Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-8p2w5 Total loading time: 0.655 Render date: 2022-06-29T16:39:41.788Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

New AMS Dates for Verteba Cave and Stable Isotope Evidence of Human Diet in The Holocene Forest-Steppe, Ukraine

Published online by Cambridge University Press:  02 July 2018

Sarah H Ledogar*
Affiliation:
New York State Museum, Albany, NY, USA Department of Anthropology, University at Albany, Albany, NY, USA Department of Archaeology and Paleoanthropology, University of New England, Armidale, NSW, Australia
Jordan K Karsten
Affiliation:
Department of Religious Studies and Anthropology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
Gwyn D Madden
Affiliation:
Department of Anthropology, Grand Valley State University, Allendale, Michigan, USA
Ryan Schmidt
Affiliation:
School of Archaeology, University College Dublin, Dublin, Ireland
Mykhailo P Sokohatskyi
Affiliation:
Borshchiv Regional Museum of Local Lore, Borshchiv, Ternopil O’blast, Ukraine
Robert S Feranec
Affiliation:
New York State Museum, Albany, NY, USA
*
*Corresponding author. Email: sarah.h.ledogar@gmail.com.

Abstract

Excavations at several locations in Verteba Cave have uncovered a large amount of human skeletal remains in association with faunal bones and Tripolye material culture. We aim to establish radiocarbon (14C) dates for eight sites and to evaluate whether these deposits are singular events, or slow accumulations over time. 14C measurements, along with stable carbon and nitrogen isotope data from human and faunal remains, were collected from 18 specimens. Stable isotope values were used to evaluate human and animal diet, and whether freshwater reservoir effects offset measured dates. We found diets of the sampled species had limited to no influence from freshwater resources. Human diet appears to be dominated by terrestrial plants and herbivores. Four new sites were identified as Eneolithic. Comparisons of dates from top and bottom strata for two sites (7 and 20) reveal coeval dates, and we suggest that these deposits represent discrete events rather than slow continuous use. Lastly, we identified dates from the Mesolithic (8490±45 BP, 8765±30 BP), Iron Age (2505±20 BP), Slavic state era (1315±25 BP), and Medieval Period (585±15 BP), demonstrating periodic use of the cave by humans prior to and after the Eneolithic.

Type
Research Article
Information
Radiocarbon , Volume 61 , Issue 1 , February 2019 , pp. 141 - 158
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agelarakis, AP, Paley, S, Porath, Y, Winick, J. 1998. The Chalcolithic burial cave in Ma’avarot, Israel and its palaeoanthropological implications. International Journal of Osteoarchaeology 8:431443.3.0.CO;2-8>CrossRefGoogle Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431451.CrossRefGoogle Scholar
Angelucci, DE, Boschian, G, Fontanals, M, Pedrotti, A, Verges, JM. 2009. Shepherds and karst: the use of caves and rock–shelters in the Mediterraenan region during the Neolithic. World Archaeology 41(2):191214.CrossRefGoogle Scholar
Anthony, DW. 2007. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. Princeton: Princeton University Press.Google Scholar
Anthony, DW, Jacobs, K. 1994. On subsistence change at the Mesolithic–Neolithic transition. Current Anthropology 35(1):4959.CrossRefGoogle Scholar
Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532547.CrossRefGoogle Scholar
Baird, D, Carruthers, D, Fairbairn, A, Pearson, J. 2011. Ritual in the landscape: evidence from Pinarbasi in the seventh-millennium cal BC Konya Plain. Antiquity 85:380394.CrossRefGoogle Scholar
Beaumont, W, Beverly, R, Southon, JR, Taylor, RE. 2010. Bone preparation at the KCCAMS Laboratory. Nuclear Instruments and Methods in Physics Research B 268(7–8):906909.CrossRefGoogle Scholar
Bergsvik, KA, Skeates, R. 2012. Caves in Context: The Cultural Significance of Caves and Rockshelters in Europe. Oxford: Oxbow Books.Google Scholar
Bickle, P, Hofmann, D, Bentley, RA, Hedges, R, Hamilton, J, Laiginhas, F, Nowell, G, Pearson, DG, Grupe, G, Whittle, A. 2011. Roots of diversity in a Linearbandkeramik community: isotope evidence at Aiterhofen (Bavaria, Germany). Antiquity 85:12431258.CrossRefGoogle Scholar
Bogaard, A, Heaton, THE, Poulton, P, Merbach, I. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34(3):335343.CrossRefGoogle Scholar
Bréhard, S, Beeching, A, Vigne, J-D. 2010. Shepherds, cowherds and site function on middle Neolithic sites of the Rhône valley: an archaezoological approach to the organization of territories and societies. Journal of Anthropological Archaeology 29:179188.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
Cernenko, EV. 1983. The Scythians 700–300 BC. Oxford: Osprey Publishing.Google Scholar
Chernykh, EK. 1982. Eneolit pravoberezhnoi Ukrainy i Moldavii. Eneolit SSSR, Arkheologia SSSR. 166320.Google Scholar
Clark, ID, Fritz, P. 1997. Enrivonmental Isotopes in Hydrogeology. Boca Raton (FL): Lewis Publishers, CRC Press LLC.Google Scholar
Collins, RP, Jones, MB. 1986. The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio 64(2/3):121129.CrossRefGoogle Scholar
Conrad, NJ, Grootes, PM, Smith, FH. 2004. Unexpectedly recent dates for human remains from Vogelherd. Nature 430:198201.CrossRefGoogle Scholar
de Atley, SP. 1980. Radiocarbon dating of ceramic material: progress and prospects. Radiocarbon 22:984993.CrossRefGoogle Scholar
Dergachev, VA. 1978. Vykhvatintsii mogilnik. Kishinev: Shtiintsa.Google Scholar
Ficetola, GF, De Bernardi, F. 2006. Is the European “pond” turtle Emys orbicularis strictly aquatic and carnivorous? Amphibia-Reptilia 27:445447.CrossRefGoogle Scholar
Fraser, RA, Bogaard, A, Heaton, T, Charles, M, Jones, G, Christensen, BT, Halstead, P, Merbach, I, Poulton, PR, Sparkes, D, et al. 2011. Mauring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science 38(10):27902804.CrossRefGoogle Scholar
Fry, B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72(6):22932297.CrossRefGoogle Scholar
Fry, B, Sherr, EB. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27:1347.Google Scholar
Hedges, REM, Reynard, L. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34(8):12401251.CrossRefGoogle Scholar
Jacobs, K. 1993. Human postcranial variation in the Ukrainian Mesolithic–Neolithic. Current Anthropology 34:31–24.CrossRefGoogle Scholar
Johnson, JS, Clark, J, Miller-Antonio, S, Robins, D, Schiffer, MB, Skibo, JM. 1988. Effects of firing temperature on the fate of naturally occurring organic matters in clays. Journal of Archaeological Science 15(4):403414.CrossRefGoogle Scholar
Kadrow, S. 2008. Gender–differentiated burial rites in Europe of the 5th and 4th millennia BC: attempts at traditional archaeological interpretation. Analecta Archaeologica Ressoviensia 3:4982.Google Scholar
Kadrow, S, Pokutta, DA. 2016. The Verteba Cave: a subterranean sanctuary of the Cucuteni–Trypillia Culture in western Ukraine. Journal of Neolithic Archaeology 18:121.Google Scholar
Kadrow, S, Sokhatsky, MP, Tkachuk, TM, Trela, E. 2003. Sprawozdanie ze studiow i wyniki analiz materialow zabytkowych kultury Trypolskiej z Bilcza Zlotego znajdujacych sie w zbiorach Muzeum Archologicznego w Krakowie. Materialy Archeologiczne 34:53143.Google Scholar
Karkanas, P. 2006. Late Neolithic household activities in marginal areas: the micromorphological evidence from the Kouveleiki caves, Peloponnese, Greece. Journal of Archaeological Science 33:16281641.CrossRefGoogle Scholar
Karsten, JK. 2014. A biocultural perspective on the transition of agriculture in Ukraine. University of Albany.Google Scholar
Karsten, JK, Heins, SE, Madden, GD, Sokohatskyi, MP. 2014. The biological implications of the transition to agriculture in Ukraine: a study of enamel hypoplasias. Dental Anthropology 27:1625.CrossRefGoogle Scholar
Karsten, JK, Heins, SE, Madden, GD, Sokohatskyi, MP. 2015a. Dental health and the transition to agriculture in prehistoric Ukraine. European Journal of Archaeology 18(4):562579.CrossRefGoogle Scholar
Karsten, JK, Sokhatskyi, MP, Heins, SE, Madden, GD. 2015b. Bioarkheologicheskiy analiz anthropologicheskogo materiala iz peshchery Verteba. Stratum Plus 2015(2):121144.Google Scholar
Kirkor, H. 1879. Sprawozdanie i wykaz zabytkow zlozonych w Akademii Umiejetnosci z wycieczki archeologiczno-anthropologicznej w roku 1878. Zbior Wiadomosci do Antropologii Krajowej 3:1245.Google Scholar
Klimchouk, A. 1996. Gypsum karst in the western Ukraine. International Journal of Speleology 25(3–4):263278.CrossRefGoogle Scholar
Kovalchuk, O, Gorobets, L. 2015. Fish and birds in the Trypillya economy and culture (5.4–2.7 kya BC): evidence from Ukraine. International Journal of Osteoarchaeology 26(5):867876.CrossRefGoogle Scholar
Kruts, V. 1977. Late Tripolye sites of the Middle Dnieper region. Kiev: Naukova Dumka.Google Scholar
Kruts, V. 1989. On the history of Tripolye culture population in the Southern Bug and Dnieper interfluve. Primeval Archaeology, Materials and Studies. Kiev: Naukova Dumka, p 117132.Google Scholar
Le Mort, F, Rabinovich, R. 2002. Taphonomy and mortuary practices. In: Goren Y, Fabian P, editors. Kissufim Road: a Chalcolithic Mortuary Site. Jerusalem: Israel Antiquities Authority. p 6681.Google Scholar
Ledogar, SH. 2017. A zooarchaeological and geochemical analysis of the faunal remains from the Tripolye site Verteba Cave, Ukraine. Ann Arbor (MI): State University of New York at Albany. p 210.Google Scholar
Lichter, C. 2001. Untersuchungen zu den Bestattungssitten des südeuropäischen Neolithikums und Chalkolithikums. Mainz am Rhein: Verlag Philipp von Zabern.Google Scholar
Lillie, MC. 1998. The Mesolithic–Neolithic transition in Ukraine: new radiocarbon determinations for the cemeteries of the Dnieper Rapids region. Antiquity 72:184188.CrossRefGoogle Scholar
Lillie, MC, Budd, C, Potekhina, I. 2011. Stable isotope analysis of prehistoric populations from the cemeteries of the Middle and Lower Dnieper Basin, Ukraine. Journal of Archaeological Science 38:5768.CrossRefGoogle Scholar
Lillie, MC, Budd, C, Potekhina, I, Hedges, R. 2009. The radiocarbon reservoir effect: new evidence from the cemeteries of the middle and lower Dnieper basin, Ukraine. Journal of Archaeological Science 36:256264.CrossRefGoogle Scholar
Lillie, MC, Jacobs, K. 2006. Stable isotope analysis of 14 individuals from the Mesolithic cemetery of Vasilyeyka II, Dnieper Rapids region, Ukraine. Journal of Archaeological Science 27:965972.CrossRefGoogle Scholar
Lillie, MC, Richards, M. 2000. Stable isotope analysis and dental evidence of diet at the Mesolithic–Neolithic transition in Ukraine. Journal of Archaeological Science 27:965972.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.CrossRefGoogle ScholarPubMed
Lucero, LJ, Gibbs, SA. 2007. The creation and sacrifice of witches in Classic Maya society. In: Tiesler V, Cucina A, editors. New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society. New York: Springer. p 4573.CrossRefGoogle Scholar
Madden, GD, Karsten, JK, Ledogar, SH, Schmidt, R, Sokhatsky, MP. 2018. Violence at Verteba Cave, Ukraine: new insights into Late Neolithic intergroup conflict. International Journal of Osteoarchaeology 28:4453.CrossRefGoogle Scholar
Madden, GD, Weed, K, Karsten, JK. 2009.Trypillian bioarchaeology: The Neolithic in Ukraine. European Association of Archaeologists 15th Annual Meeting. Riva del Garda, Italy. p 251252.Google Scholar
Marinescu-Bîlcu, S. 1981. Tîrpeşti: from Prehistory to History in Eastern Romania. Oxford: British Archaeological Reports.Google Scholar
Miracle, PT, Forenbaher, S. 2005. Neolithic and Bronze-Age herders of Pupicina Cave, Croatia. Journal of Field Archaeology 30(3):255281.CrossRefGoogle Scholar
Movsha, TG. 1960. K voprosu o tripolskikh pogrebeniyakh s obryadom trupopolozheniya. In: Kondruaki EV, Passek TS, Smirnov GD, editors. Materialy i issledovaniya po arkheologi yugo–zapada SSSR i Rumynskoi Narodnoi Respubliki. Kishinev: Kartea Moldoveniaske. p 5976.Google Scholar
Murphy, EM, Schulting, R, Beer, N, Chistov, Y, Kasparov, A, Pshenitsyna, M. 2013. Iron Age pastoral nomadism and agriculture in the eastern Eurasian steppe: implications from dental palaeopathology and stable carbon and nitrogen isotopes. Journal of Archaeological Science 40:25472560.CrossRefGoogle Scholar
Nativ, A, Gopher, A. 2011. The cemetery as a symbol: a reconsideration of Chalcolithic burial caves in the Southern Levant. Cambridge Archaeological Journal 21(2):229245.CrossRefGoogle Scholar
Nikitin, AG. 2011. Bioarchaeological analysis of Bronze Age human remains from the Podillya region of Ukraine. Interdisciplinaria Archaeologica: Natural Sciences in Archaeology 2(1/201):914.CrossRefGoogle Scholar
Nikitin, AG, Sokhatsky, MP, Kovaliukh, MM, Videiko, MY. 2010. Comprehensive site chronology and ancient mitochondrial DNA analysis from Verteba Cave—a Trypillian Culture site of Eneolithic Ukraine. Interdisciplinaria Archaeologica: Natural Sciences in Archaeology 1:918.CrossRefGoogle Scholar
Orschiedt, J. 2012. Cave burials in prehistoric Central Europe. In: Bergsvik KA, Skeates R, editors. Caves in Context: The Cultural Significance of Caves and Rockshelters in Europe. Oxford: Oxbow Books. p 212224.Google Scholar
Ossowski, G. 1891. Sprawozdanie drugie z wycieczki paleoetnologicznej po Galicji. Zbior Wiadomosci do Antropologii Krajowej 15:221.Google Scholar
Ossowski, G. 1892. Sprawozdanie trzecie z wycieczki paleoetnologicznej po Galicji. Zbior Wiadomosci do Antropologii Krajowej 16:6395.Google Scholar
Ossowski, G. 1895. Sprawozdanie czwarte z wycieczki paleoetnologicznej po Galicji. Zbior Wiadomosci do Antropologii Krajowej 18:128.Google Scholar
Pastron, AG, Clewlow, CWJ. 1974. The ethno-archaeology of an unusual Tarahumara burial cave. Man 9(2):308311.Google Scholar
Petrov, VP. 1972. Etnogenez slov’jan: dzherela, etapy rozvytku i problematyka. Kiev: Naukova Dumka.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:119.CrossRefGoogle Scholar
Potekhina, I, Telegin, D. 1995. On the dating of the Ukrainian Mesolithic–Neolithic transition. Current Anthropology 36(5):823826.CrossRefGoogle Scholar
Privat, K, O’Connell, TC, Hedges, REM. 2007. The distinction between freshwater- and terrestrial-based diets: methodological concerns and archaeological applications of sulphur stable isotope analysis. Journal of Archaeological Science 34:11971204.CrossRefGoogle Scholar
Prufer, KM, Dunham, PS. 2009. A Shaman’s burial from an Early Classic cave in the Maya Mountains of Belize, Central America. World Archaeology 41(2):295320.CrossRefGoogle Scholar
Pyankov, V, Ziegler, H, Akhani, H, Deigele, C, Luttge, U. 2010. European plants with C4 photosynthesis: geographical and taxonomic distribution and relations to climate parameters. Botanical Journal of the Linnean Society 163:283304.CrossRefGoogle Scholar
Rassamakin, Y. 2012. Absolute chronology of Ukrainian Tripolye settlements. In: Menotti F, Korvin-Piotrovskiy AG, editors. The Tripolye Culture Giant—Settlements in Ukraine: Formation, Development, and Decline. Oxford: Oxbow Books. p 1969.Google Scholar
Rassamakin, Y, Menotti, F. 2011. Chronological development of the Tripolye Culture giant–settlement of Talianki (Ukraine): 14C dating vs. pottery typology. Radiocarbon 53(4):645657.CrossRefGoogle Scholar
Ryzhov, SN. 2012. Relative chronlogy of the giant-settlement period BII–CI. In: Menotti F, Korvin-Piotrovskiy AG, editors. Tripolye Culture Giant Settlements in Ukraine: Formation, Development and Decline. Oxford: Oxbow Books. p 79115.Google Scholar
Schoeninger, MJ, Moore, KM, Murray, ML, Kingston, JD. 1989. Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry 4(3):281292.CrossRefGoogle Scholar
Šefčáková, A, Thurzo, M. 2006. Holocene human remains from the Dzeravá skala Cave, West Slovakia. Časopis Národního muzea, Řada přírodovědná 175(1–2):3137.Google Scholar
Segal, D, Carmi, I, Gal, Z, Smithline, H, Shalem, D. 1998. Dating a Chalcolithic burial cave in Peqi’in, Upper Galilee, Israel. Radiocarbon 40(2):707712.CrossRefGoogle Scholar
Sokohatskyi, MP. 2001. Arkheologichni rozkopki pechery Verteba na Podilli. In: Lech J, Partyka J, editors. Z archeologii Ukrainy i Jury Ojcowskiej. Ojcow. p 207227.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35(1):215230.CrossRefGoogle Scholar
Tkachuk, TM. 2001. The end of the stage CI and the beginning of the stage CII of the Tripolye culture in the Upper Dneister region (according to material of the Bil’shivtsi settlement). Stratum Plus 2:196217.Google Scholar
Tkachuk, TM. 2013. Painted ceramics. In: Kadrow S, editor. Bilcze Zlote: Materials of the Tripolye Culture from the Werteba and the Ogrod Sites. Krakow. p 29247.Google Scholar
Tomkins, P. 2009. Domesticity by default, ritual, ritualization and cave-use in the Neolithic Aegean. Oxford Journal of Archaeology 28(2):125153.CrossRefGoogle Scholar
van den Brink, ECM. 1998. An index to Chalcolithic mortuary caves in Israel. Israel Exploration Society 48(3/4):165173.Google Scholar
van der Merwe, NJ. 1982. Carbon isotopes, photosynthesis, and archaeology: different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. American Scientist 70(6):596606.Google Scholar
Vinogradova, N. 1983. Tribes of the Dniester-Prut Interfluve in the Prime Period of Tripolye Culture. Kishinev: Shtiintsa.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Weiss-Krejci, E. 2012. Shedding light on dark places. Deposition of the dead in caves and cave–like features in Neolithic and Copper Age Iberia. In: Bergsvik KA, Skeates R, editors. Caves in Context: The Cultural Significance of Caves and Rockshelters in Europe. Oxford: Oxbow Books. p 118137.Google Scholar
Whittle, A. 1996. Europe in the Neolithic: the Creation of New Worlds. Cambridge: Cambridge University Press. p 144211.Google Scholar
Wilkinson, KN, Gasparian, B, Pinhasi, R, Avetisyan, P, Hovsepyan, R, Zardaryan, D, Areshian, GE, Bar-Oz, G, Smith, A. 2012. Areni-1 Cave, Armennia: A Chalcolithic–Early Bronze Age settlement and ritual site in the southern Caucasus. Journal of Field Archaeology 37(1):2033.CrossRefGoogle Scholar
Winter-Livneh, R, Svoray, T, Gilead, I. 2012. Secondary burial cemeteries, visibility, and land tenure: a view from the southern Levant Chalcolithic period. Journal of Anthropological Archaeology 31(4):423438.CrossRefGoogle Scholar
Zbenovich, VG. 1996. The Tripolye Culture: centenary of research. Journal of World Prehistory 10(2):199241.CrossRefGoogle Scholar
Zohary, D, Hopf, M. 2000. Cereals. Domestication of Plants in the Old World. 3rd edition. Oxford: Oxford University Press. p 1691.Google Scholar
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New AMS Dates for Verteba Cave and Stable Isotope Evidence of Human Diet in The Holocene Forest-Steppe, Ukraine
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

New AMS Dates for Verteba Cave and Stable Isotope Evidence of Human Diet in The Holocene Forest-Steppe, Ukraine
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

New AMS Dates for Verteba Cave and Stable Isotope Evidence of Human Diet in The Holocene Forest-Steppe, Ukraine
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *