Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-30T09:31:49.932Z Has data issue: false hasContentIssue false

ABSORPTION AND DISTRIBUTION OF ULTRATRACE EXOGENOUS 14C UREA IN RATS

Published online by Cambridge University Press:  16 May 2024

Li Wang
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China School of Physics, Hubei University, Wuhan Hubei 430062, China
Hongtao Shen*
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Junsen Tang
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Guofeng Zhang
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Linjie Qi
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Dingxiong Chen
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Kaiyong Wu
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Xinyi Han
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
He Ouyang
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Yun He
Affiliation:
Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
Pucheng Yang
Affiliation:
Guilin Medical University, Guilin 541004, China
Xue Zhang
Affiliation:
Guilin Medical University, Guilin 541004, China
Chunbo Xia
Affiliation:
Guilin Medical University, Guilin 541004, China
*
*Corresponding author. Email: shenht@gxnu.edu.cn

Abstract

The absorption and distribution of radiocarbon-labeled urea at the ultratrace level were investigated with a 14C-AMS biotracer method. The radiopharmaceutical concentrations in the plasma, heart, liver, spleen, lung, kidney, stomach, brain, bladder, muscle, testis, and fat of rats after oral administration of 14C urea at ultratrace doses were determined by AMS, and the concentration-time curves in plasma and tissues and pharmacokinetic distribution data were obtained. This study provides an analytical method for the pharmacokinetic parameters and tissue distribution of exogenous urea in rats at ultratrace doses and explores the feasibility of evaluation and long-term tracking of ultratrace doses of drugs with AMS.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Bennett, CL, Beukens, RP, Clover, MR, et al. 1997. radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198(4316):508510.CrossRefGoogle Scholar
Cheng, P, Burr, GS, Zhou, W, et al. 2019. The deficiency of organic matter 14C dating in Chinese Loess-paleosol sample. Quaternary Geochronology 56:101051.CrossRefGoogle Scholar
D’Souza, RA, Partridge, EA, Roberts, DW, et al. 2007. Distribution of radioactivity and metabolite profiling in tumor and plasma following intravenous administration of a colchicine derivative (14C - ZD6126) to tumor-bearing mice. Xenobiotica 37(3):328 CrossRefGoogle Scholar
Dickerson, AS, Lee, JS, Keshava, C, et al. 2018. Assessment of health effects of exogenous urea: summary and key findings. Current Environmental Health Reports 5(2):205212.CrossRefGoogle ScholarPubMed
FDA, CDER, CBER. 2010. Draft Guidance for Industry: Investigational New Drug Applications (INDs)—Determining Whether Human Research Studies Can Be Conducted Without an IND.Google Scholar
FDA, CDER, CBER. 2010. Guidance for Industry and Researchers: The Radioactive Drug Research Committee: Human Research Without An Investigational New Drug Application.Google Scholar
Juhr, NC, Franke, J. 1987. [Metabolism of C14-labelled urea in conventional, germ-free and specifically associated rats]. Zeitschrift für Versuchstierkunde 29(3-4):157164.Google ScholarPubMed
Juhr, NC, Franke, J. 1990. Metabolism of 14C-labeled urea in conventional and bacteria-free guinea pigs]. Zeitschrift für Versuchstierkunde 33(3):123.Google ScholarPubMed
Jull, AJT, Donahue, DJ, Hatheway, AL. 1986. Production of graphite targets by deposition from CO/H2 for precision accelerator 14C measurements. Radiocarbon 28(2A):191197.CrossRefGoogle Scholar
Kaye, B, Garner, RC, Mauthe, RJ, et al. 1997. A preliminary evaluation of accelerator mass spectrometry in the biomedical field. Journal of Pharmaceutical & Biomedical Analysis 16(3):541.CrossRefGoogle ScholarPubMed
L’Annunziata, M, Kessler, MJ. 1998. Handbook of radioactivity analysis. Academic Press.Google Scholar
Lappin, G, Garner, RC. 2003. Ultra-sensitive detection of radiolabelled drugs and their metabolites using accelerator mass spectrometry. Handbook of Analytical Separations 4(03):331349.CrossRefGoogle Scholar
Lappin, G, Garner, RC. 2005. The use of accelerator mass spectrometry to obtain early human ADME /PK data. Expert Opin Drug Metab Toxicol 1(1) : 2331.CrossRefGoogle ScholarPubMed
Li, Q, Xie, L, Zhang, J, et al. 2008. The distribution pattern of intravenous [14C] artesunate in rat tissues by quantitative whole-body autoradiography and tissue dissection techniques. Journal of Pharmaceutical and Biomedical Analysis 48(3):876884.CrossRefGoogle ScholarPubMed
Li, Z, Conti, PS. 2010. Radiopharmaceutical chemistry for positron emission tomography. Advanced Drug Delivery Reviews 62(11):10311051.CrossRefGoogle ScholarPubMed
Lubritto, C, Rogalla, D, Rubino, M, et al. 2004. Accelerator mass spectrometry at the 4 MV Dynamitron Tandem in Bochum. Nuclear Instruments & Methods in Physics Research 255260.CrossRefGoogle Scholar
Marshall, BJ, Surveyor, I. 1988. Carbon-14 urea breath test for the diagnosis of campylobacter pylori associated gastritis. Journal of Nuclear Medicine 29(1): 11.Google ScholarPubMed
Mary, Pack A, Monica, et al. 2011. A method for measuring methane oxidation rates using lowlevels of 14C-labeled methane and accelerator mass spectrometry. Limnology and Oceanography: Methods 9(6):245260.Google Scholar
Marzaioli, F, Lubritto, C, Battipaglia, et al. 2005. Reconstruction of past CO2 concentration at a natural CO2 vent site using radiocarbon dating of tree rings. Radiocarbon 47(2):257263.CrossRefGoogle Scholar
Nelson, DE, Korteling, RG, Stott, WR. 1977. Carbon-14: Direct Detection at Natural Concentrations. Science 198(4316):507508.CrossRefGoogle ScholarPubMed
Nielsen, ES. 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. Ices Journal of Marine Science 18:117140.CrossRefGoogle Scholar
Nomura, N, Matsumoto, S, et al. 2006. Disposition of exogenous urea and effects of diet in rats. Arzneimittel-Forschung 56(3):258266.Google ScholarPubMed
Orsovszki, G., & Rinyu, L.. (2015). Flame-sealed tube graphitization using zinc as the sole reduction agent: precision improvement of environmicadas 14c measurements on graphite targets. Radiocarbon, 57(05), 979990.CrossRefGoogle Scholar
Park, SH, Dae, HS, Han, JC, et al. 2012. Pharmacokinetics and excretion into expired air of urea, a potential diagnosis reagent of helicobacter pylori infection. Korean Journal of Clinical Pharmacy 22(2):160166.Google Scholar
Partridge, EA, D’Souza, RA, Lenz, EM, et al. 2008. Disposition and metabolism of the colchicine derivative [14C]-zd6126 in rat and dog. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 38(4):399.CrossRefGoogle ScholarPubMed
Rapoport, SI, Fitzhugh, R, Pettigrew, KD, et al. 1982. Drug entry into and distribution within brain and cerebrospinal fluid: [14C]urea pharmacokinetics. American Journal of Physiology Regulatory Integrative & Comparative Physiology 242(3):R339R348.CrossRefGoogle ScholarPubMed
Salehpour, M, Hakansson, K, Possnert, G. 2015. Small sample accelerator mass spectrometry for biomedical applications. Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms 361: 4347.CrossRefGoogle Scholar
Sandhu, P. 2004. Evaluation of microdosing strategies for studies in preclinical drug development: demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range. Drug Metabolism & Disposition 32(11):12541259.CrossRefGoogle Scholar
Schütz, H. 2012. Evaluation of replicate designs for (reference scaled) average bioequivalence according to FDA’s guidances with Phoenix™ WinNonlin® (2012 Pharsight, A Certara Company, Tripos L.P.).Google Scholar
Shen, H, Tang, J, Wang, L, et al. 2022a. New sample preparation line for radiocarbon measurements at the GXNU Laboratory. Radiocarbon 64(6):15011511.CrossRefGoogle Scholar
Shen, H, Shi, S, Tang, J, et al. 2022b. 14C-AMS technology and its applications to an oil field tracer experiment. Radiocarbon 64(5):11591169.CrossRefGoogle Scholar
Slota, PJ, Jull, AJT, Linick, TW, et al. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303306.CrossRefGoogle Scholar
Turteltaub, KW, Felton, JS, Gledhill, BL, et al. 1990. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA. Proceedings of the National Academy of Sciences of the United States of America 87(14):52885292.CrossRefGoogle ScholarPubMed
Turteltaub, KW, Mauthe, RJ, Dingley, KH, et al. 1997. MeIQx-DNA adduct formation in rodent and human tissues at low doses. Mutat Res 376(1–2):243252.CrossRefGoogle ScholarPubMed
Walker, BD, Xu, X. 2019. An improved method for the sealed-tube zinc graphitization of microgram carbon samples and C-14 AMS measurement. Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms 438:5865.CrossRefGoogle Scholar
Weiss, HM, Wirz, B, Schweitzer, A, et al. 2007. ADME investigations of unnatural peptides: distribution of a 14C-labeled β 3-Octaarginine in rats. Chemistry & Biodiversity 4(7):14131437.CrossRefGoogle ScholarPubMed
Young, G, Ellis, W, Ayrton, J, et al. 2008. Accelerator mass spectrometry (AMS): recent experience of its use in a clinical study and the potential future of the technique. Xenobiotica 31(8–9):619632.CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 498.5 KB