Skip to main content
×
×
Home

Why nature really chose phosphate

  • Shina C. L. Kamerlin (a1), Pankaz K. Sharma (a2), Ram B. Prasad (a2) and Arieh Warshel (a2)
Abstract

Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, ‘Why Nature Chose Phosphate’ (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.

Copyright
Corresponding author
*Author for correspondence: A. Warshel. Tel: (213) 740 4114; Email: warshel@usc.edu
References
Hide All
Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. (1994). Structure at 2·8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621628.
Adachi, K., Oiwa, K., Nishizaka, T., Furuike, S., Noji, H., Itoh, H., Yoshida, M. & Kinosita, K. (2007). Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309321.
Adamczyk, A. J., Cao, J., Kamerlin, S. C. L. & Warshel, A. (2011). Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proceedings of the National Academy of Sciences of the United States of America 108, 1411514120.
Adamczyk, A. J. & Warshel, A. (2011). Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome. Proceedings of the National Academy of Sciences of the United States of America 108, 98279832.
Adams, J. A. (2001). Kinetic and catalytic mechanisms of protein kinases. Chemical Reviews 101, 22712290.
Admiraal, S. J. & Herschlag, D. (1995). Mapping of the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chemistry & Biology 2, 729.
Admiraal, S. J. & Herschlag, D. (2000). The substrate-assisted general base catalysis model for phosphate monoester hydrolysis: evaluation using reactivity comparisons. Journal of the American Chemical Society 122, 21452148.
Agirrezabala, X. & Frank, J. (2009). Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Quarterly Reviews of Biophysics 42, 159200.
Aguilar-Pérez, F., Gómez-Tagle, P., Collado-Fregoso, E. & Yatsimirsky, A. K. (2006). Phosphate ester hydrolysis by hydroxo complexes of trivalent lanthanides stabilized by 4-imidazolecarboxylate. Inorganic Chemistry 45, 95029517.
Ahmadian, M. R., Stege, P., Scheffzek, K. & Wittinghofer, A. (1997). Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Structural Biology 4, 686689.
Ahn, J. W., Kraynov, V. S., Zhong, X. J., Werneburg, B. G. & Tsai, M. D. (1998). DNA polymerase β: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes. The Biochemistry Journal 331, 7987.
Akola, J. & Jones, R. O. (2003). ATP hydrolysis in water – A density functional study. Journal of Physical Chemistry B 107, 1177411783.
Akola, J. & Jones, R. O. (2006). Density functional calculations of ATP systems. 2. ATP hydrolysis at the active site of actin. Journal of Physical Chemistry B 110, 8121–2129.
Alberts, I. L., Wang, Y. & Schlick, T. (2007). DNA polymerase β catalysis: are different mechanisms possible? Journal of the American Chemical Society 129, 1110011110.
Alcolombri, U., Elias, M. & Tawfik, D. S. (2011). Directed evolution of sulfotransferases and paraoxonases by ancestral libraries. Journal of Molecular Biology 411, 837853.
Alhambra, C., Wu, L., Zhang, Z.-Y. & Gao, J. (1998). Walden-inversion-enforced transition-state stabilization in a protein tyrosine phosphatase. Journal of the American Chemical Society 120, 38583866.
Alkherraz, A., Kamerlin, S. C. L., Feng, G., Sheikh, Q. I., Warshel, A. & Williams, N. H. (2010). Phosphate ester analogues as probes for understanding enzyme catalysed phosphoryl transfer. Faraday Discussions 145, 281299.
Allin, C., Ahmadian, M. R., Wittinghofer, A. & Gerwert, K. (2001). Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time. Proceedings of the National Academy of Sciences of the United States of America 98, 77547759.
Allin, C. & Gerwert, K. (2001). Ras catalyzes GTP hydrolysis by shifting negative charges from γ- to β-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry 40, 30373046.
Anderson, V. E., Cassano, A. G. & Harris, M. E. (2006). Isotope Effects in Chemistry and Biology. Boca Raton, FL: Taylor and Francis.
Åqvist, J. & Feierberg, I. (2002). The catalytic power of ketosteroid isomerase investigated by computer simulation. Biochemistry 41, 1572815735.
Åqvist, J., Kolmodin, K., Florián, J. & Warshel, A. (1999). Mechanistic alternatives in phophsate monoester hydrolysis: what conclusions can be drawn from available experimental data? Chemistry & Biology 6, R71R80.
Åqvist, J. & Warshel, A. (1989). Calculations of free energy profiles for the staphylococcal nuclease catalyzed reaction. Biochemistry 28, 46804689.
Åqvist, J. & Warshel, A. (1990). Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease. Journal of the American Chemical Society. 112, 28602868.
Åqvist, J. & Warshel, A. (1993). Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chemical Reviews 93, 25232544.
Arantes, G. M. & Chaimovich, H. (2005). Thiolysis and alcoholysis of phosphate tri- and monoesters with alkyl and aryl leaving groups. An ab initio study in the gas phase. Journal of Physical Chemistry A 109, 56255635.
Arndt, J. W., Gong, W. M., Zhong, X. J., Showalter, A. K., Liu, J., Dunlap, C. A., Lin, Z., Paxson, C., Tsai, M. D. & Chan, M. K. (2001). Insight into the catalytic mechanism of DNA polymerase β: structures of intermediate complexes. Biochemistry 40, 53685375.
Arora, K., Beard, W. A., Wilson, S. H. & Schlick, T. (2005). Mismatch-induced conformational distortions in polymerase support an induced-fit mechanism for fidelity. Biochemistry 44, 1332813341.
Arora, K. & Schlick, T. (2004). In silico evidence for DNA polymerase-β’s substrate-induced conformational change. Biophysical Journal 87, 30883099.
Atkins, P. W. (1998). Physical Chemistry, 6 edn, Oxford: Oxford University Press.
Averbuch-Pouchot, M. T. & Durif, A. (1996). Topics in Phosphate Chemistry, Singapore: World Scientific Publishing Co. Pte. Ltd.
Ba-Saif, S. A., Davis, A. M. & Williams, A. (1989a). Effective charge distribution for attack of phenoxide ion on aryl methyl phosphate monoanion: studies related to the action of ribonuclease. The Journal of Organic Chemistry 54, 54835486.
Ba-Saif, S. A., Davis, A. M. & Williams, A. J. (1989b). Effective charge distrtibution for attack of phenoxide ion on aryl methyl phosphate monoanion: studies related to the action of ribonuclease. The Journal of Organic Chemistry 54, 54835486.
Ba-Saif, S. A., Waring, M. A. & Williams, A. (1990). Single transition states in the transfer of a neutral phosphoryl group between phenoxide ion nucleophiles in aqueous solution. Journal of the American Chemical Society. 112, 81158120.
Ba-Saif, S. A., Waring, M. A. & Williams, A. (1991). Dependence of transition-state structure on nucleophile in the reaction of aryl oxide anions with aryl diphenylphosphate esters. Journal of the American Chemical Society Perkin Transactions 2, 16531659.
Babtie, A. C., Bandyopadhyay, S., Olguin, L. F. & Hollfelder, F. (2009). Efficient catalytic promiscuity for chemically distinct reactions. Angewandte Chemie (International ed. in English) 48, 36923694.
Bakhtina, M., Lee, S., Wang, Y., Dunlap, C., Lamarche, B. & Tsai, M.-D. (2005). Use of viscogens, dNTPαS, and Rhodium(III) as probes in stopped-flow experiments to obtain new evidence for the mechanism of catalysis by DNA polymerase β. Biochemistry 44, 51775187.
Bao, Z. Q., Jacobsen, D. M. & Young, M. A. (2011). Briefly bound to active: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675690.
Barbacid, M. (1987). Ras Genes. Annual Review of Biochemistry 56, 779827.
Barbany, M., Gutierrez-De-teran, H., Sanz, F., Villà-Freixa, J. & Warshel, A. (2003). On the generation of catalytic antibodies by transition state analogues. ChemBioChem: A European Journal of Chemical Biology 4, 277285.
Barnard, P. W. C., Bunton, C. A., Llewellyn, D. R., Vernon, C. A. & Welch, V. A. (1961). The reactions of organic phosphates. Part V. The hydrolysis of triphenyl and trimethyl phosphates. Journal of the Chemical Society 26702676.
Barnes, J. A., Wilkie, J. & Williams, I. H. (1994). Transition-state structural variation and mechanistic change. Journal of the Chemical Society Faraday Transactions 90, 17091714.
Baxter, N. J., Olguin, L. F., Golicnick, M., Feng, G., Hounslow, A. M., Bermel, W., Blackburm, G. M., Hollfelder, F., Waltho, J. P. & Williams, N. H. (2006). A Trojan horse transition state analogue generated by MgF3- formation in an enzyme active site. Proceedings of the National Academy of Sciences of the United States of America 103, 1473214737.
Beard, W. A. & Wilson, S. H. (2003). Structural insights into the origins of DNA polymerase fidelity. Structure 11, 489496.
Beatty, R. (2001). The Elements: Phosphorus. New York: Marshall Cavendish Corporation.
Beke-Somfai, T., Feng, B. & Nordén, B. (2012). Energy phase shift as mechanism for catalysis. Chemical Physics Letters 535, 169172.
Beke-Somfai, T., Lincoln, P. & Norden, B. (2011). Double-lock ratchet mechanism revealing the role of αSER-344 in F0F1 ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 108, 48284833.
Benitez, B. A. S., Arora, K. & Schlick, T. (2006). In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism. Biophysical Journal 90, 4256.
Benkovic, S. J. & Hammes-Schiffer, S. (2003). A perspective on enzyme catalysis. Science 301, 11961202.
Bennett, C. H. (1977). Molecular dynamics and transition state theory: the simulation of infrequent events. In Alogrithms for Chemical Computations, Americal Chemical Society, vol. 46 (Ed. Christofferson, R.), pp. 6397. Washington, D.C.
Benson, S. W. (1965). Bond energies. Journal of Chemical Education 42, 502518.
Berg, J. M., Tymoczko, J. L. & Stryer, L. (2010). Biochemistry, 7th edn. New York: W. H. Freeman and Co.
Bilgin, N. & Ehrenberg, M. (1994). Mutations in 23-S ribosomal-RNA perturb transfer-RNA selection and can lead to streptomycin dependence. Journal of Molecular Biology 235, 813824.
Blackburn, G. M. & Williams, N. H. (2003). Comment on ‘The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction’. Science 301, 1184.
Blackburn, P. & Moore, S. (1982). Pancreatic ribonuclease. In The Enzymes, vol. 15 (Ed. Boyer, P. D.), pp. 317433. New York: Academic Press.
Blaskovich, M. A. (2009). Drug discovery and protein tyrosine phosphatases. Current Medicinal Chemistry 16, 20952176.
Bobyr, E., Lassila, J. K., Wiersma-Koch, H. I., Fenn, T. D., Lee, J. J., Nikolic-Hughes, I., Hodgson, K. O., Rees, D. C., Hedman, B. & Herschlag, D. (2012). High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and X-ray crystallography. Journal of Molecular Biology 415, 102117.
Bohm, A., Gaudet, R. & Sigler, P. B. (1997). Structural aspects of heterotrimeric G-protein signaling. Current Opinion in Biotechnology 8, 480487.
Bojin, M. D. & Schlick, T. (2007). A Quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase β. Journal of Physical Chemistry B 111, 1124411252.
Bondar, A.-N., Fischer, S., Smith, J. C., Elstner, M. & Suhai, S. (2004a). Key role of electrostatic interactions in bacteriorhodopsin proton transfer. Journal of the American Chemical Society 126, 1466814677.
Bondar, A. N., Elstner, M., Suhai, S., Smith, J. C. & Fischer, S. (2004b). Mechanism of primary proton transfer in bacteriorhodopsin. Structure 12, 12811288.
Borowiec, J. A., Dean, F. B., Bullock, P. A. & Hurwitz, J. (1990). Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 60, 181184.
Bos, J. (1989). Ras oncogenes in human cancer: a review. Cancer Research 49, 46824689.
Bos, J. L., Rehmann, H. & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865877.
Bose-Basu, B., Derose, E. F., Kirby, T. W., Mueller, G. A., Beard, W. A., Wilson, S. H. & London, R. E. (2004). Dynamic characterization of a DNA repair enzyme: NMR studies of [methyl-C-13]methionine-labeled DNA polymerase β. Biochemistry 43, 89118922.
Bourne, H. R., Sanders, D. A. & Mccormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117127.
Bourne, N. & Williams, A. (1984). Effective charge on oxygen in phosphoryl (-PO32−) group transfer from an oxygen donor. The Journal of Organic Chemistry 49, 12001204.
Bowtell, D., Fu, P., Simon, M. & Senior, P. (1992). Identification of murine homologues of the drosophila son of sevenless gene. Potential activators of ras. Proceedings of the National Academy of Sciences of the United States of America 89, 65116515.
Boyer, P. D. (1993). The binding change mechanism for ATP synthase – some probabilities and possibilities. Biochimica et Biophysica Acta 1140, 215250.
Boyer, P. D. (1997). The ATP synthase – a splendid molecular machine. Annual Review of Biochemistry 66, 717749.
Branduardi, D., De Vivo, M., Rega, N., Barone, V. & Cavalli, A. (2011). Methyl phosphate dianion hydrolysis in solution characterized by path collective variables coupled with DFT-based enhanced sampling simulations. Journal of Chemical Theory and Computation 7, 539543.
Braun-Sand, S., Sharma, P. K., Tchu, Z., Pisliakov, A. V. & Warshel, A. (2008). The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all. Biochimica et Biophysica Acta 1777, 441452.
Braun-Sand, S., Strajbl, M. & Warshel, A. (2004). Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB based models. Biophysical Journal 87, 22212239.
Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S. & Wigler, M. (1987). The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48, 789799.
Bruice, T. C., Tsubouchi, A., Dempcy, R. O. & Olson, L. P. (1996). One- and two-metal ion catalysis of the hydrolysis of adenosine 3′-alkyl phosphate esters. Models for one- and two-metal ion catalysis of RNA hydrolysis. Journal of the American Chemical Society 118, 98679875.
Buchwald, S. L., Friedman, J. M. & Knowles, J. R. (1984). Stereochemistry of nucleophilic displacement on two phosphoric monoesters and a phosphoguanidine: the role of metaphosphate. Journal of the American Chemical Society 106, 49114916.
Bunton, C. A., Llewwellyn, D. R., Oldham, K. G. & Vernon, C. A. (1958). The reaction of organic phosphates. Part I. The hydrolysis of methyl dihydrogen phosphate. Journal of the Chemical Society 35743587.
Bunton, C. A., Mhala, M. M., Oldham, K. G. & Vernon, C. A. (1960). The reactions of organic phosphates. Part II. The hydrolysis of dimethyl phosphate. Journal of the Chemical Society 32933301.
Butcher, W. W. & Westheimer, F. (1955). The lanthanum hydroxide gel promoted hydrolysis of phosphate esters. Journal of the American Chemical Society 77, 24202424.
Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S. & Reed, J. C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 13181321.
Carpenter, B. K. (2005). Nonstatistical dynamics in thermal reactions of polyatomic molecules. Annual Review of Physical Chemistry 56, 5789.
Cassano, A. G., Anderson, V. E. & Harris, M. E. (2002). Evidence for direct attack by hydroxide in phosphodiester hydrolysis. Journal of the American Chemical Society 124, 1096410965.
Catrina, I., O'Brien, P. J., Purcell, J., Nikolic-Hughes, I., Zalatan, J. G., Hengge, A. C. & Herschlag, D. (2007). Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. Journal of the American Chemical Society 129, 57605765.
Cavalli, A. & Carloni, P. (2002). Enzymatic GTP Hydrolysis: insights from an ab initio molecular dynamics study. Journal of the American Chemical Society 124, 37633768.
Cavalli, A., De Vivo, M. & Recanatini, M. (2003). Density functional study of the enzymatic reaction catalyzed by a cyclin-dependent kinase. Chemical Communications (Cambridge, England) 7, 13081309.
Chakrabarti, P. P., Daumke, O., Suveyzdis, Y., Kotting, C., Gerwert, K. & Wittinghofer, A. (2007). Insight into catalysis of a unique GTPase reaction by a combined biochemical and FTIR approach. Journal of Molecular Biology 367, 983.
Chen, W., Wilborn, M. & Rudolph, J. (2000). Dual-specific Cdc25B phosphatase: in search of the catalytic acid. Biochemistry 39, 1078110789.
Cheng, H., Sukal, S., Callender, R. & Leyh, T. S. (2001). γ-phosphate protonation and pH-dependent infolding of the Ras·GTP·Mg2+ complex A vibrational spectroscopy study. Journal of Molecular Biology 276, 99319935.
Cherepanov, D. A., Mulkidjanian, A. Y. & Junge, W. (1999). Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Letters 449, 16.
Chin, J., Banaszcyk, M., Jubian, V. & Zou, X. (1989a). Cobalt(III) complex-promoted hydrolysis of phosphate diesters: comparison in reactivity of rigid cis-diaquo(tetraaza)cobalt(III) complexes. Journal of the American Chemical Society 111, 186190.
Chin, J., Banaszczyk, M., Jubian, V. & Zou, X. (1989b). Cobalt(III) complex-promoted hydrolysis of phosphate diesters: comparison in reactivity of rigid cis-diaquo(tetraaza)cobalt(III) complexes. Journal of the American Chemical Society 111, 186190.
Chung, H.-H., Benson, D. R., Cornish, V. W. & Schultz, P. G. (1993a). Probing the role of loop 2 in Ras function with unnatural amino acids. Proceedings of the National Academy of Sciences of the United States of America 90, 1014510149.
Chung, H.-H., Benson, D. R. & Schultz, P. G. (1993b). Probing the structure and mechanism of Ras protein with an expanded genetic code. Science 259, 806809.
Cleland, W. W. & Hengge, A. C. (2006). Enzymatic mechanisms of phosphate and sulfate transfer. Chemical Reviews 106, 32523278.
Cohen, P. (2002). Protein kinases – the major drug targets of the twenty-first century? Nature Reviews. Drug Discovery 1, 309315.
Cohen, S., Carpenter, G. & King, L. J. (1980). Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phopshorylation activity. The Journal of Biological Chemistry 255, 48344842.
Coleman, D. E. & Sprang, S. R. (1999). Reaction dynamics of G-protein catalyzed hydrolysis of GTP as viewed by X-ray crystallographic snapshots of Giα1. Methods in Enzymology 308, 7092.
Cool, R. H. & Parmeggiani, A. (1991). Substitution of histidine-84 and the GTPase mechanism of elongation factor-Tu. Biochemistry 30, 362366.
Cottrel, T. L. (1958). The Strengths of Chemical Bonds, 2nd edn. London: Butterworths.
Czub, J. & Grubmueller, H. (2011). Torsional elasticity and energetics of F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 108, 74087413.
Dall'acqua, W. & Carter, P. (2000). Substrate-assisted catalysis: molecular basis and biological significance. Protein Science: A Publication of the Protein Society 9, 19.
Davis, A. M., Hall, A. D. & Williams, A. (1988). Charge description of base-catalyzed alcoholysis of Aryl phosphodiesters – a ribonuclease model. Journal of the American Chemical Society 110, 51055108.
Daviter, T., Wieden, H. J. & Rodnina, M. V. (2003). Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. Journal of Molecular Biology 332, 689699.
De Grauuw, M., Hensbergen, P. & Van Der Water, B. (2006). Phospho-proteomic analysis of cellular signaling. Electrophoresis 27, 26762686.
De Vivo, M., Cavalli, A., Carloni, P. & Recanatini, M. (2007). Computationl study of the phosphoryl transfer catalyzed by a cyclin-dependent kinase. Chemistry 13, 84378444.
Dejaegere, A. & Karplus, M. (1993). Hydrolysis rate difference between cyclic and acyclic phosphate esters: solvation versus strain. Journal of the American Chemical Society 115, 53165317.
Dejaegere, A., Liang, X. & Karplus, M. (1994). Phosphate ester hydrolysis: calculation of gas-phase reaction paths and solvation effects. Journal of the Chemical Society Faraday Transactions 90, 17631770.
Di Sabato, G. & Jencks, W. P. (1961). Mechanism and catalysis of reactions of acyl phosphates. II. Hydrolysis. Journal of the American Chemical Society 83, 44004405.
Dittrich, M., Hayashi, S. & Schulten, K. (2003). On the mechanism of ATP hydrolysis in F1-ATPase. Biophysical Journal 85, 22532266.
Downward, J., Parker, P. & Waterfield, M. D. (1984). Autophosphorylation sites on the epidermal growth factor receptor. Nature 311, 483485.
Drake, J. M., Graham, N. A., Stoyanova, T., Sedghi, A., Goldstein, A. S., Cai, H., Smith, D. A., Zhang, H., Komisopoulou, E., Huang, J., Graeber, T. G. & Witte, O. N. (2012). Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America 109, 16431648.
Du, X. L., Black, G. E., Lecchi, P., Abramson, F. P. & Sprang, S. R. (2004). Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: evidence for a loose transition state. Proceedings of the National Academy of Sciences of the United States of America 101, 88588863.
Du, X. L., Frei, H. & Kim, S. H. (2000). The mechanism of GTP hydrolysis by Ras probed by Fourier transform infrared spectroscopy. The Journal of Biological Chemistry 275, 84928500.
Dukanovic, J. & Rapaport, D. (2011). Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochimica et Biophysica Acta – Biomembranes 1808, 971980.
Echols, H. & Goodman, M. F. (1991). Fidelity mechanisms in DNA replication. Annual Review of Biochemistry 60, 477511.
Edwards, D. R., Lohman, D. C. & Wolfenden, R. (2012). Catalytic proficiency: the extreme case of S–O cleaving sulfatases. Journal of the American Chemical Society 134, 525531.
Ehrenberg, M. (2009). Nobel prize in chemistry 2009 – scientific background, http://nobelprize.Org/nobel_prizes/chemistry/laureates/2009/sci.html
Emsley, J. (2000). The shocking history of phosphorus: a biography of the devil's element, pp. 133158. London, England: Macmillan publishers Ltd.
Evans, B., Tishmack, P. A., Pokalsky, C., Zhang, M. & Van Etten, R. L. (1996). Site-directed mutagenesis, kinetic and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase. Biochemistry 35, 1360913617.
Fanning, E. (1992). Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. Journal of Virology 66, 12891293.
Fardilha, M., Esteves, S. L., Korrodi-Gregório, L., Da Cruz E Silva, O. A. & Da Cruz E Silva, F. F. (2010). The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease. Current Medicinal Chemistry 17, 39964017.
Feig, M., Zacharias, M. & Pettitt, B. M. (2001). Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. Biophysical Journal 81, 352370.
Fekry, M. I., Tipton, P. A. & Gates, K. S. (2011). Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic. ACS Chemistry & Biology 6, 127130.
Feng, G., Tanifum, E. A., Adams, H., Hengge, A. C. & Williams, N. H. (2009). Mechanism and transition state structure of aryl methylphosphonate esters doubly coordinated to a dinuclear cobalt(III) center. Journal of the American Chemical Society 131, 1277112779.
Fersht, A. (1999). Structure and Mechanism in Protein Science. A Guide to Enzyme Catalysis and Protein Folding. New York: W. H. Freeman and Company.
Flaks, J. G., Erwin, M. J. & Buchanan, J. M. (1957). Biosynthesis of the purines: XVI. The synthesis of adenosine 5′-phosphate and 5-amino-4 imidazolecarboxamide ribotide by a nucleotide pyrophosphorylase. The Journal of Biological Chemistry 228, 201213.
Flichtinski, D., Sharabi, O., Ruppel, A., Vetter, I. R., Herrmann, C. & Shifman, J. M. (2010). What makes Ras an efficient molecular switch: a computational, biophysical and structural study of Ras-GRP interactions with mutants of Raf. Journal of Molecular Biology 399, 422435.
Florián, J., Åqvist, J. & Warshel, A. (1998). On the reactivity of phosphate monoester dianions in aqueous solution: Brønsted linear free-energy relationships do not have an unique mechanistic interpretation. Journal of the American Chemical Society 120, 1152411525.
Florián, J., Goodman, M. F. & Warshel, A. (2002). Theoretical investigation of the binding free energies and key substrate-recognition components of the replication fidelity of human DNA polymerase β. Journal of Physical Chemistry B 106, 57395753.
Florián, J., Goodman, M. F. & Warshel, A. (2003a). Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. Journal of the American Chemical Society 125, 81638177.
Florián, J., Goodman, M. F. & Warshel, A. (2003b). Computer simulation studies of the fidelity of DNA polymerases. Biopolymers 68, 286299.
Florián, J., Goodman, M. F. & Warshel, A. (2005). Computer simulations of protein functions: searching for the molecular origin of the replication fidelity of DNA polymerases. Proceedings of the National Academy of Sciences of the United States of America 102, 68196824.
Florián, J. & Warshel, A. (1997). A fundamental assumption about OH- attack in phosphate hydrolysis is not fully justified. Journal of the American Chemical Society 119, 54735474.
Florián, J. & Warshel, A. (1998). Phosphate ester hydrolysis in aqueous solution: associative versus dissociative mechanisms. Journal of Physical Chemistry B 102, 719734.
Florián, J. & Warshel, A. (1999). Calculation of hydration entropies of hydrophobic, polar, and ionic solutes in the framework of the Langevin dipole solvation model. Journal of Physical Chemistry B 103, 1028210288.
Fothergill, M., Goodman, M. F., Petruska, J. & Warshel, A. (1995). Structure-energy analysis of the role of metal ions in phosphodiester bond hydrolysis by DNA polymerase I. Journal of the American Chemical Society 117, 1161911627.
Friedman, J. M., Freeman, S. & Knowles, J. R. (1988). The quest for free metaphosphate in solution: racemization at phosphorus in the transfer of the phospho group from aryl phosphate monoesters to tert-butyl alcohol in acetonitrile or in tert-butyl alcohol. Journal of the American Chemical Society 110, 12681275.
Frushicheva, M. P., Cao, J. & Warshel, A. (2011). Challenges and advances in validating enzyme design proposals: the case of Kemp eliminase catalysis. Biochemistry 50, 38493858.
Furuike, S., Hossain, M. D., Maki, Y., Adachi, K., Suzuki, T., Kohori, A., Itoh, H., Yoshida, M. & Kinosita, J. R. K. (2008). Axle-less F1-ATPase rotates in the correct direction. Science 319, 955958.
Futatsugi, N., Hata, M., Hoshino, T. & Tsuda, M. (1999). Ab initio study of the role of lysine 16 for the molecular switching mechanism of Ras protein p21. Biophysical Journal 77, 32873292.
Galperin, M. Y., Bairoch, A. & Koonin, E. V. (1998). A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Science: A Publication of the Protein Society 7, 18291835.
Galperin, M. Y. & Jedrzejas, M. J. (2001). Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Proteins: Structure Function and Bioinformatics 45, 318324.
Gani, D. & Wilkie, J. (1995). Stereochemical, mechanistic, and structural features of enzyme-catalysed phosphate monoester hydrolyses. Chemical Society Reviews 24, 5563.
Gao, Y. Q., Yang, W. & Karplus, M. (2005). A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123, 195205.
Gerlt, J. A. & Gassman, P. G. (1993). Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, Acyl-transfer reactions, and displacement reactions of phosphodiesters. Biochemistry 32, 11943.
Geyer, M., Herrmann, C., Wohlgemuth, S., Wittinghofer, A. & Kalbitzer, H. R. (1997). Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nature Structural Biology 4, 694699.
Gideon, P., John, J., Frech, M., Lautwein, A., Clark, R., Scheffler, J. E. & Wittinghofer, A. (1992). Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Molecular and Cellular Biology 12, 20502056.
Glaves, R., Mathias, G. & Marx, D. (2012). Mechanistic insights into the hydrolysis of a nucleoside triphosphate model in neutral and acidic solution. Journal of the American Chemical Society 134, 69957000.
Glennon, T. M., Villà, J. & Warshel, A. (2000). How does GAP catalyze the GTPase reaction of Ras? A computer simulation study. Biochemistry 39, 96419651.
Glennon, T. M. & Warshel, A. (1998). Energetics of the catalytic reaction of ribonuclease A: a computational study of alternative mechanisms. Journal of the American Chemical Society 120, 1023410247.
Glusker, J. R., Katz, A. K. & Bock, C. W. (1999). Metal ions in biological systems. Rigaku Journal 16, 816.
Golicnick, M., Olguin, L. F., Feng, G., Baxter, N. J., Waltho, J. P., Williams, N. H. & Hollfelder, F. (2009). Kinetic analysis of β-phosphoglucomutase and its inhibition by magnesium fluoride. Journal of the American Chemical Society 131, 15751588.
Goodman, M. F. (2002). Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annual Review of Biochemistry 71, 1750.
Goodman, M. F., Creighton, S., Bloom, L. B. & Petruska, J. (1993). Biochemical basis of DNA replication fidelity. Critical Reviews in Biochemistry and Molecular Biology 28, 83126.
Graham, D. L., Lowe, P. N., Grime, G. W., Marsh, M., Rittinger, K., Smerdon, S. J., Gamblin, S. J. & Eccleston, J. F. (2002). MgF3 as a transition state analog of phopshoryl transfer. Chemistry & Biology 9, 375381.
Graziano, M. P. & Gilman, A. G. (1989). Synthesis in Escherichia coli of GTPase-deficiect mutants of G. The Journal of Biological Chemistry 264, 1547515482.
Grigorenko, B. L., Nemukhin, A. V., Shadrina, M. S., Topol, I. A. & Burt, S. K. (2007a). Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations. Proteins: Structure Function and Bioinformatics 66, 456466.
Grigorenko, B. L., Nemukhin, A. V., Topol, I. A., Cachau, R. E. & Burt, S. K. (2005). QM/MM modeling the Ras-GAP catalyzed hydrolysis of guanosine triphosphate. Proteins: Structure Function and Bioinformatics 60, 495503.
Grigorenko, B. L., Rogov, A. V. & Nemukhin, A. V. (2006). Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters. Journal of Physical Chemistry B 110, 44074412.
Grigorenko, B. L., Rogov, A. V., Topol, I. A., Burt, S. K., Martinez, H. M. & Nemukhin, A. V. (2007b). Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling. Proceedings of the National Academy of Sciences of the United States of America 104, 70577061.
Grigorenko, B. L., Shadrina, M. S., Topol, I. A., Collins, J. R. & Nemukhin, A. V. (2008). Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu. Biochimica et Biophysica Acta – Proteins and Proteomics 1784, 19081917.
Grunwald, E. (1985). Reaction mechanism from structure-energy relations. 1. Base-catalyzed addition of alcohols to formaldehyde. Journal of the American Chemical Society 107, 47104715.
Guan, K. L. & Dixon, J. E. (1991). Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. The Journal of Biological Chemistry 266, 1702617030.
Guerrier-Takeda, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849857.
Guthrie, J. P. (1977). Hydration and dehydration of phosphoric acid derivatives: free energies of formation of the pentacoordinate intermediates of phosphate ester hydrolysis and of monomeric metaphosphate. Journal of the American Chemical Society 99, 39914001.
Guthrie, J. P. (1996). Multidimensional Marcus theory: an analysis of concerted reactions. Journal of the American Chemical Society 118, 1287812885.
Hale, S. P., Poole, L. B. & Gerlt, J. A. (1993). Mechanism of the reaction catalyzed by staphylococcal nuclease; identification of the rate-determining step. Biochemistry 32, 1479.
Hall, C. R. & Inch, T. D. (1980). Phosphorus stereochemistry: mechanistic implications of the observed stereochemistry of bond forming and breaking processes at phosphorus in some 5- and 6-membered ring phosphorus esters. Tetrahedron 36, 20592095.
Hammes, G. G., Benkovic, S. J. & Hammes-Schiffer, S. (2011). Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50, 1042210430.
Hansson, T., Nordlund, P. & Åqvist, J. (1997). Energetics of nucleophile activation in a protein tyrosine phosphatase. Journal of Molecular Biology 265, 118127.
Hausner, T. P., Atmadja, J. & Nierhaus, K. H. (1987). Evidence that the G2661 region of 23S ribosomal-RNA is located at the ribosomal-binding sites of both elongation-factors. Biochimie 69, 911923.
Heesen, H. T., Gerwert, K. & Schlitter, J. (2007). Role of the arginine finger in Ras·RasGAP revealed by QM/MM calculations. FEBS Letters 581, 56775684.
Henchman, M., Viggiano, A. A., Paulson, J. F., Freedman, A. & Wormhoudt, J. (1985). Thermodynamic and kinetic properties of the metaphosphate anion, PO3− in the gas phase. Journal of the American Chemical Society 107, 14531455.
Hengge, A. C. (1999). Insights from Heavy-Atom Isotope Effects on Phosphoryl and Thiophosphoryl Transfer Reactions. Amsterdam: IOS Press.
Hengge, A. C. (2002). Isotope effects in the study of phosphoryl and sulfuryl transfer reactions. Accounts of Chemical Research 35, 105112.
Hengge, A. C. & Cleland, W. W. (1991). Phosphoryl-transfer reactions of phosphodiesters: characterization of transition states by heavy-atom isotope effects. Journal of the American Chemical Society 113, 58355841.
Hengge, A. C., Edens, W. A. & Elsing, H. (1994). Transition-state structures for phosphoryl-transfer reactions of p-nitrophenyl phosphate. Journal of the American Chemical Society 116, 50455049.
Hengge, A. C., Tobin, A. E. & Cleland, W. W. (1995). Studies of transition-state structures in phosphoryl transfer reactions of phosphodiesters of p-nitrophenol. Journal of the American Chemical Society 117, 59195926.
Henzler-Wildman, K. A., Lei, M., Thai, V., Kerns, S. J., Karplus, M. & Kern, D. (2007a). A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913916.
Henzler-Wildman, K. A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., Pozharski, E., Wilson, M. A., Petsko, G. A., Karplus, M., Hubner, C. G. & Kern, D. (2007b). Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838844.
Herrmann, C., Martin, G. A. & Wittinghofer, A. (1995). Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. The Journal of Biological Chemistry 270, 2901.
Herschlag, D. & Jencks, W. P. (1987). The effect of divalent metal ions on the rate and transition-state structure of phosphoryl-transfer reactions. Journal of the American Chemical Society 109, 46654674.
Herschlag, D. & Jencks, W. P. (1989a). Evidence that metaphosphate monoanion is not an intermediate in solvolysis reactions in aqueous solution. Journal of the American Chemical Society 111, 75797586.
Herschlag, D. & Jencks, W. P. (1989b). Phosphoryl transfer to anionic oxygen nucleophiles. Nature of the transition state and electrostatic repulsion. Journal of the American Chemical Society 111, 75877596.
Hoff, R. H. & Hengge, A. C. (1998a). Entropy and enthalpy contributions to solvent effects on phosphate monoester solvolosys. The importance of entropy effects in the dissociative transition state. The Journal of Organic Chemistry 63, 66806688.
Hoff, R. H. & Hengge, A. C. (1998b). Entropy and enthalpy contributions to solvent effects on phosphate monoester solvolysis. The importance of entropy effects in the dissociative transition state. The Journal of Organic Chemistry 63, 66806688.
Hoff, R. H., Larsen, P. & Hengge, A. C. (2001). Isotope effects and medium effects on sulfuryl transfer reactions. Journal of the American Chemical Society 123, 93389344.
Hollfelder, F. & Herschlag, D. (1995a). The nature of the transition state for enzyme-catalyzed phopshoryl transfer. Hydrolysis of O-arylphosphorothioates by alkaline phosphatase. Biochemistry 34, 1225512264.
Hollfelder, F. & Herschlag, D. (1995b). The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase. Biochemistry 34, 12255.
Holtz, K. M., Cartrine, I. E., Hengge, A. C. & Kantrowitz, E. (2000). General acid-base catalysis of complex reactions in water. Biochemistry 39, 94519458.
Hoofs Van Huijsduijnen, R., Wälchi, S., Ibberson, M. & Harrenga, A. (2002). Protein tyrosine phosphatases as drug targets: PTP1B and beyond. Expert Opinion on Therapeutic Targets 6, 637647.
Hou, G. & Cui, Q. (2012). QM/MM analysis suggests that alkaline phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Journal of the American Chemical Society 134, 229246.
Hu, C.-H. & Brinck, T. (1999). Theoretical studies of the hydrolysis of the methyl phosphate anion. Journal of Physical Chemistry A 103, 53795386.
Hübscher, U., Maga, G. & Spadari, S. (2002). Eukaryotic DNA polymerases. Annual Review of Biochemistry 71, 133163.
Huheey, J. E., Keitler, E. A. & Keitler, R. L. (1993). Inorganic Chemistry, 4th edn. New York: Harper Collins.
Humphry, T., Forconi, M., Williams, N. H. & Hengge, A. C. (2004). Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center. Journal of the American Chemical Society 126, 1186411869.
Hunter, T. (1995). Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signalling. Cell 80, 225236.
Hunter, T. (2000). Signaling–2000 and beyond. Cell 100, 113127.
Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular Cell 28, 730738.
Hunter, T. & Cooper, J. A. (1985). Protein-tyrosine kinases. Annual Review of Biochemistry 54, 897930.
Hwang, J.-K., King, G., Creighton, S. & Warshel, A. (1988). Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution. Journal of the American Chemical Society 110, 52975311.
Hwang, J.-K. & Warshel, A. (1993). A quantized classical path approach for calculations of quantum mechanical rate constants. Journal of Physical Chemistry 97, 1005310058.
Hwang, J.-K. & Warshel, A. (1996). How important are quantum mechanical nuclear motions in enzyme catalysis? Journal of the American Chemical Society 118, 1174511751.
Iche-Tarrat, N., Barthelat, J. C., Rinaldi, D. & Vigroux, A. (2005). Theoretical studies of the hydroxide-catalyzed P–O cleavage reactions of neutral phosphate triesters and diesters in aqueous solution: examination of the changes induced by H/Me substitution. Journal of Physical Chemistry B 109, 2257022580.
Iché-Tarrat, N., Ruiz-Lopez, M., Barthelat, J.-C. & Vigroux, A. (2007). Theoretical evaluation of the substrate-assisted catalysis mechanism for the hydrolysis of phosphate monoester dianions. Chemistry–A European Journal 13, 36173629.
Inbal, B., Shani, G., Cohen, O., Kissil, J. & Kimchi, A. (2000). Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Molecular and Cellular Biology 20, 10441054.
Jacquet, E. & Parmeggiani, A. (1988). Structure-function relationships in the GTP binding domain of EF-Tu – mutation of Val20, the residue homologous to position 12 in p21. The EMBO Journal 7, 28612867.
Jankowski, S., Quin, L. D., Paneth, P. & O'Leary, M. H. (1994). Kinetic isotope effects on ethyl metaphosphate transfer from a phosphoramidate to ethanol. Journal of the American Chemical Society 116, 1167511677.
Jencks, W. P. (1969). Catalysis in Chemistry and Enzymology. New York: McGraw-Hill.
Jencks, W. P. (1972). General acid-base catalysis of complex reactions in water. Chemical Reviews 72, 705718.
Jencks, W. P. (1980). When is an intermediate not an intermediate? Enforced mechanisms of general acid-base, catalyzed, carbocation, carbanion, and ligand exchange reaction. Accounts of Chemical Research 13, 161169.
Jencks, W. P. (1985). A primer for the bema hapothle. An empirical approach to the characterization of changing transition-state structures. Chemical Reviews 85, 511527.
Jencks, W. P. (1987). Catalysis in Chemistry and Enzymology. New York: Dover.
Jensen, R. A. (1976). Enzyme recruitment in evolution of new function. Annual Reviews of Microbiology 30, 409425.
Johnson, K. A. (1993). Conformational coupling in DNA polymerase fidelity. Annual Review of Biochemistry 62, 685713.
Johnson, K. A. (2008). Role of induced fit in enzyme specificity: a molecular forward/reverse switch. The Journal of Biological Chemistry 283, 2629726301.
Johnson, T. O., Ermolieff, J. & Jirousek, M. R. (2002). Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Reviews. Drug Discovery 1, 696708.
Jonas, S. & Hollfelder, F. (2009). Mapping catalytic promiscuity in the alkaline phosphatase superfamily. Pure and Applied Chemistry 81, 731742.
Jonas, S., Van Loo, B., Hyvönen, M. & Hollfelder, F. (2008). A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphate monoester hydrolyase/phosphodiesterase from Rhizobium leguminosarum. Journal of Molecular Biology 384, 120136.
Joyce, C. M. & Benkovic, S. J. (2004). DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry 43, 1431714324.
Kamerlin, S. C. L. (2011a). Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme catalyzed sulfuryl transfer. The Journal of Organic Chemistry 76, 92289238.
Kamerlin, S. C. L., Florián, J. & Warshel, A. (2008a). Associative versus dissociative mechanisms of phosphate monoester hydrolysis: on the interpretation of activation entropies. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 9, 17671773.
Kamerlin, S. C. L., Haranczyk, M. & Warshel, A. (2009a). Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 10, 11251134.
Kamerlin, S. C. L., Haranczyk, M. & Warshel, A. (2009b). Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions, and solvation free energies. Journal of Physical Chemistry B 113, 12531272.
Kamerlin, S. C. L., Mckenna, C. E., Goodman, M. F. & Warshel, A. (2009c). A computational study of the hydrolysis of dGTP analogues with halomethylene-modified leaving groups in solution: implications for the mechanism of DNA polymerases. Biochemistry 48, 59635971.
Kamerlin, S. C. L., Rucker, R. & Boresch, S. (2007). A molecular dynamics study of WPD-loop flexibility in PTP1B. Biochemical and Biophysical Research Communications 356, 10111016.
Kamerlin, S. C. L., Sharma, P. K., Chu, Z. T. & Warshel, A. (2010). Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization. Proceedings of the National Academy of Sciences of the United States of America 107, 40754080.
Kamerlin, S. C. L., Vicatos, S. & Warshel, A. (2011). Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annual Review of Physical Chemistry 62, 4164.
Kamerlin, S. C. L. & Warshel, A. (2009). On the energetics of ATP hydrolysis in solution. Journal of Physical Chemistry B 113, 1569215698.
Kamerlin, S. C. L. & Warshel, A. (2010). At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins: Structure Function and Bioinformatics 78, 13391375.
Kamerlin, S. C. L. & Warshel, A. (2011a). The empirical valence bond model: theory and applications. Computational Molecular Science 1, 3045.
Kamerlin, S. C. L. & Warshel, A. (2011b). Multiscale modeling of biological problems. Physical Chemistry Chemical Physics 13, 1040110411.
Kamerlin, S. C. L. & Wilkie, J. (2007). The role of metal ions in phosphate ester hydrolysis. Organic & Biomolecular Chemistry 5, 20982108.
Kamerlin, S. C. L. & Wilkie, J. (2011). The effect of leaving group on mechanistic preference in phosphate monoester hydrolysis. Organic & Biomolecular Chemistry 9, 53945406.
Kamerlin, S. C. L., Williams, N. H. & Warshel, A. (2008b). Dineopentyl phosphate hydrolysis: evidence for stepwise water attack. The Journal of Organic Chemistry 73, 69606969.
Khan, S. A. & Kirby, A. J. (1970). The reactivity of phosphate esters. Multiple structure–reactivity correlations for the reactions of triesters with nucleophiles. Journal of the Chemical Society B 11721182.
Khersonsky, O., Roodveldt, C. & Tawfik, D. S. (2006). Enzyme promiscuity: evolutionary and mechanistic aspects. Current Opinion in Chemistry & Biology 10, 498508.
Khersonsky, O. & Tawfik, D. S. (2010). Enzyme promiscuity: a mechanistic and evolutionary perspective. Annual Review of Biochemistry 79, 471505.
Kim, E. E. & Wyckoff, H. W. (1991). Reaction mechanism of alkaline phosphatase based on crystal structures: two metal ion catalysis. Journal of Molecular Biology 218, 449464.
Kim, S. J., Beard, W. A., Harvey, J., Shock, D. D., Knutson, J. R. & Wilson, S. H. (2003). Rapid segmental and subdomain motions of DNA polymerase β. The Journal of Biological Chemistry 278, 50725081.
Kirby, A. J. & Jencks, W. P. (1965a). The reactivity of nucleophilic reagents toward the p-nirophenyl phosphate dianions. Journal of the American Chemical Society 87, 32093216.
Kirby, A. J. & Varvoglis, A. G. (1967a). The reactivity of phosphate esters. Monoester hydrolysis. Journal of the American Chemical Society 89, 415423.
Kirby, A. J. & Varvoglis, A. G. (1968a). The reactivity of phosphate esters: reactions of monoesters with nucleophiles. Nucleophilicity independent of basicity in a bimolecular substitution reaction. Journal of the American Chemical Society B 135141.
Kirby, A. J. & Varvoglis, A. G. (1968b). The reactivity of phosphate esters: reactions of monoesters with nucleophiles. Nucleophilicity independent of basicity in a bimolecular substitution reaction. Journal of the American Chemical Society B 135141.
Kirby, A. J. & Younas, M. (1970a). The reactivity of phosphate esters. Reactions of diesters with nucleophiles. Journal of the American Chemical Society B 510513.
Kirby, A. J. & Younas, M. (1970b). The reactivity of phosphate esters. Reactions of diesters with nucleophiles. Journal of the American Chemical Society B 11651172.
Kirby, J. A. & Jencks, W. P. (1965b). The reactivity of nucleophillic reagents towards the p-nitrophenyl phosphate dianion. Journal of the American Chemical Society 87, 32093216.
Kirby, J. A. & Varvoglis, A. G. (1967b). The reactivity of phosphate monoester hydrolysis. Journal of the American Chemical Society 89, 415423.
Kirby, J. A. & Younas, M. (1970c). The reactivity of phosphate esters. Diester hydrolysis. Journal of the American Chemical Society B 510513.
Kirby, T. W., Derose, E. F., Beard, W. A., Wilson, S. H. & London, R. E. (2005). A thymine isostere in the templating position disrupts assembly of the closed DNA polymerase β ternary complex. Biochemistry 44, 1523015237.
Kirmizialtin, S., Nguyen, V., Johnson, K. A. & Elber, R. (2012). How conformational dynamics of DNA polymerase select correct substrates: experiments and simulations. Structure 20, 618627.
Klähn, M., Rosta, E. & Warshel, A. (2006). On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. Journal of the American Chemical Society 128, 1531015323.
Knight, W. B., Weiss, P. M. & Cleland, W. W. (1986). Determination of equilibrium 18O isotope effects on the deprotonation of phosphate and phosphate esters and the anomeric effect on deprotonation of glucose 6-phosphate. Journal of the American Chemical Society 108, 25792761.
Knudsen, C., Wieden, H. J. & Rodnina, M. V. (2001). The importance of structural transitions of the switch ii region for the functions of elongation factor Tu on the ribosome. The Journal of Biological Chemistry 276, 2218322190.
Koga, N. & Takada, S. (2006). Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 103, 53675372.
Kolmodin, K. & Åqvist, J. (1999). Computational modeling of the rate limiting step in low molecular weight protein tyrosine phosphatase. FEBS Letters 456, 301305.
Kolmodin, K. & Åqvist, J. (2001). The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Letters 498, 208213.
Kolmodin, K., Nordlund, P. & Aqvist, J. (1999). Mechanism of substrate dephosphorylation in low M-r protein tyrosine phosphatase. Proteins 36, 370379.
Kornberg, A. & Baker, T. A. (1992). DNA Replication. New York: W. H. Freeman.
Kornberg, A., Lieberman, I. & Simms, E. S. (1955). Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphatase. The Journal of Biological Chemistry 215, 389402.
Koshland, D. E. (1995). The key-lock theory and the induced fit theory. Angewandte Chemie (International ed. in English) 33, 23752378.
Kosloff, M., Zor, T. & Selinger, Z. (2000). Substrate-assisted catalysis: implications for biotechnology and drug design. Drug Development & Research 50, 250257.
Krab, I. M. & Parmeggiani, A. (1999). Mutagenesis of three residues, isoleucine-60, threonine-61, and aspartic acid-80, implicated in the GTPase activity of Escherichia coli elongation factor Tu. Biochemistry 38, 1303513041.
Kraut, D. A., Sigala, P. A., Pybus, B., Liu, C. W., Ringe, D., Petsko, G. A. & Herschlag, D. (2006). Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole. PLoS Biology 4, 05010519.
Krengel, U., Schlichting, L., Scherer, A., Schumann, R., Frech, M., John, J., Kabsch, W., Pai, E. F. & Wittinghofer, A. (1990). Three-dimensional structures of H-Ras P21 mutants – molecular basis for their inability to function as signal transduction switch molecules. Cell 62, 539548.
Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. & Cech, T. R. (1982). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31, 147157.
Kumamoto, J., Cox, J. R. JR., & Westheimer, F. H. (1956). Barium ethylene phosphate. Journal of the American Chemical Society 78, 48584860.
Kunkel, T. A. & Bebenek, K. (2000). DNA replication fidelity. Annual Review of Biochemistry 69, 497529.
Kurz, J. L. (1978). The relationship of barrier shape to ‘linear’ free energy slopes and curvatures. Chemical Physics Letters 57, 243246.
Lad, C., Williams, N. H. & Wolfenden, R. (2003a). The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proceedings of the National Academy of Sciences of the United States of America 100, 56075610.
Lad, C., Williams, N. H. & Wolfenden, R. (2003b). The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proceedings of the National Academy of Sciences of the United States of America 100, 56075610.
Lahiri, S. D., Zhang, G. F., Dunaway-Mariano, D. & Allen, K. N. (2003). The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction. Science 299, 20672071.
Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. (1994). Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621628.
Lancaster, L., Lambert, N. J., Maklan, E. J., Horan, L. H. & Noller, H. F. (2008). The sarcin–ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. RNA – A Publication of the RNA Society 14, 19992012.
Lang, T. M., Maitra, M., Starcevic, D., Li, S. X. & Sweasy, J. (2004). A DNA polymerase β mutant from colon cancer cells induces mutations. Proceedings of the National Academy of Sciences of the United States of America 101, 60746079.
Langen, R., Schweins, T. & Warshel, A. (1992). On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins. Biochemistry 31, 86918696.
Larsen, A. K., Ouaret, D., El Ouadrani, K. & Petitprez, A. (2011). Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacology & Therapeutics 131, 8090.
Lassila, J. K. & Herschlag, D. (2008). Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily. Biochemsitry 47, 1285312859.
Lassila, J. K., Zalatan, J. G. & Herschlag, D. (2011). Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annual Review of Biochemistry 80, 669702.
Leclerc, F. & Karplus, M. (2006). Two-metal-ion mechanism for hammerhead-ribozyme catalysis. Journal of Physical Chemistry B 110, 33953409.
Lee, F. S., Chu, Z. T., Bolger, M. B. & Warshel, A. (1992). Calculations of antibody antigen interactions – microscopic and semimicroscopic evaluation of the free-energies of binding of phosphorylcholine analogs to McPC603. Protein Engineering 5, 215228.
Lee, F. S., Chu, Z. T. & Warshel, A. (1993). Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. Journal of Computational Chemistry 14, 161185.
Leffler, J. E., & Grunwald, E. (1963). Rates and Equilibria of Organic Reactions. New York: Wiley and Sons.
Li, G. & Zhang, X. C. (2004). GTP Hydrolysis Mechanism of Ras-like GTPases. Journal of Molecular Biology 340, 921.
Li, G. H. & Cui, Q. (2004). Mechanochemical coupling in myosin: a theoretical analysis with molecular dynamics and combined QM/MM reaction path calculations. Journal of Physical Chemistry B 108, 33423357.
Liao, X., Anjaneyulu, P. S. R., Curley, J. F., Hsu, M., Boehringer, M., Caruthers, M. H. & Piccirilli, J. A. (2001a). The tetrahymena ribozyme cleaves a 5′-methylene phosphonate monoester ∼102-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions. Biochemistry 40, 1091110926.
Liao, X., Anjaneyulu, P. S. R., Curley, J. F., Hsu, M., Boehringer, M., Caruthers, M. H. & Piccirilli, J. A. (2001b). The tetrahymena ribozyme cleaves a 5′-ethylene phosphonate monoester 102-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions. Biochemistry 40, 1091110926.
Liljas, A. (2004). Structural Aspects of Protein Synthesis. Singapore: World Scientific Publishing Co.
Liljas, A., Ehrenberg, M. & Åqvist, J. (2011). Comment on ‘the mechanism for activation of GTP hydrolysis on the ribosome’. Science 333, 37.
Lima, F. S., Chaimovich, H. & Cuccovia, I. M. (2012). Kinetics and product distribution of p-nitrophenyl phosphate dianion solvolysis in ternary DMSO/alcohol/water mixtures are compatible with metaphosphate formation. Journal of Physical Organic Chemistry 25, 913.
Lin, P., Batra, V. K., Pedersen, L. C., Beard, W. A., Wilson, S. H. & Pedersen, L. G. (2008). Incorrect nucleotide insertion at the active site of a G: a mismatch catalyzed by DNA polymerase β. Proceedings of the National Academy of Sciences of the United States of America 105, 56705674.
Lin, P., Pedersen, L. C., Batra, V. K., Beard, W. A., Wilson, S. H. & Pedersen, L. G. (2006). Energy analysis of chemistry for correct insertion by DNA polymerase β. Proceedings of the National Academy of Sciences of the United States of America 103, 1329413299.
Liu, H., Shi, Y., Chen, X. S. & Warshel, A. (2009). Simulating the electrostatic guidance of the vectorial translocations in hexameric helicases and translocases. Proceedings of the National Academy of Sciences of the United States of America 106, 74497454.
Liu, H. & Warshel, A. (2007). The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46, 60116025.
Liu, Y., Gregersen, B. A., Lopez, X. & York, D. M. (2006). Density functional study of the in-line mechanism of methanolysis of cyclic phosphate and thiophosphate esters in solution: insights into thio effects in RNA transesterification. Journal of Physical Chemistry B 109, 1998720003.
Lonsdale, R., Hoyle, S., Grey, T., Ridder, L. & Mulholland, A. J. (2012). Determinants of reactivity and selectivity in soluble epoxide hydrolase from quantum mechanics/molecular mechanics modeling. Biochemistry 51, 17741786.
López-Canut, V., Roca, M., Bertrán, J., Moliner, V. & Tuno, I. (2010). Theoretical study of phosphodiester hydrolysis in nucleotide pyrophosphatase/phosphodiesterase. Environmental effects on the reaction mechanism. Journal of the American Chemical Society 132, 69556963.
Lopéz-Canut, V., Roca, M., Bertrán, J., Moliner, V. & Tuñon, I. (2011). Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations. Journal of the American Chemical Society 133, 1205012062.
Lopez, X., Dejaegere, A., Leclerc, F., York, D. M. & Karplus, M. (2006). Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic, and neutral systems. Journal of Physical Chemistry B 110, 1152511539.
Lopez, X. & York, D. M. (2003). Parameterization of semiempirical methods to treat nucleophilic attack to biological phosphates: AM1/d parameters for phosphorus. Theoretical Chemistry Accounts 109, 149159.
Lowy, D. R. & Willumsen, B. M. (1993). Function and regulation of Ras. Annual Review of Biochemistry 62, 851891.
Lu, Q., Nassar, N. & Wang, J. (2011). A mechanism of catalyzed GTP hydrolysis by Ras protein through magnesium ion. Chemical Physics Letters 516, 233238.
Luo, J., Loo, B. V. & Kamerlin, S. C. L. (2012a). Examining the promiscuous phosphatase activity of Pseudomonas aeruginosa arylsulfatase: a comparison to analogous phosphatases. Proteins: Structure Function and Bioinformatics 80, 12111226.
Luo, J., Van Loo, B. & Kamerlin, S. C. L. (2012b). Catalytic promiscuity in Pseudomonas aeruginosa arylsulfatase as an example of chemistry-driven protein evolution. FEBS Letters 586, 16221630.
Maegley, K. A., Admiral, S. J. & Herschlag, D. (1996). Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Proceedings of the National Academy of Sciences of the United States of America 93, 81608166.
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002a). The protein kinase complement of the human genome. Science 298, 19121934.
Marcos, E., Field, M. J. & Creheut, R. (2010). Pentacoordinated phosphorus revisited by high-level QM/MM calculations. Proteins: Structure Function and Bioinformatics 78, 24052411.
Maskill, H. (1999). Structure and Reactivity in Organic Compounds. Oxford, UK: Oxford University Press.
Mastrangelo, I. A., Hough, P. V. C., Wall, J. S., Dodson, M., Dean, F. B. & Hurwrtz, J. (1989). ATP-dependent assembly of double hexamers of SV40T antigen at the viral origin of DNA replication. Nature 338, 658662.
Mayaan, E., Range, K. & York, D. M. (2004). Structure and binding of Mg(II) ions and di-metal bridge complexes with biological phosphates and phosphoranes. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry 9, 807817.
Mccormick, F. & Wittinghofer, A. (1996). Interactions between Ras proteins and their effectors. Current Opinion in Biotechnology 7, 449456.
Menz, R. I., Walker, J. E. & Leslie, A. G. W. (2001). Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331341.
Mercero, J. M., Barrett, P., Lam, C. W., Fowler, J. E., Ugalde, J. M. & Pedersen, L. G. (2000). Quantum mechanical calculations on phosphate hydrolysis reactions. Journal of Computational Chemistry 21, 4351.
Messer, B. M., Roca, M., Chu, Z. T., Vicatos, S., Kilshtain, A. V. & Warshel, A. (2010). Multiscale simulations of protein landscapes: using coarse-grained models as reference potentials to full explicit models. Proteins: Structure Function and Bioinformatics 78, 12121227.
Milburn, M., Tong, L., Devos, A. M., Bruenger, A., Yamaizumi, Z., Nishimura, S. & Kim, S. H. (1990). Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic Ras proteins. Science 247, 939945.
Mildvan, A. S. (1979). The role of metals in enzyme-catalyzed substitutions at each of the phosphorus atoms of ATP. Advances in Enzymology and Related Areas of Molecular Biology 49, 103126.
Mildvan, A. S. (1997). Mechanisms of signaling and related enzymes. Proteins 29, 401416.
Mimeault, M. & Batra, S. K. (2011). Complex oncogenic signaling networks regulate brain tumor-initiating cells and their progenies: pivotal roles of wild-type EGFR, EGFRvIII mutant and hedgehog cascades and novel multitargeted therapies. Brain Pathology 21, 479500.
Minehardt, T., Cooke, R., Marzari, N., Car, R. & Pate, E. (2003). Car-Parrinello simulations of ATP hydrolysis in myosin. In 225th National Meeting of the American-Chemical-Society, New Orleans, LA.
Minehardt, T. J., Marzari, N., Cooke, R., Pate, E., Kollman, P. A. & Car, R. (2002). A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP. Biophysical Journal 82, 660675.
Mlynsky, V., Banás, P., Walter, N. G., Sponer, J. & Otyepka, M. (2011). QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms. Journal of Physical Chemistry B 115, 1391113924.
Moazed, D., Robertson, J. M. & Noller, H. F. (1988). Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362364.
Mohr, D., Wintermeyer, W. & Rodnina, M. V. (2002). GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 1252012528.
Moore, P. B. (2012). How should we think about the ribosome? Annual Review of Biophysics 41, 18.1118.19.
More O'Ferrall, R. A. (1970). Relationships between E2 and E1cB mechanisms of β-elimination. Journal of the American Chemical Society B 274277.
Muegge, I., Qi, P. X., Wand, A. J., Chu, Z. T. & Warshel, A. (1997). The reorganization energy of cytochrome c revisited. Journal of Physical Chemistry B 101, 825836.
Muegge, I., Schweins, T., Langen, R. & Warshel, A. (1996). Electrostatic control of GTP and GDP binding in the oncoprotein p21 ras. Structure 4, 475489.
Muegge, I., Schweins, T. & Warshel, A. (1998). Electrostatic contributions to protein-protein binding affinities: application to Rap/Raf interaction. Proteins: Structure Function and Bioinformatics 30, 407423.
Mukherjee, S. & Warshel, A. (2011). Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 108, 2055020555.
Narlikar, G. J., Gopalakrishnan, V., Mcconnell, T. S., Usman, N. & Herschlag, D. (1995). Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization. Proceedings of the National Academy of Sciences of the United States of America 92, 36683672.
Nassar, N., Horn, G., Herrmann, C., Block, C., Janknecht, A. & Wittinghofer, A. (1996). Ras/Rap Effector Specificity Determined by Charge Reversal. Nature Structural Biology 3, 723729.
Nassar, N., Horn, G., Herrmann, C., Scherer, A., Mccormick, F. & Wittinghofer, A. (1995). The 2·2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554560.
Nikolic-Hughes, I., Rees, D. & Herschlag, D. (2004). Do electrostatic interactions with positively charged active site groups tighten the transition state for enzymatic phosphoryl transfer? Journal of the American Chemical Society 126, 1181411819.
Northrop, D. B. (1975). Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry 14, 26442651.
O'brien, P. J. & Herschlag, D. (1998). Sulfatase activity of E-coli alkaline phosphatase demonstrates a functional link to arylsulfatases, an evolutionarily related enzyme family. Journal of the American Chemical Society 120, 1236912370.
O'brien, P. J. & Herschlag, D. (1999). Catalytic promiscuity and the evolution of new enzymatic activities. Chemistry & Biology 6, R91R105.
O'brien, P. J. & Herschlag, D. (2001). Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of E-coli alkaline phosphatase. Biochemistry 40, 56915699.
O'Brien, P. J. & Herschlag, D. (2002). Alkaline phosphatase revisited: hydrolysis of alkyl phosphates. Biochemistry 41, 32073225.
Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, A. H. (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology 1, 117.
Oelschlaeger, P., Klahn, M., Beard, W. A., Wilson, S. H. & Warshel, A. (2007). Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase β – in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. Journal of Molecular Biology 366, 687701.
Ogle, J. M., Brodersen, D. E., Clemons, W. M. JR., Tarry, M. J., Carter, A. P., & Ramakrishnan, V. (2001). Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897902.
Okuno, D., Fujisawa, R., Iino, R., Hirono-Hara, Y., Imamura, H. & Nojia, H. (2008). Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Proceedings of the National Academy of Sciences of the United States of America 105, 2072220727.
Olguin, L. F., Askew, S. E., O'Donoghue, A. C. & Hollfelder, F. (2008). Efficient catalytic promiscuity of an enzyme superfamily: an arylsulfatase shows a rate acceleration of 1013 for phosphate monoester hydrolysis. Journal of the American Chemical Society 130, 1654716555.
Olsson, M. H. M., Mavri, J. & Warshel, A. (2006a). Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems. Philosophical Transactions of the Royal Society B-Biological Sciences 361, 14171432.
Olsson, M. H. M., Parson, W. W. & Warshel, A. (2006b). Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chemical Reviews 106, 17371756.
Oostenbrink, C. & Van Gunsteren, W. F. (2005). Efficient calculation of many stacking and pairing free energies in DNA from a few molecular dynamics simulations. Chemistry – A European Journal 11, 43404348.
Orozco, M., Pérez, A. , Noy, A. & Luque, F. J. (2003). Theoretical methods for the simulation of nucleic acids. Chemical Society Reviews 32, 350364.
Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W. & Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-Ras P21 at 1·35 Å resolution: implications for the mechanism of GTP hydrolysis. The EMBO Journal 9, 23512359.
Pannifer, A. D. B., Flint, A. J., Tonks, N. K. & Barford, D. (1998). Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by X-ray crystallography. The Journal of Biological Chemistry 273, 1045410462.
Pasqualato, S. & Cherfils, J. (2005). Crystallographic evidence for substrate-assisted GTP hydrolysis by a small GTP binding protein. Structure 13, 533540.
Patel, J. S., Branduardi, D., Masetti, M., Rocchia, W. & Cavalli, A. (2011). Insights into ligand–protein binding from local mechanical response. Journal of Chemical Theory and Computation 7, 33683378.
Patel, S. S., Wong, I. & Johnson, K. A. (1991). Pre-steady-state kinetic-analysis of processive dna-replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30, 511525.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca, N. Y.: Cornell University Press.
Pei, Z., Liu, G., Lubben, T. H. & Szczepankiewicz, B. G. (2004). Inhibition of protein tyrosine phosphatase 1B as a potential treatment of diabetes and obesity. Current Pharmaceutical Design 10, 34813504.
Perreault, D. M. & Anslyn, E. V. (1997). Unifying the current data on the mechanism of cleavage – transesterification of RNA. Angewandte Chemie (International ed. in English) 36, 432450.
Peters, G. H., Frimurer, T. M. & Olsen, O. H. (1998). Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases. Biochemistry 37, 53835393.
Piccirilli, J. A., Vyle, J. S., Caruthers, M. G. & Cech, T. R. (1993). Metal ion catalysis in the tetrahymena ribozyme reaction. Nature 361, 85.
Pisliakov, A. V., Cao, J., Kamerlin, S. C. L. & Warshel, A. (2009). Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proceedings of the National Academy of Sciences of the United States of America 106, 1735917364.
Pley, H. W., Flaherty, K. M. & Mckay, D. B. (1994). Three-dimensional structure of a hammerhead ribozyme. Nature 372, 6874.
Plotnikov, N. V., Kamerlin, S. C. L. & Warshel, A. (2011). Paradynamics: an effective and reliable model for ab initio QM/MM free-energy calculations and related tasks. Journal of Physical Chemistry B 115, 79507962.
Plotnikov, N. V. & Warshel, A. (2012). Exploring, refining and validating the paradynamics QM/MM sampling. Journal of Physical Chemistry B 116, 1034210356.
Post, J. R. C. B. & Ray, W. J. (1995). Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. Biochemistry 34, 1588115885.
Prasad, B. R., Plotnikov, N. V. & Warshel, A. (2012). Resolving uncertainties about phosphate hydrolysis pathways by careful free energy mapping. In Press (DOI: 10.1021/jp309778n), J. Phys. Chem. B, 2012.
Prasad, B. R. & Warshel, A. (2011). Prechemistry versus preorganization in DNA replication fidelity. Proteins: Structure Function and Bioinformatics 79, 29002919.
Preiss, J. & Handler, P. (1958). Biosynthesis of diphosphopyridine nucleotide: II. Enzymatic aspects. The Journal of Biological Chemistry 233, 493500.
Pu, J. & Karplus, M. (2008). How subunit coupling produces the γ-subunit rotary motion in F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 105, 11921197.
Pyle, A. M. (1993). Ribozymes: a distinct class of metalloenzymes. Science 261, 709.
Radhakrishnan, R., Arora, K., Wang, Y. L., Beard, W. A., Wilson, S. H. & Schlick, T. (2006). Regulation of DNA repair fidelity by molecular checkpoints: ‘Gates’ in DNA polymerase β's substrate selected. Biochemistry 45, 1514215156.
Radhakrishnan, R. & Schlick, T. (2004). Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase β's closing. Proceedings of the National Academy of Sciences of the United States of America 101, 59705975.
Radhakrishnan, R. & Schlick, T. (2005). Fidelity discrimination in DNA polymerase β: differing closing profiles for a mismatched (G: A) versus matched (G: C) base pair. Journal of the American Chemical Society 127, 1324513252.
Radhakrishnan, R. & Schlick, T. (2006). Correct and incorrect nucleotide incorporation pathways in DNA polymerase β. Biochemical and Biophysical Research Communications 350, 521529.
Radzicka, A. & Wolfenden, R. (1995). A proficient enzyme. Science 267, 9093.
Raines, R. T. (1998). Ribonuclease A Chemical Reviews 98, 10451066.
Ramakrishnan, V. (2008). What we have learned from ribosome structures. Biochemical Society Transactions 36, 567574.
Ramakrishnan, V. (2010). Unraveling the structure of the ribosome (Nobel Lecture). Angewandte Chemie (International ed. in English) 49, 43554380.
Riccardi, D., Konig, P., Guo, H. & Cui, Q. (2008). Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor. Biochemistry 47, 23692378.
Riccardi, D., Schaefer, P. & Cui, Q. (2005). pK a calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. Journal of Physical Chemistry B 109, 1771517733.
Richards, F. M. & Wyckoff, H. W. (1971). In The Enzymes, vol. 4 (Ed. Boyer, P. D.), pp. 647806. New York: Academic Press.
Roca, M., Vardi-Kilshtai, A. & Warshel, A. (2009). Toward accurate screening in computer aided enzyme design. Biochemistry 48, 30463056.
Rodnina, M. V. & Wintermeyer, W. (2009). Recent mechanistic insights into eukaryotic ribosomes. Current Opinion in Cell Biology 21, 435443.
Rosta, E., Kamerlin, S. C. L. & Warshel, A. (2008). On the interpretation of the observed linear free energy relationship in phosphate hydrolysis: a thorough computational study of phosphate diester hydrolysis in solution. Biochemistry 47, 37253735.
Rosta, E., Klähn, M. & Warshel, A. (2006). Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions. Journal of Physical Chemistry B 110, 29342941.
Rowell, R. & Gorenstein, D. G. (1981). Multiple structure-reactivity correlations in the hydrolysis of epimeric 2-aryloxy-2-oxy-dioxaphosphorinanes. Stereoelectronic effects. Journal of the American Chemical Society 103, 58945902.
Rucker, R., Oelschlaeger, P. & Warshel, A. (2009). A binding free energy decomposition approach for accurate calculations of the fidelity of DNA polymerases. Proteins: Structure Function and Bioinformatics 78, 671680.
Rychkova, A., Vicatos, S. & Warshel, A. (2010). On the energetics of translocon-assisted insertion of charged transmembrane helices into membranes. Proceedings of the National Academy of Sciences of the United States of America 107, 1759817603.
Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J. & Pelletier, H. (1997). Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36, 1120511215.
Scarano, G., Krab, I. M., Bocchini, V. & Parmeggiani, A. (1995). Relevance of histidine-84 in the elongation-factor Tu GTPase activity and in poly(phe) synthesis – its substitution by glutamine and alanine. FEBS Letters, 365, 214218.
Scheffzek, K. & Ahmadian, M. (2005). GTPase activating proteins: structural and functional insights 18 years after discovery. Cellular and Molecular Life Science 62, 30143038.
Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. & Wittinghofer, A. (1997). The Ras-RasGAP complex – structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333338.
Schiemann, O., Fritscher, J., Kisseleva, N., Sigurdsson, S. T. & Prisner, T. F. (2003). Structural investigation of a high affinity MnII binding site in the hammerhead ribozyme by EPR spectroscopy and DFT calculations. Effects of neomycine-B on metal-ion bindings. Chemical & Biological Chemistry 4, 1057.
Schmeing, T. M. & Ramakrishnan, V. (2009). What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 12341242.
Schmeing, T. M., Voorhees, R. M., Kelley, A. C., Gao, Y.-G., Iv, F. V. M., Weir, J. R. & Ramakrishnan, V. (2009). The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688694.
Schroeder, G. K., Lad, C., Wyman, P., Williams, N. H. & Wolfenden, R. (2006). The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proceedings of the National Academy of Sciences of the United States of America 103, 40524055.
Schuette, J.-C., Iv, F. V. M., Kelley, A. C., Weir, J. R., Giesebrecht, J., Connell, S. R., Loerke, J., Mielke, T., Zhang, W., Penczek, P. A., Ramakrishnan, V. & Spahn, C. M. T. (2009). GTPase activation of elongation factor EF-Tu by the ribosome during decoding. The EMBO Journal 28, 755765.
Schutz, C. N. & Warshel, A. (2004). The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp … His pair in serine proteases. Proteins 55, 711723.
Schwans, J. P., Kraut, D. A. & Herschlag, D. (2009). Determining the catalytic role of remote substrate binding interactions in ketosteroid isomerase. Proceedings of the National Academy of Sciences of the United States of America 106, 1427114275.
Schweins, T. (1991). Untersuchung des reaktionsmechanismusses von ras-p21 mittels computer-modeling. Diplomarbeit Thesis, University of Southern California.
Schweins, T., Geyer, M., Kalbitzer, H. R., Wittinghofer, A. & Warshel, A. (1996a). Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5′-triphosphate hydrolysis of p21 ras. Biochemistry 35, 1422514231.
Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H. R. & Wittinghofer, A. (1995). Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21 ras and other GTP-binding proteins. Nature Structural Biology 2, 3644.
Schweins, T., Langen, R. & Warshel, A. (1994). Why have mutagenesis studies not located the general base in ras p21. Nature Struct. Biol 1, 476484.
Schweins, T., Wittinghofer, A. & Warshel, A. (1996b). Mechanistic analysis of the observed linear free energy relationships in p21ras and related systems. Biochemistry 35, 1423214243.
Scott, W. G. (1999). Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme. Quarterly Reviews of Biophysics 32, 241284.
Scrima, A., Thomas, C., Deaconescu, D. & Wittinghofer, A. (2008). The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. The EMBO Journal 27, 11451153.
Scudder, P. H. (1990). Use of reaction cubes for generation and display of multiple mechanistic pathways. The Journal of Organic Chemistry 55, 42384240.
Seewald, M. J., Körner, C., Wittinghofer, A. & Vetter, I. R. (2002). RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662666.
Seibert, E., Ross, J. B. A. & Osman, R. (2003). Contribution of opening and bending dynamics to specific recognition of DNA damage. Journal of Molecular Biology 330, 687703.
Sham, Y. Y., Chu, Z. T., Tao, H. & Warshel, A. (2000). Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins: Structure Function and Bioinformatics 39, 393407.
Sharma, P. K., Xiang, Y., Kato, M. & Warshel, A. (2005). What are the roles of substrate assisted catalysis and proximity effects in peptide bond formation by the ribosome? Biochemistry 44, 1130711314.
Shimo-Kon, R., Muneyuki, E., Sakai, H., Adachi, K., Yoshida, M. & Kinosita, K. (2010). Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis. Biophysical Journal 98, 12271236.
Showalter, A. K., Lamarche, B. J., Bakhtina, M., Su, M. I., Tang, K. H. & Tsai, M. D. (2006). Mechanistic comparison of high-fidelity and error-prone DNA polymerases and ligases involved in DNA repair. Chemical Reviews 106, 340360.
Shriver, D. & Atkins, P. (2006). Inorganic Chemistry. New York: Oxford University Press.
Shurki, A. & Warshel, A. (2004). Why does the Ras switch ‘break’ by oncogenic mutations? Proteins: Structure Function and Bioinformatics 55, 110.
Siegbahn, P. (2006). The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry 11, 695701.
Sigala, P., Kraut, D., Caaveiro, J., Pybus, B., Ruben, E., Ringe, D., Petsko, G. & Herschlag, D. (2008). Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole. Journal of the American Chemical Society 130, 1369613708.
Simmons, D. T. (2000). SV40 large T antigen functions in DNA replication and transformation. Advances In Virus Research 55, 75134.
Simopoulos, T. T. & Jencks, W. P. (1994). Alkaline phosphatase is an almost perfect enzyme. Biochemistry 33, 1037510380.
Smith, G. K., Ke, Z., Guo, H. & Hengge, A. C. (2011). Insights into the phosphoryl transfer mechanism of cyclin-dependent protein kinases from ab initio QM/MM free-energy studies. Journal of Physical Chemistry B 115, 1371313722.
Smith, J. P., Brown, W. E. & Lehr, J. R. (1955). Structure of crystalline phosphoric acid. Journal of the American Chemical Society 77, 27282730.
Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. (1994). GTPase mechanism of G proteins from the 1·7 Å crystal structure of transducinα-GDP-AIF4. Nature 372, 276279.
Spandidos, D. A. (1989). Ras Oncogenes. New York: Plenum Press.
Sprang, S. R. (1997a). G protein mechanisms: insights from structural analysis. Annual Review of Biochemistry 66, 639678.
Sprang, S. R. (1997b). G proteins, effectors and GAPs: structure and mechanism. Current Opinion in Structural Biology 7, 849856.
Stec, B., Holtz, K. M. & Kantrowitz, E. R. (2000a). A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Journal of Molecular Biology 299, 13031311.
Stec, B., Holtz, K. M. & Kantrowitz, E. R. (2000b). A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Journal of Molecular Biology 299, 13031311.
Steitz, T. A. (2010). From the structure and function of the ribosome to new antibiotics (Nobel Lecture). Angewandte Chemie (International ed. in English) 49, 43814398.
Steitz, T. A., Smerdon, S. J., Jäger, J. & Joyce, C. M. (1994). A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266, 20222025.
Steitz, T. A. & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences of the United States of America 90, 64986502.
Stockbridge, R. B. & Wolfenden, R. (2009). Phosphate monoester hydrolysis in cyclohexane. Journal of the American Chemical Society 131, 1824818249.
Strajbl, M., Sham, Y. Y., Villa, J., Chu, Z. T. & Warshel, A. (2000). Calculation of activation entropies of chemical reactions in solution. Journal of Physical Chemistry B 104, 45784584.
Štrajbl, M., Shurki, A. & Warshel, A. (2003). Converting conformational changes to electrostatic energy in molecular motors: the energetics of ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 100, 1483414839.
Sucato, C. A., Upton, T. G., Kashemirov, B. A., Batra, V. K., Martinek, V., Xiang, Y., Beard, W. A., Pedersen, L. C., Wilson, S. H., Mckenna, C. E., Florian, J., Warshel, A. & Goodman, M. F. (2007). Modifying the β,γ leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase β. Biochemistry 46, 461471.
Sucato, C. A., Upton, T. G., Kashemirov, B. A., Osuna, J., Oertell, K., Beard, W. A., Wilson, S. H., Florián, J., Warshel, A., Mckenna, C. E. & Goodman, M. F. (2008). DNA polymerase β fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state. Biochemistry 47, 870879.
Sunahara, R. K., Tesmer, J. J. G., Gilman, A. G. & Sprang, S. R. (1997). Crystal structure of the adenylyl cyclase activator G. Science 278, 1943.
Taylor, S. S. & Kornev, A. P. (2011). Protein kinases: evolution of dynamic regulatory proteins. Trends in Biochemical Sciences 36, 6577.
Taylor, S. S. & Radzio-Andzelm, E. (1994). Three protein kinase structures define a common motif. Structure 2, 345355.
Thompson, J. E., Kutateladze, T. G., Schuster, M. C., Venegas, F. D., Messmore, J. M. & Raines, R. T. (1995). Limits to catalysis by Ribonuclease A. Bioorganic Chemistry 23, 471481.
Tinoco, I. & Wen, J. D. (2009). Simulation and analysis of single-ribosome translation. Physical Biology 6, 10.
Todd, A. (1959). Some aspects of phosphate chemistry. Proceedings of the National Academy of Sciences of the United States of America 45, 13891397.
Tolman, R. C. (1938). The Principles of Statistical Mechanics. London, UK: Oxford University Press.
Topol, I. A., Cachau, R. E., Nemukhin, A. V., Grigorenko, B. L. & Burt, S. K. (2004). Quantum chemical modeling of the GTP hydrolysis by the RAS-GAP protein complex. Biochimica et Biophysica Acta – Proteins and Proteomics 1700, 125136.
Torres, R. A., Himo, F., Bruice, T. C., Noodleman, L. & Lovell, T. (2003). Theoretical examination of Mg2 + -mediated hydrolysis of a phosphodiester linkage as proposed for the hammerhead ribozyme. Journal of the American Chemical Society 125, 98619867.
Toscano, M. D., Woycechowsky, K. J. & Hilvert, D. (2007). Minimalist active-site redesign: teaching old enzymes new tricks. Angewandte Chemie (International ed. in English) 46, 44684470.
Trushkov, I. V., Zhdankin, V. V., Koz'min, A. S. & Zefirov, N. S. (1990). Cubic reaction coordinate diagram in the nucleophilic substitution process. Tetrahedron Letters 31, 31993200.
Uchimaru, T., Uebayasi, M., Tanabe, K. & Taira, K. (1993). Theoretical analyses on the role of Mg2+ ions in ribozyme reactions. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 7, 137.
Van Loo, B., Jonas, S., Babtie, A. C., Benjdia, A., Berteau, O., Hyvönen, M. & Hollfelder, F. (2010). An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proceedings of the National Academy of Sciences of the United States of America 107, 27402745.
Várnai, P. & Warshel, A. (2000). Computer simulation studies of the catalytic mechanism of human aldose reductase. Journal of the American Chemical Society 122, 38493860.
Vetter, I. R. & Wittinghofer, A. (1999). Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Quarterly Reviews of Biophysics 32, 156.
Villa, E., Sengupta, J., Trabuco, L. G., Lebarron, J., Baxter, W. T., Shaikh, T. R., Grassucci, R. A., Nissen, P., Ehrenberg, M., Schulten, K. & Frankd, J. (2009). Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America 106, 10631068.
Voorhees, R. M., Schmeing, T. M., Kelley, A. C. & Ramakrishnan, V. (2010). The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835838.
Voorhees, R. M., Schmeing, T. M., Kelley, A. C. & Ramakrishnan, V. (2011). Response to comment on ‘The mechanism for activation of GTP hydrolysis on the ribosome’. Science 333, 37.
Wang, H. & Oster, G. (1998). Energy transduction in the F1 motor of ATP synthase. Nature 396, 279282.
Wang, L. M., Patel, U., Ghosh, L. & Banerjee, S. (1992). DNA polymerase beta mutations in human colorectal cancer. Cancer Research 52, 42844827.
Wang, Y. & Schlick, T. (2008). Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Journal of the American Chemical Society 130, 1324013250.
Wang, Y. N., Topol, I. A., Collins, J. R. & Burt, S. K. (2003). Theoretical studies on the hydrolysis of mono-phosphate and tri-phosphate in gas phase and aqueous solution. Journal of the American Chemical Society 125, 1326513273.
Warshel, A. (1978). Energetics of enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America 75, 52505254.
Warshel, A. (1991). Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: John Wiley and Sons.
Warshel, A. (2003). Computer simulations of enzyme catalysis: methods, progress, and insights. Annual Review of Biophysics and Biomolecular Tructure 32, 425443.
Warshel, A., Åqvist, J. & Creighton, S. (1989). Enzymes work by Solvation substitution rather than by Desolvation. Proceedings of the National Academy of Sciences of the United States of America 86, 58205824.
Warshel, A. & Florian, J. (2004). The empirical valence bond (EVB) method. In The Encyclopedia of Computational Chemistry, (Eds. von Ragué Schleyer, P., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F. III and Schreiner, P. R.), Chichester, UK: John Wiley and Sons.
Warshel, A., Hwang, J. K. & Åqvist, J. (1992a). Computer-simulations of enzymatic-reactions – examination of linear free-energy relationships and quantum-mechanical corrections in the initial proton-transfer step of carbonic-anhydrase. Faraday Discussions 93, 225238.
Warshel, A., Hwang, J. K. & Åqvist, J. (1992b). Computer simulations of enzymatic reactions: examination of linear free energy relationships and quantum mechanical corrections in the initial proton transfer step of carbonic anyhdrase. Faraday Discussions 93, 225238.
Warshel, A. & Papazyan, A. (1996). Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds. Proceedings of the National Academy of Sciences of the United States of America 93, 1366513670.
Warshel, A. & Parson, W. W. (2001). Dynamics of biochemical and biophysical reactions: insight from computer simulations. Quarterly Reviews of Biophysics 34, 563670.
Warshel, A., Schweins, T. & Fothergill, M. (1994). Linear free energy relationships in enzymes. Theoretical analysis of the reaction of tyrosyl-tRNA synthase. Journal of the American Chemical Society 116, 84378442.
Warshel, A., Sharma, P. K., Chu, Z. T. & Aqvist, J. (2007). Electrostatic contributions to binding of transition state analogues can be very different from the corresponding contributions to catalysis: phenolates binding to the oxyanion hole of ketosteroid isomerase. Biochemistry 46, 14661476.
Warshel, A., Sharma, P. K., Kato, M. & Parson, W. W. (2006a). Modeling electrostatic effects in proteins. Biochimica et Biophysica Acta 1764, 16471676.
Warshel, A., Sharma, P. K., Kato, M., Xiang, Y., Liu, H. & Olsson, M. H. M. (2006b). Electrostatic basis for enzyme catalysis. Chemical Reviews 106, 32103235.
Warshel, A., Villà, J., Štrajbl, M. & Florián, J. (2000). Remarkable rate enhancement of orotidine 5′-monophosphate decarboxylase is due to transition state stabilization rather than ground state destabilization. Biochemistry 39, 1472814738.
Warshel, A. & Weiss, R. M. (1980). An empirical valence bond approach for comparing reactions in solutions and in enzymes. Journal of the American Chemical Society 102, 62186226.
Weber, J. & Senior, A. E. (1997). Catalytic mechanism of F1-ATPase. Biochimica et Biophysica Acta 1319, 1958.
Weiss, P. M., Knight, W. B. & Cleland, W. W. (1986). Secondary 18O isotope effects on the hydrolysis of glucose 6-phosphate. Journal of the American Chemical Society 108, 27612762.
Wenjin, Li., Rudack, T., Gerwert, K., Grater, F. & Schlitter, J. (2012). Exploring the Multidimensional Free Energy Surface of Phosphoester Hydrolysis with Constrained QM/MM Dynamics. Journal of Chemical Theory Computation 8, 35963604.
Westheimer, F. H. (1968). Pseudo-rotation in the hydrolysis of phosphate esters. Accounts of Chemical Research 1, 7078.
Westheimer, F. H. (1981). Monomeric metaphosphates. Chemical Reviews 81, 313326.
Westheimer, F. H. (1987). Why nature chose phosphates. Science 235, 11731178.
White, S. H. & Von Heijne, G. (2008). How translocons select transmembrane helices. Annual Review of Biophysics 37, 2342.
Wiesmann, C., Barr, K. J., Kung, J., Zhu, J., Erlanson, D. A., Shen, W., Fahr, B. J., Zhong, M., Taylor, T., Randall, M., Mcdowell, R. S. & Hansen, S. K. (2004). Allosteric inhibition of protein tyrosine phosphatase 1B. Nature Structural and Molecular Biology 11, 730737.
Wiesmuller, L. & Wittinghofer, A. (1994). Signal transduction pathways involving Ras. Cellular Signalling 6, 247267.
Wilde, J. A., Bolton, P. H., Dell'Acqua, M., Hibler, D. W., Pourmotabbed, T. & Gerlt, J. A. (1998). Identification of residues involved in a conformational change accompanying substitutions for glutamate-43 in staphylococcal nuclease. Biochemistry 27, 41274132.
Wilkie, J. & Gani, D. (1996). Comparison of inline and non-inline associative and dissociative reaction pathways for model reactions of phosphate monoester hydrolysis. Journal of the American Chemical Society, Perkin Transactions 2, 783787.
Williams, A. (1984). Effective charge and Leffler's Index as mechanistic tools for reactions in solution. Accounts of Chemical Research 17, 425430.
Williams, A. (1992). Effective charge and transition-state structure in solution. Advances in Physical Organic Chemistry 27, 155.
Williams, N. H. (2004a). Models for biological phosphoryl transfer Biochimica et Biophysica Acta 1697, 279287.
Williams, N. H. (2004b). Models for biological phosphoryl transfer. Biochimica et Biophysica Acta 1697, 279287.
Williams, N. H., Cheung, J. & Chin, J. (1998a). Reactivity of phosphate diesters doubly coordinated to a dinuclear cobalt(III) complex: dependence of the reactivity on the basicity of the leaving group. Journal of the American Chemical Society 120, 80798087.
Williams, N. H., Cheung, W. & Chin, J. (1998b). Reactivity of phosphate diesters doubly coordinated to a dinuclear cobalt(III) complex: dependence of the reactivity on the basicity of the leaving group. Journal of the American Chemical Society 120, 80798087.
Williams, N. H. & Wyman, P. (2001). Base catalysed phosphate diester hydrolysis. Chemical Communications 12681269.
Wittinghofer, A. (2006). Phosphoryl transfer in Ras proteins, conclusive or elusive? Trends in Biochemical Sciences 31, 2023.
Wolf-Watz, M., Thai, V., Henzler-Wildman, K., Hadjipavlou, G., Eisenmesser, E. Z. & Kern, D. (2004). Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nature Structural and Molecular Biology 11, 945949.
Wolfe-Simon, F., Blum, J. S., Kulp, T. R., Gordon, G. W., Hoeft, S. E., Pett-Ridge, J., Stolz, J. F., Webb, S. M., Weber, P. K., Davies, P. C. W., Anbar, A. D. & Oremland, R. S. (2010). A bacterium that can grow by using arsenic instead of phosphorus. Science 332, 11631166.
Wolfe-Simon, F., Davies, P. C. & Anbar, A. D. (2009). Did nature also use arsenic? International Journal of Astrobiology 8, 6974.
Wolfenden, R. (2006). Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chemical Reviews 106, 33793396.
Wolfenden, R. (2011). Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes. Annual Review of Biophysics 80, 645667.
Wolfenden, R., Ridgeway, C. & Young, G. (1998). Spontaneous hydrolysis of ionised phosphate monoesters and diesters and the proficiencies of the phosphatases and phosphodiesterases as catalysts. Journal of the American Chemical Society 120, 833834.
Wolfenden, R. & Snider, M. J. (2001). The depth of chemical time and the power of enzymes as catalysts. Accounts of Chemical Research 34, 938945.
Wong, K.-Y., Gu, H., Zhang, S., Piccirilli, J. A., Harris, M. E. & York, D. M. (2012). Characterization of the reaction path and transition States for RNA transphosphorylation models from theory and experiment. Angewandte Chemie (International ed. in English) 51, 647651.
Wong, K.-Y., Lee, T.-S. & York, D. M. (2011). Active participation of the Mg2+ ion in the reaction coordinate of RNA self-cleavage catalyzed by the hammerhead ribozyme. Journal of Chemical Theory and Computation 7, 13.
Xiang, Y., Goodman, M. F., Beard, W. A., Wilson, S. H. & Warshel, A. (2008). Exploring the role of large conformational changes in the fidelity of DNA polymerase β. Proteins: Structure Function and Bioinformatics 70, 231247.
Xiang, Y., Oelschlaeger, P., Florian, J., Goodman, M. F. & Warshel, A. (2006). Simulating the effect of DNA polymerase mutations on transition-state energetics and fidelity: evaluating amino acid group contribution and allosteric coupling for ionized residues in human pol β. Biochemistry 45, 70367048.
Yang, L. J., Beard, W. A., Wilson, S. H., Broyde, S. & Schlick, T. (2004). Highly organized but pliant active site of DNA polymerase β: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses. Biophysical Journal 86, 33923408.
Yang, W., Gao, Y. Q., Cui, Q., Ma, J. & Karplus, M. (2003). The missing link between thermodynamics and structure in F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 100, 874879.
Yarden, Y. & Schlessinger, J. (1987). Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26, 14431451.
Yarus, M. (1993). How many catalytic RNAs? Ions and the Cheshire cat conjecture. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 7, 3139.
Yonath, A. (2010). Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Angewandte Chemie (International ed. in English) 49, 43404354.
You, T. J. & Bashford, D. (1995). Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophysical Journal 69, 17211733.
Zalatan, J. G., Fenn, T. D., Brunger, T. A. & Herschlag, D. (2006). Structural and functional comparisons of nucleotide pyrophosphate/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Biochemistry 45, 97889803.
Zalatan, J. G. & Herschlag, D. (2006). Alkaline phosphatases mono- and diesterase reactions: comparative transition state analysis. Journal of the American Chemical Society 128, 12931303.
Zeidler, W., Egle, C., Ribeiro, S., Wagner, A., Katunin, V., Kreutzer, R., Rodnina, M., Wintermeyer, W. & Sprinzl, M. (1995). Site-directed mutagenesis of Thermus thermophilus elongation factor Tu – replacement of His85, Asp81 and Arg300. European Journal of Biochemistry 229, 596604.
Zhang, H., Zha, X., Tan, Y., Hornbeck, P. V., Mastrangelo, A. J., Alessi, D. R., Polakiewicz, R. D. & Comb, M. J. (2002). Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. The Journal of Biological Chemistry 277, 3937939387.
Zhang, Z.-Y. (2003). Chemical and mechanistic approaches to the study of protein tyrosine phosphatases. Accounts of Chemical Research 36, 385392.
Zhang, Z. Y., Harms, E. & Van Etten, R. L. (1994). Asp129 of low molecular weight protein tyrosine phosphatase is involved in leaving group protonation. The Journal of Biological Chemistry 269, 2594725950.
Zhang, Z. Y., Wang, Y. & Dixon, J. E. (1999). Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America 91, 16241627.
Zhou, D.-M., Kumar, P. K. R., Zhang, L.-H. & Taira, K. (1996). Ribozyme mechanism revisited: evidence against direct coordination of a Mg2+ ion with the Pro-R oxygen if the scissile phosphate in the transition state of a hammerhead ribizyme-catalyzed reaction. In EMBO Workshop, Xanten, Germany.
Zhou, D.-M. & Taira, K. (1998). The hydrolysis of RNA: from theoretical calculations to the hammerhead ribozyme-mediated cleavage of RNA. Chemical Reviews 98, 9911026.