Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-12T22:15:18.725Z Has data issue: false hasContentIssue false

More Rapid 14C Excursions in the Tree-Ring Record: A Record of Different Kind of Solar Activity at About 800 BC?

Published online by Cambridge University Press:  16 July 2018

A J Timothy Jull*
Department of Geosciences, University of Arizona, Tucson, ArizonaUSA Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary AMS Laboratory, University of Arizona, Tucson, ArizonaUSA
Irina Panyushkina
Laboratory for Tree-Ring Research, University of Arizona, Tucson, ArizonaUSA
Fusa Miyake
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Kimiaki Masuda
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Toshio Nakamura
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Takumi Mitsutani
National Institutes for Cultural Heritage, Nara National Research Institute for Cultural Properties, Nara, Japan
Todd E Lange
AMS Laboratory, University of Arizona, Tucson, ArizonaUSA
Richard J Cruz
AMS Laboratory, University of Arizona, Tucson, ArizonaUSA
Chris Baisan
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Robert Janovics
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
Tamas Varga
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
Mihály Molnár
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
*Corresponding author. Email:


Two radiocarbon (14C) excursions are caused by an increase of incoming cosmic rays on a short time scale found in the Late Holocene (AD 774–775 and AD 993–994), which are widely explained as due to extreme solar proton events (SPE). In addition, a larger event has also been reported at 5480 BC (Miyake et al. 2017a), which is attributed to a special mode of a grand solar minimum, as well as another at 660 BC (Park et al. 2017). Clearly, other events must exist, but could have different causes. In order to detect more such possible events, we have identified periods when the 14C increase rate is rapid and large in the international radiocarbon calibration (IntCal) data (Reimer et al. 2013). In this paper, we follow on from previous studies and identify a possible excursion starting at 814–813 BC, which may be connected to the beginning of a grand solar minimum associated with the beginning of the Hallstatt period, which is characterized by relatively constant 14C ages in the period from 800–400 BC. We compare results of annual 14C measurements from tree rings of sequoia (California) and cedar (Japan), and compare these results to other identified excursions, as well as geomagnetic data. We note that the structure of the increase from 813 BC is similar to the increase at 5480 BC, suggesting a related origin. We also assess whether there are different kinds of events that may be observed and may be consistent with different types of solar phenomena, or other explanations.

© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Ben-Yosef, E, Tauxe, L, Levy, TE, Shaar, R, Hagai, R, Najjar, M. 2009. Geomagnetic intensity spike recorded in high resolution slag deposit in Southern Jordan. Earth and Planetary Science Letters 287:529539.Google Scholar
Burr, GS. 2007. Radiocarbon dating: causes of temporal variations. In: Elias S, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 29322941.Google Scholar
Cai, S, Jin, G, Tauxe, L, Deng, C, Qin, H, Pan, Y, Zhu, R. 2017. Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field. Proceedings of the National Academy of Sciences USA 114:3944. doi: 10.1073/pans.1616976114.Google Scholar
Cliver, EW, Tylka, AJ, Dietrich, WF, Ling, AG. 2014. On a solar origin for the cosmogenic nuclide event of 775AD. Astrophysics Journal 781:32. doi: 10.1088/0004-637X/781/1/32.Google Scholar
Davis-Kimball, J, Bashilov, VA, Yablonsky, LT. editors. 1995. Nomads of the Eurasian Steppe in the Early Iron Age. Berkeley: Zinat Press. 431 p.Google Scholar
de Groot, LV, Béguin, A, Kosters, ME, van Rijsingen, EM, Struijk, ELM, Biggin, AJ, Elliot, A, Hurst, EA, Langereis, CG, Dekkers, MJ. 2015. High paleointensities for the Canary Islands constrain the Levant geomagnetic high. Earth and Planetary Science Letters 419:154167.Google Scholar
Desnains, M, Charault, M. 1859. Perturbations magnétiques observé les 29 août et 2 septembre. Comptes rendus 49(14):473478.Google Scholar
Dergachev, VA, Raspopov, OM, van Geel, B, Zaitseva, GI. 2004. The “sterno-etrussia” geomagnetic excursions around 2700 BP and changes in solar activity, cosmic ray intensity, and climate. Radiocarbon 46(2):661681.Google Scholar
Donahue, DJ, Linick, TW, Jull, AJT. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135142.Google Scholar
Eastwood, JP, Biffis, E, Hapgood, MA, Green, L, Bisi, MM, Bentley, RD, Wicks, R, McKinnell, LA, Gibbs, M, Burnett, C. 2017. The economic impact of space weather: Where do we stand? Risk Analysis 37:206218. doi: 10.1111/risa.12765.Google Scholar
Fogtmann-Schulz, A, Østbø, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF. 2017. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophysical Research Letters 44:86218628.Google Scholar
Friedrich, M, Hennig, H. 1996. A dendrodate for the Wehringen Iron Age wagon grave (778±5 BC) in relation to other recently obtained absolute dates for the Hallstatt period in southern Germany. Journal of European Archaeology 4:281303.Google Scholar
Grabner, M, Klein, A, Geihofer, D, Reschreiter, H, Barth, FE, Sormaz, T, Wimmer, R. 2007. Bronze age dating of timber from the salt-mine at Hallstatt, Austria. Dendrochronologia 24:6168.Google Scholar
Güttler, D, Adolphi, F, Beer, J, Bleicher, N, Boswijk, G, Christl, M, Hogg, A, Palmer, J, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411:290297.Google Scholar
Hamabaryan, VV, Neuhäuser, R. 2013. A galactic short gamma-ray burst as cause for the 14C peak in AD 774/775. Monthly Notices, Royal Astronomical Society 430:3236.Google Scholar
Higham, CFW, Higham, TFG, Douka, K, Ciarla, R, Kijngam, A, Rispoli, F. 2011. The origins of the Bronze Age of Southeast Asia. Journal of World Prehistory 24:227274. doi: 10.1007/s10963-011-9054-6.Google Scholar
Hong, H, Yu, Y, Lee, CH, Kim, RH, Park, J, Doh, S-J, Kim, W, Sung, H. 2013. Globally strong geomagnetic field intensity circa 3000 years ago. Earth and Planetary Science Letters 383:142152.Google Scholar
Jacobssen, P, Hamilton, WD, Cook, G, Crone, A, Dunbar, E, Kinch, H, Naysmith, P, Tripney, B, Xu, S. 2017. Refining the Hallstatt plateau: Short-term 14C variability and small scale offsets in 50 consecutive since tree-rings from southwest Scotland dendro-dated to 510–460 BC. Radiocarbon 60(1):219237. doi: 10.1017/RDC.2017.90.Google Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at AD 774–775 in tree rings from Russia and America. Geophysical Research Letters 41:30043010. doi: 10.1002/2014GL059874.Google Scholar
Kissel, C, Laj, C, Rodriguez-Gonzalez, A, Perez-Torrado, F, Carracedo, JC, Wandres, C. 2015. Holocene geomagnetic field intensity variations: Contribution from the low latitude Canary Islands site. Earth and Planetary Science Letters 430:178190.Google Scholar
Koryakova, LN, Epimakhov, AV. 2007. The Urals and Western Siberia in the Bronze and Iron Ages. Cambridge: Cambridge University Press. p 408.Google Scholar
Kovaltsov, GA, Mishev, A, Usoskin, IG. 2012. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth and Planetary Science Letters 337–8:114120.Google Scholar
Kutzbach, JE, Gallimore, RG. 1988. Sensitivity of a coupled atmosphere/mixed layer ocean model to changes in orbital forcing at 9000 years B.P. Journal of Geophysical Research 93(D1):803821.Google Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offests in the troposphere: Magnitude, mechanisms and consequences. Science 294:25292532.Google Scholar
LeHuray, JD, Schutkowski, H. 2005. Diet and social status during the La Te’ne period in Bohemia: Carbon and nitrogen stable isotope analysis of bone collagen from Kutná Hora-Karlov and Radovesice. Journal of Anthropological Archaeology 24:135147.Google Scholar
Larsson, PO, Larsson, LA. 2017. Miyake events from a dendrochronological point of view. Available at Downloaded 22 June 2017.Google Scholar
Lingenfelter, RE, Ramaty, R. 1970. Astrophysical and geophysical variations in 14C production. In: Olsson IU, editor. Radiocarbon Variations and Absolute Chronology. New York: Wiley. p 513535.Google Scholar
Liu, Y, Zhang, ZF, Peng, ZC, Ling, MX, Shen, CC, Liu, WG, Sun, XC, Shen, CD, Liu, KX, Sun, WD. 2014. Mysterious abrupt carbon-14 increase in coral contributed by a comet. Nature Scientific Reports 3278. doi: 10.1038/srep03728.Google Scholar
Macklin, MG, Panyushkina, IP, Toonen, WHJ, Chang, C, Tourtellotte, PA, Duller, GA, Wang, H, Prins, M. 2015. The influence of Late Pleistocene geomorphological inheritance and Holocene hydromorphic regimes on floodwater farming in the Talgar catchment, southeast Kazakhstan, Central Asia. Quaternary Science Reviews 129:8595.Google Scholar
Manning, SW, Griggs, C, Lorentzen, B, Ramsey, CB, Chivall, D, Jull, AJT, Lange, TE. 2018. Radiocarbon Offsets in the Southern Levant. Proceedings of the National Academy of Sciences (USA), in revision.Google Scholar
Masarik, J, Reedy, RC. 1995. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth and Planetary Science Letters 136:381395.Google Scholar
Mazaud, A, Laj, C, Arnold, M, Tric, E. 1991. Geomagnetic field control of 14C production over the last 80 kr: Implications for the radiocarbon time-scale. Geophysical Research Letters 18:18851888.Google Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, Z, Synal, H-A, Welten, KC, Woodruff, TE. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6:8611. doi: 10.1038/ncomms9611.Google Scholar
Miyahara, H, Masuda, K, Nagaya, K, Kuwana, K, Muraki, Y, Nakamura, T. 2007. Variation of solar activity from the Spoerer to the Maunder minima indicated by radiocarbon content in tree-rings. Advances in Space Research 40:10601063.Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240242.Google Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 record of tree rings. Nature Communications 4:1748.Google Scholar
Miyake, F, Suzuki, A, Masuda, K, Horiuchi, K, Motoyama, H, Matsuzaki, H, Motizuki, Y, Takahashi, K, Nakai, Y. 2015. Cosmic ray event of A.D. 774–775 shown in quasi-annual 10Be data from the Antarctic Dome Fuji ice core. Geophysical Research Letters 42. doi: 10.1002/2014GL062218.Google Scholar
Miyake, F, Jull, AJT, Panyushkina, IP, Wacker, L, Salzer, M, Baisan, CH, Lange, T, Cruz, R, Masuda, K, Nakamura, T. 2017a. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences USA 114:881884.Google Scholar
Miyake, F, Masuda, K, Nakamura, T, Kimura, K, Hakozaki, M, Jull, AJT, Lange, TE, Cruz, R, Panyushkina, IP, Baisan, C, Salzer, M. 2017b. Search for annual 14C excursions in the past. Radiocarbon 59(2):315320.Google Scholar
Molnar, M, Janovics, R, Major, I, Orsovski, J. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2):665676.Google Scholar
Nakamura, T, Masuda, K, Miyake, F, Hakozaki, M. 2017. Radiocarbon age offset observed in Japanese tree rings: Comparison of 14C ages from Japanese tree rings with IntCal13 datasets. IntCal workshop, 14th International Conference on Accelerator Mass Spectrometry (AMS-14), Ottawa, Canada. Abstract 263.Google Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.Google Scholar
Pavlov, AK, Blinov, AV, Konstantinov, AN, Ostryakov, VM, Vasilyev, GI, Vdovina, MA, Volkov, PA. 2013. AD 775 pulse of cosmogenic nuclide production as imprint of a Galactic gamma-ray burst. Monthly Notices, Royal Astronomical Society 435:28782884.Google Scholar
Pearson, CL, Jull, AJT. 2017. IntCal workshop, 14th International Conference on Accelerator Mass Spectrometry (AMS-14), Ottawa, Canada. Available at Scholar
Plunkett, IG, Swindles, GT. 2008. Determining the Sun’s influence on Late glacial and Holocene climates: a focus on climate response to centennial-scale solar forcing at 2800 cal BP. Quaternary Science Reviews 27(1–2):175184.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Schimel, D, Alves, D, Entwing, I, Heiman, M, Joos, F, Raynaud, D, Wigley, T, Prather, M, Derwent, R, Ehhalt, D, Fraser, P, Sanhueza, E, Zhou, X, Jonas, P, Charlson, R, Rodhe, H, Sadasivan, S, Shine, KP, Fouquart, Y, Ramaswamy, V, Solomon, S, Srinivasan, J, Albritton, D, Isaksen, I, Lal, M, Wuebbles, D. 1996. Radiative forcing of climate change. In: Houghton JT, Meira Filho IG, Callander BA, Harris N, Kattenberg A, Maskell K, editors. The Science of Climate Change. Cambridge: Cambridge University Press. p 69131.Google Scholar
Schuur, EAG, Druffel, ERM, Trumbore, SE. 2016. Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques. Basel: Springer. doi: 10.1007/978-3-319-25643-6.Google Scholar
Shaar, R, Tauxe, L, Ron, H, Ebert, Y, Zuckerman, S, Finkelstein, I, Agnon, A. 2016. Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Meggido and Tel Hazor, Israel. Earth and Planetary Science Letters 442:173185.Google Scholar
Shea, MA, Smart, DF. 2006. Geomagnetic cutoff rigidities and geomagnetic coordinates appropriate for the Carrington flare Epoch. Advances in Space Research 38:209214.Google Scholar
Sternberg, RS, Damon, PE. 1992. Implications of dipole moment secular variation from 50,000– 10,000 years for the radiocarbon record. Radiocarbon 34(2):189198.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35(1):3565.Google Scholar
Stuiver, M, Braziunas, TF. 1993a. Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. The Holocene 3:289305.Google Scholar
Stuiver, M, Braziunas, TF. 1993b. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.Google Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25:329332.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):11271151.Google Scholar
Svensmark, H, Enghoff, MB, Shaviv, NJ, Svensmark, J. 2017. Increased ionization supports growth of aerosols into cloud condensation nuclei. Nature Communications doi: 10.1038/s41467-017-02082-2.Google Scholar
Svensmark, H, Friis-Christensen, E. 1997. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59:12251232.Google Scholar
Sukhodolov, T, Usoskin, I, Rozanov, E, Asvestari, E, Ball, WT, Curran, MAJ, Fischer, H, Kovaltsov, G, Miyake, F, Peter, T, Plummer, C, Schmutz, W, Severi, M, Traversi, R. 2017. Atmospheric impacts of the strongest known solar particle storm of 775AD. Nature Scientific Reports 7:45257. doi: 10.1038/srep45257.Google Scholar
Thomas, BC, Melott, AL, Arkenberg, KR, Snyder, BR. 2013. Terrestrial effects of possible astrophysical sources of an AD 774–775 increase in 14C production. Geophysical Research Letters 40:12371240.Google Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, S, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astronomy and Astrophysics 55:L3. doi: 10.1051/0004-6361/201321080.Google Scholar
van der Plicht, J. 2004. Radiocarbon, the calibration curve and Scythian chronology. In: Scott EM, et al., editors. Impact of the Environment on Human Migration in Eurasia. Amsterdam: Kluwer. p 4561.Google Scholar
van der Plicht, J. 2007. Radiocarbon dating: variations in atmospheric 14C. In: Elias S, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 29232931.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010. BATS: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976979.Google Scholar
Wacker, L, Güttler, D, Goll, J, Hurni, JP, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579.Google Scholar
Wacker, L, Adolphi, F, Bleicher, N, Büntgen, U, Fahrni, S, Freidrich, M, Friedrich, R, Jones, T, Jull, T, Kromer, B, Miyake, F, Muscheler, R, Panyushkina, I, Reinig, F, Sookdeo, A, Synal, H-A, Tegel, W, Westphal, T. 2017. IntCal workshop, 14th International Conference on Accelerator Mass Spectrometry (AMS-14), Ottawa, Canada. Abstract 222.Google Scholar
Wang, FJ, Yu, H, Zou, YC, Da, ZG, Cheng, KS. 2017. A rapid cosmic ray increase in BC 3372–3371 from ancient buried trees in China. Nature Communications 8:1487.Google Scholar
Supplementary material: File

Jull et al. supplementary material

Figure S1 and Tables S1-S2

Download Jull et al. supplementary material(File)
File 3.4 MB