Hostname: page-component-7dc689bd49-kfntg Total loading time: 0 Render date: 2023-03-21T12:25:16.099Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true


Published online by Cambridge University Press:  21 July 2021

Allen H Andrews
University of Hawaii at Manoa, Department of Oceanography, 1000 Pope Road, Honolulu, HI96822, USA
Nancy G Prouty*
U.S. Geological Survey, Pacific Coastal & Marine Science Center, 2885 Mission Street, Santa Cruz, CA95060, USA
Olivia M Cheriton
U.S. Geological Survey, Pacific Coastal & Marine Science Center, 2885 Mission Street, Santa Cruz, CA95060, USA
*Corresponding author. Email:


Coral skeletal structures can provide a robust record of nuclear bomb produced 14C with valuable insight into air-sea exchange processes and water movement with applications to fisheries science. To expand these records in the South Pacific, a coral core from Tutuila Island, American Samoa was dated with density band counting covering a 59-yr period (1953–2012). Seasonal signals in elemental ratios (Sr/Ca and Ba/Ca) and stable carbon (δ13C) values across the coral core corroborated the well-defined annual band structure and highlighted an ocean climate shift from the 1997–1998 El Niño. The American Samoa coral 14C measurements were consistent with other regional records but included some notable differences across the South Pacific Gyre (SPG) at Fiji, Rarotonga, and Easter Island that can be attributed to decadal ocean climate cycles, surface residence times and proximity to the South Equatorial Current. An analysis of the post-peak 14C decline associated with each coral record indicated 14C levels are beginning to merge for the SPG. This observation, coupled with otolith measurements from American Samoa, reinforces the perspective that bomb 14C dating can be performed on fishes and other marine organisms of the region using the post-peak 14C decline to properly inform fisheries management in the South Pacific.

Research Article
Radiocarbon , Volume 63 , Issue 6 , December 2021 , pp. 1591 - 1605
© USGS, 2021. This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press on behalf of the Arizona Board of Regents

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Andrews, AH. 2020. Giant Trevally (Caranx ignobilis) of Hawaiian Islands can live 25 years. Marine and Freshwater Research 71:13671372. doi: 10.1071/MF19385 CrossRefGoogle Scholar
Andrews, AH, Scofield, TR. 2021. Early overcounting in otoliths: a case study of age and growth for gindai (Pristipomoides zonatus) using bomb 14C dating. Fisheries and Aquatic Sciences 24:5362. doi: 10.47853/FAS.2021.e6.CrossRefGoogle Scholar
Andrews, AH, Kalish, JM, Newman, SJ, Johnston, JM. 2011. Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies. Marine and Freshwater Research 62:12591269. doi: 10.1071/MF11080.CrossRefGoogle Scholar
Andrews, AH, DeMartini, EE, Brodziak, J, Nichols, RS, Humphreys, RL. 2012. A long-lived life history for a tropical, deepwater snapper (Pristipomoides filamentosus): bomb radiocarbon dating as extensions of daily increment analyses in otoliths. Canadian Journal of Fisheries Aquatic Sciences 69:18501869. doi: 10.1139/f2012-109.CrossRefGoogle Scholar
Andrews, AH, Choat, JH, Hamilton, RJ, DeMartini, EE. 2015. Refined bomb radiocarbon dating of two iconic fishes of the Great Barrier Reef. Marine and Freshwater Research 66:305316. doi: 10.1071/MF14086.CrossRefGoogle Scholar
Andrews, AH, Asami, R, Iryu, Y, Kobayashi, DR, Camacho, F. 2016a. Bomb-produced radiocarbon in the western tropical Pacific Ocean—Guam coral reveals operation-specific signals from the Pacific Proving Grounds. Journal of Geophysical Research Oceans 121:63516366. doi: 10.1002/2016JC012043.CrossRefGoogle Scholar
Andrews, AH, DeMartini, EE, Eble, JA, Taylor, BM, Lou, DC, Humphreys, RL. 2016b. A half-century lifespan for a keystone browser, the bluespine unicornfish (Naso unicornis), with a novel approach to bomb radiocarbon dating in the tropical North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences 73:15751586. doi: 10.1139/cjfas-2016-0019.CrossRefGoogle Scholar
Andrews, AH, Siciliano, D, Potts, DC, DeMartini, EE, Covarrubias, S. 2016c. Bomb radiocarbon and the Hawaiian Archipelago: coral, otoliths and seawater. Radiocarbon 58:531548. doi: 10.1017/RDC.2016.32.CrossRefGoogle Scholar
Andrews, AH, Humphreys, RL, Sampaga, JD. 2018. Blue marlin (Makaira nigricans) longevity estimates confirmed with bomb radiocarbon dating. Canadian Journal of Fisheries and Aquatic Sciences 75:1725. doi: 10.1139/cjfas-2017-0031.CrossRefGoogle Scholar
Andrews, AH, DeMartini, EE, Brodziak, J, Nichols, RS, Humphreys, RL. 2019a. Growth, longevity, and age at first maturity and sex change of Hawaiian grouper (Hyporthodus quernus)—input for management and conservation of a large, slow-growing grouper. Canadian Journal of Fisheries and Aquatic Sciences 76:18741884. doi: 10.1139/cjfas-2018-0170 CrossRefGoogle Scholar
Andrews, AH, Yeman, C, Welte, C, Hattendorf, B, Wacker, L, Christl, M. 2019b. Laser ablation accelerator mass spectrometry reveals complete bomb 14C signal in an otolith with confirmation of 60-year longevity for red snapper (Lutjanus campechanus). Marine and Freshwater Research 70:17681780. doi: 10.1071/MF18265.CrossRefGoogle Scholar
Andrews, AH, Brodziak, J, DeMartini, EE, Cruz, E. 2020a. Long-lived life history for onaga (Etelis coruscans) in the Hawaiian Islands. Marine and Freshwater Research 72. doi: 10.1071/MF20243.CrossRefGoogle Scholar
Andrews, AH, Pacicco, A, Allman, R, Falterman, BJ, Lang, ET, Golet, W. 2020b. Validated longevity of yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna of the northwestern Atlantic Ocean. Canadian Journal of Fisheries and Aquatic Sciences 77: 637643. doi: 10.1139/cjfas-2019-0328.CrossRefGoogle Scholar
Barnett, BK, Thornton, L, Allman, R, Chanton, JP, Patterson, WF. 2018. Linear decline in red snapper (Lutjanus campechanus) otolith Δ14C extends the utility of bomb radiocarbon dating chronometer for fish age validation in the Northern Gulf of Mexico. ICES Journal of Marine Science 75:16641671. doi: 10.1093/icesjms/fsy043.CrossRefGoogle Scholar
Biddulph, DL, Beck, JW, Burr, GS, Donahue, DJ. 2006. Two 60-year records of 129I from coral skeletons in the South Pacific Ocean. Radioactivity in the Environment 8:592598. doi: 10.1016/S1569-4860(05)08047-2.CrossRefGoogle Scholar
Brainard, R, Gove, J, Helyer, J, Kenyon, J, Mancini, F, Miller, J, Myhre, S, Nadon, M, Rooney, J, Schroder, R, Smith, E, Vargas-Angel, B, Vogt, S, Vroom, P. 2008. Coral reef ecosystem monitoring report for American Samoa: 2002–2006. NOAA Special Report NMFS PIFSC. 472 p. + Appendices.Google Scholar
Broecker, WS, Peng, T-H. 1982. Tracers in the Sea. Columbia University: Lamont-Doherty Geological Observatory.Google Scholar
Broecker, WS, Peng, T-H, Ostlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research Oceans 90:69536970. doi: 10.1029/JC090iC04p06953.CrossRefGoogle Scholar
Campana, SE. 1999. Chemistry and composition of otoliths: pathways, mechanisms and applications. Marine Ecological Progress Series 188:263297.CrossRefGoogle Scholar
Campana, SE. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59:197242. doi: 10.1111/J.1095-8649.2001.TB00127.X CrossRefGoogle Scholar
Commonwealth of Australia. 2021. Southern Oscillation Index (SOI) since 1876. Bureau of Meteorology. URL: <>. Accessed 2021 April 10..+Accessed+2021+April+10.>Google Scholar
Coplen, TB. 1996. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica Cosmochimica Acta 60:33593360.CrossRefGoogle Scholar
Crook, ED, Cohen, AL, Rebolledo-Vieyra, M, Hernandez, L, Paytan, A. 2013. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proceedings of the National Academy of Sciences 110(27):1104411049. doi: 10.1073/pnas.1301589110.CrossRefGoogle ScholarPubMed
Dana, TF. 1971. On the reef corals of the world’s most northern atoll (Kure: Hawaiian Archipelago). Pacific Science 25:8087.Google Scholar
Darrenougue, N, De Deckker, P, Payri, C, Eggins, S, Fallon, S. 2013. Growth and chronology of the rhodolith-forming, coralline red alga Sporolithon durum . Marine Ecological Progress Series 474:105119.CrossRefGoogle Scholar
DeLong, KL, Quinn, TM, Taylor, FW. 2007, Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: A replication study using multiple coral Sr/Ca records from New Caledonia. Paleoceanography 22:PA4212. doi: 10.1029/2007PA001444.CrossRefGoogle Scholar
Di Lorenzo, E, Schneider, N, Cobb, KM, Franks, PJS, Chhak, K, Miller, AJ, McWilliams, JC, Bograd, SJ, Arango, H, Curchitser, E, Powell, TM, Riviére, P. 2008. North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35:L08607.CrossRefGoogle Scholar
Druffel, ERM. 2002. Radiocarbon in corals: record of the carbon cycle, surface circulation and climate. Oceanography 15:122127.CrossRefGoogle Scholar
Fallon, SJ, McCulloch, MT, van Woesik, R, Sinclair, DJ. 1999. Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth and Planetary Science Letters 172:221238.CrossRefGoogle Scholar
Fallon, SJ, Guilderson, TP, Caldeira, K. 2003. Carbon isotope constraints on vertical mixing and air-sea CO2 exchange. Geophysical Research Letters 30:2289. doi: 10.1029/2003GL018049.CrossRefGoogle Scholar
Folland, CK, Renwick, JA, Salinger, MJ, Mullan, AB. 2002. Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophysical Research Letters 29:21-1–21-4. doi: 10.1029/2001GL014201.CrossRefGoogle Scholar
Gouriou, Y, Delcriox, T. 2002. Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. Journal of Geophysical Research Oceans 107:SRF 12-1–12-14. doi: 10.1029/2001JC000830.Google Scholar
Grottoli, AG, Eakin, CM. 2007. A review of modern coral δ18O and Δ14C proxy records. Earth–Science Review 81:6791. doi: 10.1016/j.earscirev.2006.10.001.CrossRefGoogle Scholar
Grottoli, AG, Gille, ST, Druffel, ERM, Dunbar, RB. 2003. Decadal timescale shift in the 14C record of a central equatorial Pacific coral. Radiocarbon 45:9199. doi: 10.1017/S0033822200032422.CrossRefGoogle Scholar
Grumet, NS, Abram, NJ, Beck, JW, Dunbar, RB, Gagan, MK, Guilderson, TP, Hantoro, WS, Suwargadi, BW. 2004. Coral radiocarbon records of Indian Ocean water mass mixing and wind-induced upwelling along the coast of Sumatra, Indonesia. Journal of Geophysical Research Oceans 109:C05003. doi: 10.1029/2003JC002087.Google Scholar
Guilderson, TP, Schrag, DP. 1998. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño: Science 281:240243. doi: 10.1126/science.281.5374.240.CrossRefGoogle ScholarPubMed
Guilderson, TP, Schrag, DP, Goddard, E, Kashgarian, M, Wellington, GM, Linsley, BK. 2000. Southwest subtropical Pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42:249256.CrossRefGoogle Scholar
Guilderson, TP, Schrag, DP, Druffel, ERM, Reimer, RW. 2021. Postbomb subtropical North Pacific surface water radiocarbon history. Journal of Geophysical Research Oceans 126:e2020JC016881. doi: 10.1029/2020JC016881.CrossRefGoogle Scholar
Huang, LC, Banzon, VF, Freeman, E, Graham, G, Hankins, B, Smith, TM, Zhang, HM. 2020. NOAA 0.25-degree Daily Optimum Interpolation Sea Surface Temperature (OISST) Version 2.1. 1987–2017. NOAA National Centers for Environmental Information. URL: <>. Accessed 2020 Oct 23.CrossRef.+Accessed+2020+Oct+23.>Google Scholar
Ishihara, T, Abe, O, Shimose, T, Takeuchi, Y, Aires-Da-Sliva, A. 2017. Use of post-bomb radiocarbon dating to validate estimated ages of Pacific bluefin tuna, Thunnus orientalis, of the North Pacific Ocean. Fisheries Research 189:3541. doi: 10.1016/j.fishres.2016.12.016.CrossRefGoogle Scholar
Jenkins, WJ, Elder, KL, McNichol, AP, von Reden, K. 2010. The passage of the bomb radiocarbon pulse into the Pacific Ocean. Radiocarbon 52:11821190.CrossRefGoogle Scholar
Jupiter, S, Roff, G, Marion, G, Henderson, M, Schrameyer, V, McCulloch, MT, Hoegh-Guldberg, O. 2008. Linkages between coral assemblages and coral proxies of terrestrial exposure along a cross-shelf gradient on the southern great barrier reef. Coral Reefs 27:887903.CrossRefGoogle Scholar
Kalish, JM. 1993. Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters 114:549554. doi: 10.1016/0012-821X(93)90082-K.CrossRefGoogle Scholar
Kendall, MS, Poti, M, Wynne, T, Kinlan, B, Bauer, L. 2011. Ocean currents and larval transport among islands and shallow seamounts of the Samoan Archipelago and adjacent island nations. In: A biogeographic assessment of the Samoan Archipelago (Eds. Kendall M, Poti M) 3–26. NOAA Technical Memo NOS NCCOS 132, Silver Springs, MD.Google Scholar
Keppenne, CL, Ghil, M. 1992. Adaptive filtering and prediction of the southern oscillation index. Journal of Geophysical Research Atmospheres 97:2044920454. doi: 10.1029/92JD02219.CrossRefGoogle Scholar
Key, RM, Kozyr, A, Sabine, CL, Lee, K, Wanninkhof, R, Bullister, JL, Feely, RA, Millero, FJ, Mordy, C, Peng, T-H. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Geochemical Cycles 18:GB4031. doi: 10.1029/2004GB002247.CrossRefGoogle Scholar
Kubota, K, Shirai, K, Murakami-Sugihara, N, Seike, K, Minami, M, Nakamura, T, Tanabe, K. 2018. Bomb-14C peak in the North Pacific recorded in long-lived bivalve shells (Mercenaria stimpsoni). Journal of Geophysical Research Oceans 123:28672881. doi: 10.1002/%202017JC013678.CrossRefGoogle Scholar
Linick, TW. 1980. Bomb-produced carbon-14 in the surface water of the Pacific Ocean. Radiocarbon 22:599606. doi: 10.1017/S0033822200009978.CrossRefGoogle Scholar
Linsley, BK, Kaplan, A, Gouriou, Y, Salinger, J, deMenocal, PB, Wellington, GM, Howe, SS. 2006. Tracking the extent of the South Pacific Convergence Zone since the early 1600s. Geochemistry Geophysics Geosystems 7(4):Q05003. doi: 10.1029/2005GC001115.CrossRefGoogle Scholar
Lough, JM, Barnes, DJ. 1990. Intra-annual timing of density band formation of Porites coral from the Great Barrier Reef. Journal of Experimental Marine Biology and Ecology 135:3557. doi: 10.1016/0022-0981(90)90197-K.CrossRefGoogle Scholar
McCutcheon, AL, Raymundo, LJ, Jenson, JW, Prouty, NG, Lander, MA, Randall, RH. 2015. Testing the strontium/calcium proxy for sea surface temperature reconstruction in the coral Porites lutea in Guam, Micronesia. Water and Environmental Research Institute of the Western Pacific, University of Guam. UOGML Technical Report 159, WERI Technical Report 152.Google Scholar
Mitsuguchi, T, Hirota, M, Paleo Labo AMS Dating Group, Yamazaki, A, Watanabe, T, Yamano, H. 2016. Post-bomb coral Δ14C record from Iki Island, Japan: possible evidence of oceanographic conditions on the northern East China Sea shelf. Geo-Mar Letters 36:371377. doi: 10.1007/s00367-016-0456-4.CrossRefGoogle Scholar
Moraga, J. Valle-Levinson, A, Olivares, J. 1999. Hydrography and geostrophy around Easter Island. Deep Sea Research Part I 46:715731.CrossRefGoogle Scholar
Nydal, R. 2000. Radiocarbon in the ocean. Radiocarbon 42:8198.Google Scholar
Patterson, WF, Barnett, BK, TinHan, TC, Lowerre-Barbieri, SK. 2021. Eye lens Δ14C validates otolith-derived age estimates of Gulf of Mexico reef fishes. Canadian Journal of Fisheries and Aquatic Sciences 78. doi: 10.1139/cjfas-2020-0237.CrossRefGoogle Scholar
Petchey, F, Anderson, A, Zondervan, A, Ulm, S, Hogg, A. 2008. New marine ΔR values for the South Pacific gyre region. Radiocarbon 50:373397. doi: 10.1017/S0033822200053509.CrossRefGoogle Scholar
Pirhalla, D, Ransi, V, Kendall, MS, Fenner, D. 2011. Oceanography of the Samoan Archipelago. In: Kendall M, Poti M, editors. A biogeographic assessment of the Samoan Archipelago. NOAA Techinal Memo NOS NCCOS 132, Silver Springs, MD. p. 3–26.Google Scholar
Prouty, NG, Andrews, AH 2020. Geochemistry time series and growth parameters from Tutuila, American Samoa coral record. U.S. Geological Survey Data Release. doi: 10.5066/P9DTWC3I.CrossRefGoogle Scholar
Prouty, NG, Field, ME, Stock, JD, Jupiter, SD, McCulloch, M. 2010. Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka´i, Hawai´i over the last several decades. Marine Pollution Bulletin 60:18221835. doi: 10.1016/j.marpolbul.2010.05.024.CrossRefGoogle Scholar
Prouty, NG, Storlazzi, CD, McCutcheon, AL, Jenson, JW. 2014. Historic impact of watershed change and sedimentation to reefs along west-central Guam. Coral Reefs 33:733749. doi: 10.1007/s00338-014-1166-x.CrossRefGoogle Scholar
Ramos, RD, Goodkin, NF, Druffel, ERM, Fan, TY, Siringan, FP. 2019. Interannual coral Δ14C records of surface water exchange across the Luzon Strait. Journal of Geophysical Research Oceans 124:491505. doi: 10.1029/2018JC014735.CrossRefGoogle Scholar
Reid, JL, Brinton, E, Fleminger, A, Venrick, EL, McGowan, JA. 1978. Ocean circulation and marine life. In: Charnock H, Deacon G, editors. Advances in Oceanography. Springer US. p. 65–130.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:12991304. doi: 10.1017/S0033822200033154.Google Scholar
Sinclair, DJ, Kinsley, LPJ, McCulloch, MT. 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta 62:18891901. doi: 10.1016/S0016-7037(98)00112-4.CrossRefGoogle Scholar
Swart, PK. 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Science Review 19:5180.CrossRefGoogle Scholar
Tangri, N, Dunbar, RB, Linsley, BK, Mucciarone, DM. 2018. ENSO’s shrinking twentieth-century footprint revealed in a half-millennium coral core from the South Pacific Convergence Zone. Paleoceanography and Paleoclimatology 33:11361150. doi: 10.1029/2017PA003310.CrossRefGoogle Scholar
Trenberth, KE. 1984. Signal versus noise in the Southern Oscillation. Monthly Weather Review 112:326–32.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, KE, Hurrell, JW. 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics 9:303319.CrossRefGoogle Scholar
Toggweiler, JR, Dixon, K, Broecker, WS. 1991. The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research Oceans 96:2046720497. doi: 10.1029/91JC02063.CrossRefGoogle Scholar
Wu, Y, Fallon, SJ, Cantin, NE, Lough, JM. 2021. Surface ocean radiocarbon from a Porites coral record in the Great Barrier Reef: 1945–2017. Radiocarbon. doi: 10.1017/RDC.2020.141.CrossRefGoogle Scholar
Supplementary material: File

Andrews et al. supplementary material

Andrews et al. supplementary material

Download Andrews et al. supplementary material(File)
File 115 KB