Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-lmg95 Total loading time: 0.223 Render date: 2021-10-19T05:02:21.206Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

ARTEMIS, THE 14C AMS FACILITY OF THE LMC14 NATIONAL LABORATORY: A STATUS REPORT ON QUALITY CONTROL AND MICROSAMPLE PROCEDURES

Published online by Cambridge University Press:  25 August 2020

Christophe Moreau*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Cyrielle Messager
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Bernard Berthier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Stéphane Hain
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Bruno Thellier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Jean-Pascal Dumoulin
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Ingrid Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Marc Sieudat
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Emmanuelle Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Solène Mussard
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Marion Perron
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Valérie Setti
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
Lucile Beck
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, France
*
*Corresponding author. Email: christophe-r.moreau@cea.fr.

Abstract

Quality control procedures have been developed at the Laboratoire de Mesure du Carbone 14 (LMC14) national laboratory throughout the years of operation. Routine procedures are applied to sample preparation depending on their composition and their size. The tuning of the ARTEMIS AMS facility, hosted by the LMC14 laboratory, uses an accurate procedure. A batch of unknown samples is measured with accompanying samples (primary and secondary standards and blanks), which give a powerful set of data to control the quality of each measurement. A homemade database has been created to store the sample information and study the evolution of the accompanying samples. The LMC14 laboratory participated in the Sixth International Radiocarbon Intercomparison, SIRI. The results are presented here, with statistical tests to assess the quality of the preparations and measurements done at the LMC14 national laboratory. To obtain a reliable radiocarbon (14C) age by AMS, 1 mg of sample is required in routine analysis. Recently, the LMC14 developed a new procedure dedicated to microsamples, allowing the size of samples to be reduced and contributing to opening 14C dating to materials that were previously unreachable. This new procedure has been successfully tested on valuable Cultural Heritage samples: lead white mural paintings.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 9th Radiocarbon & Archaeology Symposium, Athens, GA, USA, 20–24 May 2019

References

Beck, L, Caffy, I, Delqué-Količ, E, Moreau, C, Dumoulin, JP, Perron, M, Guichard, H, Jeammet, V. 2018. Absolute dating of lead carbonates in ancient cosmetics by radiocarbon. Communication Chemistry 1:34.CrossRefGoogle Scholar
Beck, L, Messager, C, Coelho, S, Caffy, I, Delqué-Količ, E, Perron, M, Mussard, S, Dumoulin, JP, Moreau, C, Gonzalez, V, Foy, E, Miserque, F, Bonnot-Diconne, C. 2019. Thermal decomposition of lead carbonate to date lead white pigment. Radiocarbon 61:13451356.CrossRefGoogle Scholar
Bronk Ramsey, C, Ditchfield, P, Humm, M. 2004. Using a gas ion source for radiocarbon AMS and GC-AMS. Radiocarbon 46(1):2532.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59:18091833.CrossRefGoogle Scholar
Brown, TA, Southon, JR. 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 123:208–13.CrossRefGoogle Scholar
Calcagnile, L, Maruccio, L, Braione, E and Quarta, G. 2018. The new gas ion source at CEDAD: improved performances and first 14C environmental applications. Radiocarbon 60(4):10831089.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. ARTEMIS, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299.Google Scholar
Delqué-Količ, E, Caffy, I, Comby-Zerbino, C, Dumoulin, JP, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, JF, Thellier, B, Vincent, J. 2013a. Advances in handling small radiocarbon samples at the laboratoire de mesure du carbone 14 in Saclay, France. Radiocarbon 55:648656. doi: 10.2458/azu_js_rc.55.16356.CrossRefGoogle Scholar
Delqué-Količ, E, Comby-Zerbino, C, Ferkane, S, Moreau, C, Dumoulin, JP, Caffy, I, Souprayen, C, Quilès, A, Bavay, D, Hain, S, Setti, V. 2013b. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France. Nuclear Instruments and Methods in Physics Research B 294:189193.CrossRefGoogle Scholar
Delqué-Količ, E, Leroy, S, Pagès, G, Leboyer, J. 2017. Iron bar trade between the Mediterranean and Gaul in the Roman period: 14C dating of products from shipwrecks discovered off the coast of Saintes-Maries-de-le-Mer (Bouches-du-Rhône, France). Radiocarbon 59:531544.CrossRefGoogle Scholar
Dumoulin, JP, Caffy, I, Comby-Zerbino, C, Delqué-Količ, E, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, JF, Thellier, B, Vincent, J. 2013. Development of a line for dissolved inorganic carbon extraction at LMC14 ARTEMIS laboratory in Saclay, France. Radiocarbon 55:10431049. doi: 10.2458/azu_js_rc.55.16332.CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017a. Status report on sample preparation protocols developed at the LMC14 laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59:713726 CrossRefGoogle Scholar
Dumoulin, JP, Messager, C, Valladas, H, Beck, L, Caffy, I, Delqué-Količ, E, Moreau, C, Lebon, M. 2017b. Comparison of two bone-preparation methods for radiocarbon dating: modified Longin and Ninhydrin. Radiocarbon 59:18351844.CrossRefGoogle Scholar
Dumoulin, JP, Pozzato, L, Rassman, J, Toussaint, F, Fontugne, M, Tisnérat-Laborde, N, Beck, L, Caffy, I, Delqué-Količ, E, Moreau, C, Rabouille, C. 2018. Isotopic signature (δ13C, Δ14C) of DIC in sediment pore waters: an example from the Rhône River Delta. Radiocarbon 60:14651481 CrossRefGoogle Scholar
Gettens, RJ, Kühn, H, Chase, WT. 1993. Lead White. In: Roy, A, editor. Artist’s pigments, a handbook of their history and characteristics. Vol. 2. Chapter 3. Washington (DC): National Gallery of Art.Google Scholar
Hendriks, L, Hajdas, I, Ferreira, E, Scherrer, N, Zumbühl, S, Küffner, M, Wacker, L, Synal, H-A, Günther, D. 2018. Combined 14C analysis of canvas and organic binder for dating a painting. Radiocarbon 60(1):207218.CrossRefGoogle Scholar
Hendriks, L, Hajdas, I, Ferreira, E, Scherrer, N, Zumbühl, S, Küffner, M, Carlyle, L, Synal, H-A, Günther, D. 2019. Selective dating of paint components: radiocarbon dating of lead white pigment. Radiocarbon 61(2):473493.CrossRefGoogle Scholar
Leroy, S, L’Héritier, M, Delqué-Količ, E, Dumoulin, JP, Moreau, C, Dillmann, P. 2015. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. Journal of Archaeological Science 53:190201.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, JP, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B, Vincent, J. 2013. Research and development of the ARTEMIS 14C AMS facility: status report. Radiocarbon 55(2):331337.CrossRefGoogle Scholar
Mueller, K and Muzikar, P 2002. Correcting for contamination in AMS 14C dating. Radiocarbon 44(2):591595.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Brown, DM, Buck, CE, Edwards, AL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013. Selection and treatment of data for radiocarbon calibration: an update to the international calibration (INTCAL) criteria. Radiocarbon 55:19231945.CrossRefGoogle Scholar
Roberts, M, Elder, K, Jenkins, W, Gagnon, A, Xu, L, Hlavenka, J, Longworth, B. 2019. 14C blank corrections for 25–100 μg samples at the National Ocean Sciences AMS Laboratory. Radiocarbon 61(5):14031411. doi: 10.1017/RDC.2019.74.CrossRefGoogle Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506519.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Druffel-Rodriguez, KC, Griffin, S, Mazon, M. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46(1):165173.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research B (259):293302.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Drenzek, NJ, Ziolkowski, LA, Druffel, E, Xu, X, Trumbore, S, Eglinton, TI, and Hughen, KA. 2010. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS. Radiocarbon 52(3): 13221335. doi: 10.1017/S0033822200046415.CrossRefGoogle Scholar
Scott, EM. 2003. The third and fourth International radiocarbon intercomparisons. Radiocarbon 45(2):135328.CrossRefGoogle Scholar
Scott, EM, Naysmith, P, Cook, GT. 2017. Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59:15891596 CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Valladas, H, Quiles, A, Delqué-Količ, E, Kaltnecker, E, Moreau, C, Pons-Bronchu, E, Vanrell, L, Olice, M, Delestre, X. 2017. Radiocarbon dating of the decorated Cosquer Cave (France). Radiocarbon 59:621633.CrossRefGoogle Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289293.CrossRefGoogle Scholar
Wacker, L, Fahrni, SM, Hajdas, I, Molnar, M, Synal, HA, Szidat, S, Zhang, YL. 2013. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:315319.CrossRefGoogle Scholar
Xu, S, Dougans, A, Freeman, SPHT, Maden, C, Loger, R. 2007. A gas ion source for radiocarbon measurement at SUERC. Nuclear Instruments and Methods in Physics Research B 259:7682.CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ARTEMIS, THE 14C AMS FACILITY OF THE LMC14 NATIONAL LABORATORY: A STATUS REPORT ON QUALITY CONTROL AND MICROSAMPLE PROCEDURES
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ARTEMIS, THE 14C AMS FACILITY OF THE LMC14 NATIONAL LABORATORY: A STATUS REPORT ON QUALITY CONTROL AND MICROSAMPLE PROCEDURES
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ARTEMIS, THE 14C AMS FACILITY OF THE LMC14 NATIONAL LABORATORY: A STATUS REPORT ON QUALITY CONTROL AND MICROSAMPLE PROCEDURES
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *