Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T19:28:35.742Z Has data issue: false hasContentIssue false

14CH4 Emissions from Nuclear Power Plants in Northwestern Europe

Published online by Cambridge University Press:  18 July 2016

Roos Eisma
Affiliation:
R.J. van de Graaff Laboratory, Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands Netherlands Energy Research Foundation, P.O. Box 1, NL-1755 ZG Petten, The Netherlands
Alex T. Vermeulen
Affiliation:
Netherlands Energy Research Foundation, P.O. Box 1, NL-1755 ZG Petten, The Netherlands
Klaas Van Der Borg
Affiliation:
R.J. van de Graaff Laboratory, Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We measured the 14C content of atmospheric methane at a 200-m-high sampling station in The Netherlands. Combined with trajectories and a transport model, it is possible to estimate the 14CH4 emissions from nuclear power plants in northwestern Europe. We demonstrate here two different methods of analyzing the data: forward modeling and an inverse method. Our data suggest that the emissions from pressurized water reactors are 260 ± 50 GBq per GW installed power per year, ca. 1.6 ± 0.4 times higher than generally assumed. We also find that, in addition to the known nuclear sources of 14CH4 (pressurized and boiling water reactors), there are two very strong sources of 14CH4 (520 ± 200 and 1850 ± 450 GBq yr−1, respectively), probably two test reactors near the sampling station.

Type
IV. 14C as a Tracer of the Dynamic Carbon Cycle in the Current Environment
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Brown, T. A., Farwell, G. W. and Grootes, P. M. 1994 Current status of the 14C AMS program at the University of Washington. Nuclear Instruments and Methods in Physics Research B 92:1621.CrossRefGoogle Scholar
Eisma, R., van der Borg, K., de Jong, A. F. M., Kieskamp, W. M. and Veltkamp, A. C. 1994 Measurements of the 14C content of atmospheric methane in The Netherlands to determine the regional emissions of 14CH4 . Nuclear Instruments and Methods in Physics Research B 92: 410412.Google Scholar
Enting, I. G., Trudinger, C. M., Francey, R. J. and Granek, H. 1993 Synthesis inversion of atmospheric CO2 using the GISS Tracer Transport Model. CSIRO Division of Atmospheric Research Technical Paper 29.Google Scholar
Hertelendi, E., Uchrin, G. and Ormai, P. 1989 14C release in various chemical forms with gaseous effluents from the Paks nuclear power plant. In Long, A., Kra, R. S. and Srdoč, D., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 754761.Google Scholar
Kunz, C. 1985 Carbon 14 discharge at three light water reactors. Health Physics 49: 2535 CrossRefGoogle ScholarPubMed
Lowe, D. C., Brenninkmeijer, C. A. M., Manning, M. R., Sparks, R. and Wallace, G. 1988 Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature 332: 522525.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1992 Numerical Recipes. Cambridge, Cambridge University Press: 963 p.Google Scholar
Quay, P. D., King, S. L., Stutsman, J., Wilbur, D. O., Steele, L. P., Fung, I., Gammon, R. H., Brown, T., Farwell, G. W., Grootes, P. M. and Schmidt, F. H. 1991 Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths. Global Biogeochemical Cycles 5: 2547.Google Scholar
Steele, L. P., Fraser, P. J., Rasmussen, R. A., Khalil, M. A. K., Conway, T. J., Crawford, A. J., Gammon, R. H., Masarie, K. A. and Thoning, K. W. 1987 The global distribution of methane in the troposphere. Journal of Atmospheric Chemistry 5: 125171.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar
van der Borg, K., Alderliesten, C., Houston, C. M., de Jong, A. F. M. and van Zwol, N. A. 1987 Accelerator mass spectrometry with 14C and 10Be in Utrecht. Nuclear Instruments and Methods in Physics Research B 29: 143145.Google Scholar
Wahlen, M., Tanake, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southon, J., Shemesh, A., Fairbanks, R. and Broecker, W. 1989 Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science 245: 286290.CrossRefGoogle ScholarPubMed
World Nuclear Industry Handbook 1994 Nuclear Engineering International Special issue.Google Scholar