Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-18T19:14:22.651Z Has data issue: false hasContentIssue false

Direct 14C Dating of Early and Mid-Holocene Saharan Pottery

Published online by Cambridge University Press:  09 February 2016

Lamia Messili*
Affiliation:
BP 70bis, Saïd Hamdine, Hydra, 16000 Algiers, Algeria / CNRS, UMR 7194, Histoire naturelle de l'Homme préhistorique. Muséum National d'Histoire Naturelle, Dép. Préhistoire, BP 140, 43 rue Buffon, 75005 Paris, France
Jean-François Saliège
Affiliation:
CNRS, UMR 7209, Archéozoologie, archéobotanique: sociétés, pratiques et environnements. Muséum National d'Histoire Naturelle, Dép. EGB, 55 rue Buffon, 75005 Paris, France
Jean Broutin
Affiliation:
UPMC - Université Paris 06 Paléobotanique, CR2P - UMR 7207 CNRS, Muséum National d'Histoire Naturelle, Bat. Géologie MNHN, 43 rue Buffon, 75005 Paris, France
Erwan Messager
Affiliation:
CNRS, UMR 7264, CEPAM Université de Nice Sophia Antipolis, Pôle Universitaire de Saint Jean d'Angély, 24 Avenue des diables bleus, 06357 Nice Cedex 4, France
Christine Hatté
Affiliation:
LSCE UMR 8212 CEA-CNRS-UVSQ, Domaine du CNRS, 91198 Gif-sur-Yvette Cedex, France
Antoine Zazzo
Affiliation:
CNRS, UMR 7209, Archéozoologie, archéobotanique: sociétés, pratiques et environnements. Muséum National d'Histoire Naturelle, Dép. EGB, 55 rue Buffon, 75005 Paris, France
*
Corresponding author. Email: messili@mnhn.fr.

Abstract

The aim of this study is to directly radiocarbon date pottery from prehistoric rock-art shelters in the Tassili n'Ajjer (central Sahara). We used a combined geochemical and microscopic approach to determine plant material in the pottery prior to direct 14C dating. The ages obtained range from 5270 ± 35 BP (6276–5948 cal BP) to 8160 ± 45 BP (9190–9015 cal BP), and correlate with the chronology derived from pottery typology. Our results document the transition from pre-Pastoral to Pastoral contexts, dated to the early-mid Holocene transition, and confirm that vegetal temper in pottery can provide reliable 14C ages within Saharan contexts.

Type
Archaeology of Eurasia and Africa
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alimen, H, Beucher, F, Lhote, H. 1968. Les gisements néolithiques de Tan-Tartaït et d'I-n-Itinen. Tassili-n-Ajjer (Sahara central). Bulletin de la Société Préhistorique Française 65:421–58.Google Scholar
Aumassip, G, Delibrias, G. 1982–1983. Ages des dépôts néolithiques du gisement de Tin Hanakaten (Tassili n'Ajjer). Libyca 20–21:207–11.Google Scholar
Aumassip, G, Heim, J-L. 1989. Les squelettes néolithiques de Tin Hanakaten, Tassili n'Ajjer, Algérie. Comptes rendus de l'Académie des Sciences 309(3):187–90.Google Scholar
Aumassip, G, Tauveron, M. 1993. Le Sahara central à l'Holocène. In: Calegari, G, editor. L'arte e l'ambiente del Sahara preistorico: dati e interpretazioni. Memorie della societa italiana di scienze naturali e del Museo Civico di Storia Naturali di Milano 26(2). Milan: Società italiana di scienze naturali e Museo civico di storia naturale. p 6380.Google Scholar
Aumassip, G, Clark, JD, Mori, F. 1996. The Prehistory of Africa. XIII UISPP Congress, Colloquium 15. Forli: Abaco.Google Scholar
Barich, BE. 1987. Archaeology and Environment in the Libyan Sahara. BAR International Series 368. Oxford: British Archaeological Reports.Google Scholar
Baumhauer, R, Runge, J. 2009. Holocene Palaeoenvironmental History of the Central Sahara. Palaeocology of Africa, 29. New York: CRC Press.CrossRefGoogle Scholar
Bernus, E, Cressier, P, Durand, A, Paris, F, Saliège, J-F. 1999. Vallée de l'Azawagh (Sahara du Niger). Etudes nigériennes 57. Saint Maur: Sépia.Google Scholar
Berstan, R, Stott, AW, Minnitt, S, Bronk Ramsey, C, Hedges, REM, Evershed, RP. 2008. Direct dating of pottery from its organic residues: new precision using compound-specific carbon isotopes. Antiquity 83(317):702–13.Google Scholar
Biagetti, S, di Lernia, S. 2007. Reflections on the Takarkori rockshelter (Fezzan, Libyan Sahara). In: Kornfeld, M, Vasil'ev, S, Miotti, L, editors. On Shelter's Ledge. Histories, Theories and Methods of Rockshelter Research. BAR International Series 1655. Oxford: Archaeopress. p 125–32.Google Scholar
Biagetti, S, Merighi, F, di Lernia, S. 2004. Decoding early Holocene stratified site. Ceramic dispersion and site formation processes in the Takarkori rock-shelter, Acacus Mountains, Libya. Journal of African Archaeology 2(1):1136.CrossRefGoogle Scholar
Biagetti, S, Poggi, G, di Lernia, S. 2009. Unearthing the hearths: preliminary results on the Takarkori rockshelter fireplaces (Acacus MTS, Libya). In: Cavulli, F, Prudëncio, MI, Dias, MI, editors. Defining a Methodological Approach to Interpret Structural Evidence. BAR International Series 2045. Oxford: Archaeopress. p 23–9.Google Scholar
Camps, G. 1969. Amekni. Néolithique ancien du Hoggar. Mémoires du CRAPE, 10. Paris: Arts et métiers graphiques.Google Scholar
Caneva, I. 1987. Pottery decoration in prehistoric Sahara and upper Nile: a new perspective. In: Barich, BE, editor. Archaeology and Environment in the Libyan Sahara: The Excavation in the Tadrart Acacus, 1979–1983. BAR International Series 368. Oxford: British Archaeological Reports. p 231–54.Google Scholar
Castelletti, L, Castiglioni, E, Cottini, M, Rottoli, M. 1999. Archaeobotanical evidence at Uan Afuda: charcoal, wood and seeds from the early Holocene sequence. In: di Lernia, , editor. The Uan Afuda Cave. Hunter-Gatherer Societies of Central Sahara. Arid Zone Archaeology Monographs 1. Florence: All'Insegna del Giglio. p 131–48.Google Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.Google Scholar
Cremaschi, M. 2001. Holocene climatic changes in an archaeological landscape: the case study of Wadi Tanezzuft and its drainage basin (SW Fezzan, Libyan Sahara). Libyan Studies 32:328.CrossRefGoogle Scholar
Cremaschi, M, di Lernia, S. 1998. Wadi Teshuinat Palaeoenvironment and Prehistory in South-Western Fezzan (Libyan Sahara). Quaderni Geodinamica Alpina e Quaternaria, 7. Florence: CNR.Google Scholar
Cremaschi, M, di Lernia, S. 1999. Holocene climat changes and cultural dynamics in Libyan Sahara. African Archaeological Review 16(4):211–38.Google Scholar
Delibrias, G. 1964. Saclay natural radiocarbon measurements I. Radiocarbon 6:233–50.Google Scholar
Delibrias, G. 1966. Gif natural radiocarbon measurements II. Radiocarbon 8:7495.Google Scholar
Delibrias, G. 1971. Gif natural radiocarbon measurements VI. Radiocarbon 13(2):213–54.Google Scholar
Delqué-Količ, E. 1995. Direct radiocarbon dating of pottery: selective heat treatment to retrieve smoke-derived carbon. Radiocarbon 37(2):275–84.Google Scholar
di Lernia, S. 1999. The Uan Afuda Cave. Hunter-gatherer societies of Central Sahara. Arid Zone Archaeology Monographs, 1. Florence: All'Insegna del Giglio.Google Scholar
di Lernia, S, Manzi, G. 1998. Funerary practices and anthropological features at 8000–5000 BP. Some evidence from central-southern Acacus (Libyan Sahara). In: Cremaschi, M, di Lernia, S, editors. Wadi Teshuinat Palaeoenvironment and Prehistory in South- Western Fezzan (Libyan Sahara). Quaderni Geodinamica Alpina e Quaternaria, 7. Florence: CNR. p 217–42.Google Scholar
Dunne, J, Evershed, RP, Salque, M, Cramp, L, Bruni, S, Ryan, K, Biagetti, S, di Lernia, S. 2012. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486(7403):390–4.Google Scholar
Eschard, R, Abdallah, H, Braik, F, Desaubliaux, G. 2005. The lower Paleozoic succession in the Tassili outcrops, Algeria: sedimentology and sequence stratigraphy. First Break 23(10):2736.Google Scholar
Evans, C, Meggers, BJ. 1962. Use of organic temper for carbon 14 dating in lowland South America. American Antiquity 28(2):243–45.Google Scholar
Evin, J, Gabasio, M, Lefevre, JC. 1989. Preparative techniques for radiocarbon dating of potsherds. Radiocarbon 31(3):276–83.Google Scholar
Fredlund, G, Tieszen, L. 1994. Modern phytoliths assemblages from the North American Great Plains. Journal of Biogeography 21(3):321–35.Google Scholar
Gabasio, M, Evin, J, Arnal, GB, Andrieux, P. 1986. Origins of carbon in potsherds. Radiocarbon 28(2A):711–8.Google Scholar
Garcea, EEA. 2001. Uan Tabu in the Settlement History of the Libyan Sahara. Arid Zone Archaeology Monographs, 2. Florence: All'insegna del Giglio.Google Scholar
Hachi, S. 1983. Place du gisement de Ti-n-Hanakaten (Tassili-n-Ajjer, Algerie) dans le contexte climatique saharien. Paléoécologie des régions sahariennes. In: Actes du colloque international de Béni-Abbas. Alger: Centre national d'études historiques. p 115–22.Google Scholar
Hachid, M, Le Quellec, J-L, Agsous, S, Amara, A, Beck, L, Duquesnoy, F, Grenet, M, Heddouche, A, Kaltnecker, E, Merrier, N, Merzoug, S, Quiles, S, Sahnoun, M, Valladas, H, Vigears, D. 2010. Premiers résultats du projet algéro-français de datation directe et indirecte des images rupestres dans la Tasili-n-Ajjer. Sahara 21(3–4):2758.Google Scholar
Hamoudi, M. 2002. Etude d'un faciès du Néolithique saharien. Le Bovidien inférieur d'après la Séquence 4 du site de Tin Hanakaten. Tassili n'Ajjer, Algérie. Thèse de Magister. Université d'Alger.Google Scholar
Haour, A, Manning, K, Arazi, N, Gosselain, O, Guèye, NS, Keita, D, Livingstone-Smith, A, MacDonald, K, Mayor, A, McIntosh, S, Vernet, R. 2010. African Pottery Roulettes Past and Present. Techniques, Identification and Distribution. Oxford: Oxbow Books. p 134–43.Google Scholar
Hatté, C, Saliège, J-F, Senasson, D, Bocoum, H. 2010. Cultural and trade practices in Sincu Bara (Senegal): a multi-proxy investigation. Journal of Archaeological Science 37(3)561–8.Google Scholar
Hedges, REM, Humm, MJ, Foreman, J, van Klinken, J, Bronk Ramsey, C. 1992. Developments in sample combustion to carbon dioxide, and in the Oxford AMS carbon dioxide ion source system. Radiocarbon 34(3):306–11.CrossRefGoogle Scholar
Johnson, RA, Stipp, JJ, Tamers, MA. 1986. Archaeologic sherd dating: comparison of thermoluminescence dates with radiocarbon dates by beta counting and accelerator techniques. Radiocarbon 28(2A):719–25.Google Scholar
Le Houérou, HN. 2009. Bioclimatology and Biogeography of Africa. Berlin: Springer.Google Scholar
Livingstone-Smith, A. 2001. Pottery manufacturing processes: reconstruction and interpretation. In: Garcea, EAA, editor. Uan Tabu in the Settlement History of the Libyan Sahara. Arid Zone Archaeology Monographs, 2. Florence: All'Insegna del Giglio. p 111–50.Google Scholar
Magid, AA. 1999. Preliminary study of plant impressions in pottery. In: di Lernia, S, editor. The Uan Afuda Cave. Hunter-Gatherer Societies of Central Sahara. Arid Zone Archaeological Monographs, 1. Florence: All'Insegna del Giglio. p 183–7.Google Scholar
Mercuri, AM. 1999. Palynological analysis of the Early Holocene sequence. In: di Lernia, S, editor. The Uan Afuda Cave. Hunter-Gatherer Societies of Central Sahara. Arid Zone Archaeological Monographs, 1. Florence: All'Insegna del Giglio. p 149–81.Google Scholar
Mercuri, AM. 2001. Preliminary analyses of fruits, seeds and few plant macrofossils from the early Holocene sequence. In: Garcea, EAA, editor. Uan Tabu in the Settlement History of the Libyan Sahara. Arid Zone Archaeology Monographs, 2. Florence: All'Insegna del Giglio. p 189210.Google Scholar
Mercuri, AM. 2008. Plant exploitation and ethnopalynological evidence from Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). Journal of Archaeological Science 35(6):1619–42.Google Scholar
Mercuri, AM, Trevisan Grandi, G, Mariotti Lippi, M, Cremaschi, M. 1998. New pollen data from the Uan Muhuggiag rockshelter (Libyan Sahara, VII–IV millennia BP). In: Cremaschi, M, di Lernia, S, editors. Wadi Teshuinat Palaeoenvironment and Prehistory in South-Western Fezzan (Libyan Sahara). Quaderni Geodinamica Alpina e Quaternaria, 7. Florence: CNR. p 107–22.Google Scholar
Migliore, J. 2011. Empreintes des changements environnementaux sur la phylogéographie du genre Myrtus en Méditerranée et au Sahara. Thèse de Doctorat de 3ème cycle. Université Paul Cézanne Aix-Marseille III.Google Scholar
Mohammed-Ali, AS, Khabir, ARM. 2003. The Wavy line and the Dotted Wavy Line pottery in the prehistory of the central Nile and the Sahara-Sahel belt. African Archaeological Review 20(1):2558.Google Scholar
Mori, F. 1998. The Great Civilizations of the Ancient Sahara. Roma: L'Erma di Bretschneider.Google Scholar
Ozenda, P. 2004. Flore et végétation du Sahara. Paris: CNRS.Google Scholar
Quézel, P, Santa, S. 1962–1963. Nouvelle flore de l'Algérie et des régions désertiques méridionales. Paris: CNRS.Google Scholar
Ralph, EK. 1959. University of Pennsylvania radiocarbon dates 3. Radiocarbon 1:4558.Google Scholar
Saliège, J-F, Person, A. 1991a. Matière organique des céramiques archéologiques et datation par la méthode du radiocarbone. In: Raimbault, M, Sanogo, K, editors. Recherches archéologiques au Mali. Paris: Karthala. p 413–48.Google Scholar
Saliège, J-F, Person, A. 1991b. Pâtes, dégraissants et chronologic: contribution analytique à l'étude des céramiques d'Azelik. In: Bernus, P, Cressier, P, editors. La region d'In Gall-Teggida n'Tessemt (Niger). Programme archéologique d'urgence (1977–1981). IV: Azelik-Takkada et l'implantation sédentaire médiévale. Etudes nigériennes, 51. Niamey: IRSH. p 89121.Google Scholar
Saliège, J-F, Person, A. 1994. Sur la datation des céramiques archéologiques de l'Afrique de l'Ouest par la méthode du carbone 14, influence des paléotechnologies. In: L'objet archéologique africain et son devenir. Meudon: CNRS. p 115–79.Google Scholar
Schulz, E. 1987. Holocene vegetation in the Tadrart Acacus: the pollen record of early ceramic sites. In: Barich, BE, editor. Archaeology and Environment in the Libyan Sahara. The Excavations in the Tadrart Acacus, 1978–1983. BAR International Series 368. Oxford: British Archaeological Reports. p 313–26.Google Scholar
Schulz, E. 1994. The southern limit of the Mediterranean vegetation in the Sahara during the Holocene. Historical Biology 9(1–2):137–56.Google Scholar
Senasson, D. 1995. Des céramiques bovidiennes de deux gisements sahariens algériens: approches analytique et comparative (Tin Hanakaten et Iharen). Mémoire de DEA. Université Paris I Sorbonne.Google Scholar
Sereno, PC, Garcea, E A A, Jousse, H, Stojanowski, CM, Saliège, J-F, Maga, A, Ide, OA, Knudson, KJ, Mercui, AM, Stafford, TW Jr, Kaye, TG, Giraudi, C, N'siala, IM, Cocca, E, Moots, HM, Dutheil, DB, Stivers, JP. 2008. Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. PLoS ONE 3(8): e2995, doi: 10.1371/journal.pone.0002995.Google Scholar
Stott, AW, Berstan, R, Evershed, RP, Bronk Ramsey, C, Hedges, REM, Humm, MJ. 2003. Direct dating of archaeological pottery by compound-specific 14C analysis of preserved lipids. Analytical Chemistry 75(19):5037–45.Google Scholar
Stuckenrath, R Jr. 1963. University of Pennsylvania radiocarbon dates VI. Radiocarbon 5:82103.Google Scholar
Tauveron, M, Ferhat, N, Striedter, KH. 2009. Neolithic domestication and pastoralism in central Sahara: the cattle necropolis of Mankhor (Algerian Tadrart). In: Baumhauer, R, Runge, J, editors. Holocene Palaeoenvironmental History of the Central Sahara. Palaeocology of Africa, 29. New York: CRC Press. p 179–86.Google Scholar
Thommeret, J, Rapaire, JL. 1964. Monaco radiocarbon measurements I. Radiocarbon 6:194–6.Google Scholar
Trevisan Grandi, G, Mariotti Lippi, M, Mercuri, AM. 1998. Pollen in dung layers from rockshelters and caves of Wadi Teshuinat (Libyan Sahara). In: Cremaschi, M, di Lernia, S, editors. Wadi Teshuinat Palaeoenvironment and Prehistory in South-western Fezzan (Libyan Sahara). Quaderni Geodinamica Alpina e Quaternaria, 7. Florence: CNR. p 95106.Google Scholar
van Doosselaere, B. 2011. Poterie et histoire au temps des Grands Empires. Thèse de Doctorat de 3ème cycle. Université Paris I Sorbonne.Google Scholar
van Doosselaere, B, Hayes, E. 2005–2006. Exploitation des ressources organiques dans les productions céramiques à Koumbi Saleh (sud-est mauritanien, VIIe–XVIIe siècles). Cahiers des Thèmes Transversaux ArScAn 7:105–11.Google Scholar
Wasylikowa, K. 1992. Holocene flora of the Tadrart Acacus area, SW Libya, based on plant macrofossils from Uan Muhuggiag and Ti-n-Torha/Two Caves archaeological sites. Origini 16:125–52.Google Scholar
Watson, L, Dallwitz, MJ. 1992. Grass Genera of the World: Descriptions, Illustrations, Identification, and Information Retrieval; Including Synonyms, Morphology, Anatomy, Physiology, Phytochemistry, Cytology, Classification, Pathogens, World and Local Distribution, and References. Wallingford: CAB International.Google Scholar
Wittmer, MHOM, Auerswald, K, Tungalag, R, Bai, YF, Schäufele, R, Schnyder, H 2008. Carbon isotope discrimination of C3 vegetation in Central Asian grassland as related to long-term and short-term precipitation patterns. Biogeosciences 5:913–24.Google Scholar