Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-09-26T07:52:12.242Z Has data issue: false hasContentIssue false

Overview of pretreatment protocols and 14C measurement quality with AMS facilities (SSAMS and LEA) at the Accelerator Mass Spectrometry Laboratory, Lithuania: Insights from intercomparison tests

Published online by Cambridge University Press:  22 September 2025

Justina Šapolaitė*
Affiliation:
Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Laima Kazakevičiūtė-Jakučiūnienė
Affiliation:
Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Inga Garbarienė
Affiliation:
Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Žilvinas Ežerinskis
Affiliation:
Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
*
Corresponding author: Justina Šapolaitė; Email: justina.sapolaite@ftmc.lt

Abstract

This study from the Accelerator Mass Spectrometry Laboratory at the Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania, presents a detailed description of the sample preparation methods employed in the laboratory, with a focus on two AMS systems: a single-stage accelerator mass spectrometer (SSAMS) and a low energy accelerator (LEA). A pivotal aspect of this article is our participation in the GIRI intercomparison test, demonstrating our commitment to precision and accuracy in radiocarbon dating, with the average z-score values of the GIRI test being 0.16 ± 1.66 for SSAMS and –0.04 ± 1.52 for LEA. The outcomes from this participation validate the meticulous sample preparation procedures at Vilnius Accelerator Mass Spectrometry Laboratory and offer significant insights into the efficiency and reliability of SSAMS and LEA systems, contributing to a better understanding of their capabilities in radiocarbon analysis.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

ASTM (2024a) Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis. https://doi.org/10.1520/D6866-24A.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, Vanden Berghe, I and Maquoi, MC (2016) Naturally dyed wool and silk and their atomic C:N ratio for quality control of 14C sample treatment. Radiocarbon 58(1), 5568. https://doi.org/10.1017/RDC.2015.5.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P and Ramsey, CB (2010) Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103112. https://doi.org/10.2458/azujsrc.52.3240.CrossRefGoogle Scholar
Butkus, L, Šapolaitė, J, Garbarienė, I, Garbaras, A, Bučinskas, L, Pabedinskas, A, Remeikis, V and Ežerinskis, Ž (2022) Development of graphitization method for low carbon aerosol filter samples with Automated Graphitization System AGE-3. Applied Radiation and Isotopes 190, 110461. https://doi.org/10.1016/J.APRADISO.2022.110461.CrossRefGoogle ScholarPubMed
DeNiro, MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806809. https://doi.org/10.1038/317806a0.CrossRefGoogle Scholar
Garbarienė, I, Šapolaitė, J, Garbaras, A, Ežerinskis, Ž, Pocevičius, M, Krikščikas, L, Plukis, A and Remeikis, V (2016) Origin Identification of Carbonaceous Aerosol Particles by Carbon Isotope Ratio Analysis. Aerosol and Air Quality Research 16(5), 13561365. https://doi.org/10.4209/aaqr.2015.07.0443.CrossRefGoogle Scholar
Hajdas, I (2008) Radiocarbon dating and its applications in Quaternary studies. E&G Quaternary Science Journal 57(1–2), 224. https://doi.org/10.3285/EG.57.1-2.1.Google Scholar
Hajdas, I, Cristi, C, Bonani, G and Maurer, M (2014) Textiles and Radiocarbon Dating. Radiocarbon 56(2), 637643. https://doi.org/10.2458/56.17757.CrossRefGoogle Scholar
Koch, PL, Tuross, N and Fogel, ML (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24(5), 417429. https://doi.org/10.1006/JASC.1996.0126.CrossRefGoogle Scholar
Longin, R (1971) New method of collagen extraction for radiocarbon dating. Nature 230(5291), 241242. https://doi.org/10.1038/230241a0.CrossRefGoogle ScholarPubMed
Major, I, Dani, J, Kiss, V, Melis, E, Patay, R, Szabó, G, Hubay, K, Túri, M, Futó, I, Huszánk, R, Jull, AJT and Molnár, M (2019a) Adoption and evaluation of a sample pretreatment protocol for radiocarbon dating of cremated bones at HEKAL. Radiocarbon 61(1), 159171. https://doi.org/10.1017/RDC.2018.41.CrossRefGoogle Scholar
Major, I, Futó, I, Dani, J, Cserpák-Laczi, O, Gasparik, M, Jull, AJT and Molnár, M (2019b) Assessment and development of bone preparation for radiocarbon dating at HEKAL. Radiocarbon 61(5), 15511561. https://doi.org/10.1017/rdc.2019.60.CrossRefGoogle Scholar
Mažeika, J, Blaževičius, P, Stančikaité, M and Kisieliené, D (2009a) Dating of the cultural layers from Vilnius Lower Castle, East Lithuania: Implications for chronological attribution and environmental history. Radiocarbon 51(2), 515528. https://doi.org/10.1017/S0033822200055892.CrossRefGoogle Scholar
Mažeika, J, Guobyte, R, Kibirǩtis, G, Petrošius, R, Skuratovič, Ž and Taminskas, J (2009b) The use of carbon-14 and Tritium for peat and water dynamics characterization: Case of Čepkeliai peatland, southeastern Lithuania. Geochronometria 34(1), 4148. https://doi.org/10.2478/V10003-009-0007-3.CrossRefGoogle Scholar
Mažeika, J, Jefanova, O, Petrošius, R, Lujanienė, G and Skuratovič, Ž (2022) 14C and other radionuclides in the environment in the border region of Lithuania before the start of the Belarusian Nuclear Power Plant Operation. Radiocarbon 64(5), 13091322. https://doi.org/10.1017/RDC.2022.20.CrossRefGoogle Scholar
Mažeika, J, Lujaniene, G, Petrošius, R, Oryšaka, N and Ovčinikov, S (2015) Preliminary evaluation of 14C and 36Cl in nuclear waste from Ignalina nuclear power plant decommissioning. Open Chemistry 13(1), 177186. https://doi.org/10.1515/CHEM-2015-0014.CrossRefGoogle Scholar
Mažeika, J, Martma, T, Petrošius, R, Jakimavičiūtė-Maselienė, V and Skuratovič, Ž (2013). Radiocarbon and other environmental isotopes in the groundwater of the sites for a planned new nuclear power plant in Lithuania. Radiocarbon 55(2–3), 951962. https://doi.org/10.1017/S0033822200058100.CrossRefGoogle Scholar
Molnar, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I and Jull, AJT (2013) Status report of the new AMS 14C Sample Preparation Lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3), 665676. https://doi.org/10.2458/azujsrc.55.16394.CrossRefGoogle Scholar
Nemec, M, Wacker, L, Hajdas, I and Gaggeler, H (2010) Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3), 13581370. https://doi.org/10.2458/AZUJSRC.52.3634.CrossRefGoogle Scholar
Prasad, GVR, Noakes, JE, Cherkinsky, A, Culp, R and Dvoracek, D (2013) The New 250kV single stage AMS system at CAIS, University of Georgia: Performance comparison with a 500kV compact Tandem machine. Radiocarbon 55(2), 319324. https://doi.org/10.1017/S0033822200057428.CrossRefGoogle Scholar
Ramsperger, U, De Maria, D, Gautschi, P, Maxeiner, S, Arnold, Müller M, Synal, HA and Wacker, L (2023) LEA—a novel low energy accelerator for 14C dating. Radiocarbon 66(5), 12801288. https://doi.org/10.1017/RDC.2023.85.CrossRefGoogle Scholar
Šapolaitė, J, Ežerinskis, Ž, Butkus, L, Garbarienė, I, Garbaras, A, Kurila, L, Bučinskas, L, Pabedinskas, A and Remeikis, V (2021) Development of an online sulfur trapping system for graphitization of cremated bones with automated graphitization system AGE-3. Nuclear Instruments and Methods in Physics Research B 505, 1723. https://doi.org/10.1016/J.NIMB.2021.08.006.CrossRefGoogle Scholar
Schroeder, JB, Hauser, TM, Norton, GA and Klody, GM (2007) Initial results with low energy single stage AMS. Radiocarbon 46(1), 14. https://doi.org/10.2458/AZUJSRC.46.4237.CrossRefGoogle Scholar
Scott, EM, Naysmith, P and Cook, GT (2017) Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5), 15891596. https://doi.org/10.1017/RDC.2017.12.CrossRefGoogle Scholar
Scott, EM, Naysmith, P and Dunbar, E (2023) Preliminary results from the Glasgow International Radiocarbon Intercomparison (GIRI). Radiocarbon 65(1), 18. https://doi.org/10.1017/RDC.2023.64.Google Scholar
Skog, G (2007) The single stage AMS machine at Lund University: Status report. Nuclear Instruments and Methods in Physics Research B 259(1), 16. https://doi.org/10.1016/j.nimb.2007.01.190.CrossRefGoogle Scholar
Stiner, MC, Kuhn, SL, Weiner, S and Bar-Yosef, O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22(2), 223237. https://doi.org/10.1006/JASC.1995.0024.CrossRefGoogle Scholar
Stuiver, M and Polach, HA (1977) Reporting of 14C data. Radiocarbon 19(3), 355363.10.1017/S0033822200003672CrossRefGoogle Scholar
Synal, HA, Stocker, M and Suter, M (2007) MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1), 713. https://doi.org/10.1016/J.NIMB.2007.01.138.CrossRefGoogle Scholar
Szidat, S, Vogel, E, Gubler, R and Lösch, S (2016) Radiocarbon dating of bones at the LARA Laboratory in Bern, Switzerland. Radiocarbon 58(5), 112. https://doi.org/10.1017/RDC.2016.90.Google Scholar
Taylor, RE (1992) Radiocarbon dating of bone: To collagen and beyond. In: Radiocarbon After Four Decades. p. 375402. https://doi.org/10.1007/978-1-4757-4249-7_25.CrossRefGoogle Scholar
Teetaert, D, Boudin, M, Saverwyns, S and Crombé, P (2017) Food and soot: Organic residues on outer pottery surfaces. Radiocarbon 59(5), 16091621. https://doi.org/10.1017/RDC.2017.25.CrossRefGoogle Scholar
Thompson, M (2022) Assigned values in the GeoPT proficiency testing scheme. Geostandards and Geoanalytical Research 46(1), 3741. https://doi.org/10.1111/GGR.12408.CrossRefGoogle Scholar
Van Klinken, GJ (1999) Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6), 687695. https://doi.org/10.1006/jasc.1998.0385.CrossRefGoogle Scholar
Wacker, L, Fülöp, RH, Hajdas, I, Molnár, M and Rethemeyer, J (2013) A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research B 294:214217. https://doi.org/10.1016/j.nimb.2012.08.030.CrossRefGoogle Scholar
Wacker, L, Němec, M and Bourquin, J (2010a) A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268, 931934. https://doi.org/10.1016/j.nimb.2009.10.067.CrossRefGoogle Scholar
Wacker, L, Christl, M and Synal, HA (2010b) Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268, 976979. https://doi.org/10.1016/J.NIMB.2009.10.078.CrossRefGoogle Scholar
Zazzo, A (2014) Bone and enamel carbonate diagenesis: A radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 168178. https://doi.org/10.1016/j.palaeo.2014.05.006.CrossRefGoogle Scholar
Supplementary material: File

Šapolaitė et al. supplementary material

Šapolaitė et al. supplementary material
Download Šapolaitė et al. supplementary material(File)
File 55.8 KB