. Journal of Structural Biology 157, 117125.
Grigorieff, N. & Harrison, S. C. (2011). Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Current Opinion in Structural Biology 21, 265273.
Haas, D. J. & Rossmann, M. G. (1970). Crystallographic studies on lactate Dehydrogenase at −75 °C. Acta Crystallographica Section B B26, 9981004.
Heide, H. G. (1984). Observations on ice layers. Ultramicroscopy 14, 271278.
Henderson, R. (1990). Cryoprotection of protein crystals against radiation-damage in electron and x-ray-diffraction. Proceedings of the Royal Society B-Biological Sciences 241, 68.
Henderson, R. (1995). The potential and limitations of neutrons, electrons and x-rays for atomic-resolution microscopy of unstained biological molecules. Quarterly Reviews of Biophysics 28, 171193.
Henderson, R. (2013). Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proceedings of the National Academy of Sciences of the United States of America 110, 1803718041.
Henderson, R. (2015). Overview and future of single particle electron cryomicroscopy. Archives of Biochemistry and Biophysics 581, 1924.
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. Journal of Molecular Biology 213, 899929.
Henderson, R. & Glaeser, R. M. (1985). Quantitative-analysis of image-contrast in electron-micrographs of beam-sensitive crystals. Ultramicroscopy 16, 139150.
Henderson, R., Sali, A., Baker, M. L., Carragher, B., Devkota, B., Downing, K. H., Egelman, E. H., Feng, Z. K., Frank, J., Grigorieff, N., Jiang, W., Ludtke, S. J., Medalia, O., Penczek, P. A., Rosenthal, P. B., Rossmann, M. G., Schmid, M. F., Schroder, G. F., Steven, A. C., Stokes, D. L., Westbrook, J. D., Wriggers, W., Yang, H. W., Young, J., Berman, H. M., Chiu, W., Kleywegt, G. J. & Lawson, C. L. (2012). Outcome of the first electron microscopy validation task force meeting. Structure 20, 205214.
Henderson, R. & Unwin, P. N. T. (1975). 3-dimensional model of purple membrane obtained by electron-microscopy. Nature 257, 2832.
Heymann, J. B. (2001). Bsoft: image and molecular processing in electron microscopy. Journal of Structural Biology 133, 156169.
Hohn, M., Tang, G., Goodyear, G., Baldwin, P. R., Huang, Z., Penczek, P. A., Yang, C., Glaeser, R. M., Adams, P. D. & Ludtke, S. J. (2007). SPARX, a new environment for Cryo-EM image processing. Journal of Structural Biology 157, 4755.
Hope, H., Frolow, F., Vonbohlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Webster, P., Bartels, K. S., Wittmann, H. G. & Yonath, A. (1989). Cryocrystallography of ribosomal particles. Acta Crystallographica Section B-Structural Science 45, 190199.
Hope, H. & Nichols, B. G. (1981). High-speed single-crystal x-ray data-collection with conventional diffractometers. Acta Crystallographica Section B-Structural Science 37, 158161.
Hoppe, W., Schramm, H. J., Sturm, M., Hunsmann, N. & Gassmann, J. (1976). 3-Dimensional electron-microscopy of individual biological objects. 3. Experimental results on Yeast Fatty-Acid Synthetase. Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences 31, 13801390.
Kabius, B., Hartel, P., Haider, M., Muller, H., Uhlemann, S., Loebau, U., Zach, J. & Rose, H. (2009). First application of C-c-corrected imaging for high-resolution and energy-filtered TEM. Journal of Electron Microscopy 58, 147155.
Knauer, V., Hegerl, R. & Hoppe, W. (1983). 3-dimensional reconstruction and averaging of 30 S-ribosomal subunits of Escherichia coli from electron-micrographs. Journal of Molecular Biology 163, 409430.
Krivanek, O. L. & Mooney, P. E. (1993). Applications of slow-scan CCD cameras in transmission electron-microscopy. Ultramicroscopy 49, 95108.
Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614621.
Kuijper, M., Van Hoften, G., Janssen, B., Geurink, R., De Carlo, S., Vos, M., Van Duinen, G., Van Haeringen, B. & Storms, M. (2015). FEI's direct electron detector developments: embarking on a revolution in cryo-TEM. Journal of Structural Biology 192, 179187.
Lepault, J. & Leonard, K. (1985). 3-dimensional structure of unstained, frozen-hydrated extended tails of bacteriophage-T4. Journal of Molecular Biology 182, 431441.
Li, X. M., Mooney, P., Zheng, S., Booth, C. R., Braunfeld, M. B., Gubbens, S., Agard, D. A. & Cheng, Y. F. (2013a). Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584590.
Li, X. M., Zheng, S. Q., Egami, K., Agard, D. A. & Cheng, Y. F. (2013b). Influence of electron dose rate on electron counting images recorded with the K2 camera. Journal of Structural Biology 184, 251260.
Liao, M. F., Cao, E. H., Julius, D. & Cheng, Y. F. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107112.
Liu, H., Jin, L., Koh, S. B. S., Atanasov, I., Schein, S., Wu, L. & Zhou, Z. H. (2010). Atomic structure of human adenovirus by Cryo-EM reveals interactions among protein networks. Science 329, 10381043.
Ludtke, S. J., Baldwin, P. R. & Chiu, W. (1999). EMAN: semiautomated software for high-resolution single-particle reconstructions. Journal of Structural Biology 128, 8297.
Lyumkis, D., Brilot, A. F., Theobald, D. L. & Grigorieff, N. (2013). Likelihood-based classification of cryo-EM images using FREALIGN. Journal of Structural Biology 183, 377388.
Marabini, R., Masegosa, I. M., Sanmartin, M. C., Marco, S., Fernandez, J. J., Delafraga, L. G., Vaquerizo, C. & Carazo, J. M. (1996). Xmipp: an image processing package for electron microscopy. Journal of Structural Biology 116, 237240.
McMullan, G., Chen, S., Henderson, R. & Faruqi, A. R. (2009a). Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109, 11261143.
McMullan, G., Clark, A. T., Turchetta, R. & Faruqi, A. R. (2009b). Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109, 14111416.
McMullan, G., Faruqi, A. R., Clare, D. & Henderson, R. (2014). Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156163.
McMullan, G., Faruqi, A. R., Henderson, R., Guerrini, N., Turchetta, R., Jacobs, A. & Van Hoften, G. (2009c). Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 11441147.
McMullan, G., Vinothkumar, K. R. & Henderson, R. (2015). Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy. Ultramicroscopy 158, 2632.
Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G. & Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 12091213.
Meents, A., Gutmann, S., Wagner, A. & Schulze-Briese, C. (2010). Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proceedings of the National Academy of Sciences of the United States of America 107, 10941099.
Meyer, R. R. & Kirkland, A. I. (2000). Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microscopy Research and Technique 49, 269280.
Meyerson, J. R., Rao, P., Kumar, J., Chittori, S., Banerjee, S., Pierson, J., Mayer, M. L. & Subramaniam, S. (2014). Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports. Scientific Reports 4, 7084.
Milazzo, A. C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C., Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P., Kleinfelder, S. & Xuong, N. H. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104, 152159.
Miyazawa, A., Fujiyoshi, Y. & Unwin, N. (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949955.
Murata, K., Liu, X. A., Danev, R., Jakana, J., Schmid, M. F., King, J., Nagayama, K. & Chiu, W. (2010). Zernike phase contrast cryo-electron microscopy and tomography for structure determination at Nanometer and Subnanometer resolutions. Structure 18, 903912.
Nagayama, K. (2014). Biological applications of phase-contrast electron microscopy. Methods in Molecular Biology 1117, 385399.
Nogales, E., Wolf, S. G. & Downing, K. H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199203.
Pantelic, R. S., Meyer, J. C., Kaiser, U., Baumeister, W. & Plitzko, J. M. (2010). Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. Journal of Structural Biology 170, 152156.
Petsko, G. A. (1975). Protein crystallography at sub-zero temperatures - Cryo-protective mother liquors for protein crystals. Journal of Molecular Biology 96, 381392.
Provencher, S. W. & Vogel, R. H. (1988). 3-dimensional reconstruction from electron-micrographs of disordered specimens. 1. Method. Ultramicroscopy 25, 209221.
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. (1987). 3-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50s-Ribosomal subunit of Escherichia-Coli . Journal of Microscopy-Oxford 146, 113136.
Ramsden, J. J. (1994). Experimental methods for investigating protein adsorption-kinetics at surfaces. Quarterly Reviews of Biophysics 27, 41105.
Rosenthal, P. B. & Henderson, R. (2003). Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. Journal of Molecular Biology 333, 721745.
Rosenthal, P. B. & Rubinstein, J. L. (2015). Validating maps from single particle electron cryomicroscopy. Current Opinion in Structural Biology 34, 135144.
Rubinstein, J. L. & Brubaker, M. A. (2015). Alignment of cryo-EM movies of individual particles by optimization of image translations. Journal of Structural Biology 192, 188195.
Russo, C. J. & Passmore, L. A. (2014a). Ultrastable gold substrates for electron cryomicroscopy. Science 346, 13771380.
Russo, C. J. & Passmore, L. A. (2014b). Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nature Methods 11, 649652.
Russo, C. J. & Passmore, L. A. (2016). Ultrastable gold substrates: properties of a support for high-resolution electron cryomicroscopy of biological specimens. Journal of Structural Biology 193, 3344.
Sader, K., Stopps, M., Calder, L. J. & Rosenthal, P. B. (2013). Cryomicroscopy of radiation sensitive specimens on unmodified graphene sheets: reduction of electron-optical effects of charging. Journal of Structural Biology 183, 531536.
Saibil, H. R., Grunewald, K. & Stuart, D. I. (2015). A national facility for biological cryo-electron microscopy. Acta Crystallographica Section D-Biological Crystallography 71, 127135.
Scheres, S. H. W. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology 180, 519530.
Scheres, S. H. W. (2014). Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665.
Scheres, S. H. W. & Chen, S. X. (2012). Prevention of overfitting in cryo-EM structure determination. Nature Methods 9, 853854.
Scheres, S. H. W., Gao, H. X., Valle, M., Herman, G. T., Eggermont, P. P. B., Frank, J. & Carazo, J. M. (2007a). Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 2729.
Scheres, S. H. W., Nunez-Ramirez, R., Gomez-Llorente, Y., Martin, C. S., Eggermont, P. P. B. & Carazo, J. M. (2007b). Modeling experimental image formation for likelihood-based classification of electron microscopy. Structure 15, 11671177.
Scheres, S. H. W., Valle, M., Nunez, R., Sorzano, C. O. S., Marabini, R., Herman, G. T. & Carazo, J. M. (2005). Maximum-likelihood multi-reference refinement for electron microscopy images. Journal of Molecular Biology 348, 139149.
Sigworth, F. J. (1998). A maximum-likelihood approach to single-particle image refinement. Journal of Structural Biology 122, 328339.
Sorzano, C. O. S., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J. R., Scheres, S. H. W., Carazo, J. M. & Pascual-Montano, A. (2004). XMIPP: a new generation of an open-source image processing package for electron microscopy. Journal of Structural Biology 148, 194204.
Stagg, S. M., Lander, G. C., Pulokas, J., Fellmann, D., Cheng, A. C., Quispe, J. D., Mallick, S. P., Avila, R. M., Carragher, B. & Potter, C. S. (2006). Automated cryoEM data acquisition and analysis of 284742 particles of GroEL. Journal of Structural Biology 155, 470481.
Stark, H., Zemlin, F. & Boettcher, C. (1996). Electron radiation damage to protein crystals of bacteriorhodopsin at different temperatures. Ultramicroscopy 63, 7579.
Stewart, A. & Grigorieff, N. (2004). Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102, 6784.
Stewart, P. L., Burnett, R. M., Cyrklaff, M. & Fuller, S. D. (1991). Image-reconstruction reveals the complex molecular-organization of adenovirus. Cell 67, 145154.
Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C. S. & Carragher, B. (2005). Automated molecular microscopy: the new Leginon system. Journal of Structural Biology 151, 4160.
Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I. & Ludtke, S. J. (2007). EMAN2: an extensible image processing suite for electron microscopy. Journal of Structural Biology 157, 3846.
Taylor, K. A. & Glaeser, R. M. (1974). Electron-diffraction of frozen, hydrated protein crystals. Science 186, 10361037.
Taylor, K. A. & Glaeser, R. M. (1976). Electron-microscopy of frozen hydrated biological specimens. Journal of Ultrastructure Research 55, 448456.
Thomanek, U. F., Parak, F., Mossbaue, R. L., Formanek, H., Schwager, P. & Hoppe, W. (1973). Freezing of Myoglobin crystals at high-pressure. Acta Crystallographica Section A A 29, 263265.
Turchetta, R. (1993). Spatial-resolution of silicon microstrip detectors. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 335, 4458.
Unwin, P. N. T. & Henderson, R. (1975). Molecular-structure determination by electron-microscopy of unstained crystalline specimens. Journal of Molecular Biology 94, 425440.
van Heel, M. (1987). Angular reconstitution - a posteriori assignment of projection directions for 3-D reconstruction. Ultramicroscopy 21, 111123.
van Heel, M. & Frank, J. (1981). Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6, 187194.
van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. (1996). A new generation of the IMAGIC image processing system. Journal of Structural Biology 116, 1724.
van Heel, M. & Keegstra, W. (1981). Imagic - a fast, flexible and friendly image-analysis software system. Ultramicroscopy 7, 113130.
van Heel, M. G. (1979). Imagic and its results. Ultramicroscopy 4, 117117.
Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. (1986). 3-dimensional structure of clathrin cages in ice. Embo Journal 5, 529534.
Vinothkumar, K. R. (2015). Membrane protein structures without crystals, by single particle electron cryomicroscopy. Current Opinion in Structural Biology 33, 103114.
Vinothkumar, K. R., McMullan, G. & Henderson, R. (2014a). Molecular mechanism of antibody-mediated activation of beta-galactosidase. Structure 22, 621627.
Vinothkumar, K. R., Zhu, J. P. & Hirst, J. (2014b). Architecture of mammalian respiratory complex I. Nature 515, 8084.
Vogel, R. H., Provencher, S. W., Vonbonsdorff, C. H., Adrian, M. & Dubochet, J. (1986). Envelope structure of Semliki forest virus reconstructed from Cryoelectron micrographs. Nature 320, 533535.
Vonck, J. (2000). Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 85, 123129.
Wagenknecht, T., Grassucci, R. & Frank, J. (1988). Electron-microscopy and computer image averaging of ice-embedded large ribosomal-subunits from Escherichia-coli . Journal of Molecular Biology 199, 137147.
Wang, Z., Hryc, C. F., Bammes, B., Afonine, P. V., Jakana, J., Chen, D. H., Liu, X. G., Baker, M. L., Kao, C., Ludtke, S. J., Schmid, M. F., Adams, P. D. & Chiu, W. (2014). An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nature Communications 5, 112.
Wright, E. R., Iancu, C. V., Tivol, W. F. & Jensen, G. J. (2006). Observations on the behavior of vitreous ice at similar to 82 and similar to 12 K. Journal of Structural Biology 153, 241252.
Yonekura, K., Maki-Yonekura, S. & Namba, K. (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643650.
Zeng, X., Stahlberg, H. & Grigorieff, N. (2007). A maximum likelihood approach to two-dimensional crystals. Journal of Structural Biology 160, 362374.
Zhang, X., Jin, L., Fang, Q., Hui, W. H. & Zhou, Z. H. (2010). 3.3 angstrom Cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472482.
Zhang, X., Settembre, E., Xu, C., Dormitzer, P. R., Bellamy, R., Harrison, S. C. & Grigorieff, N. (2008). Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proceedings of the National Academy of Sciences of the United States of America 105, 18671872.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed