Skip to main content
×
×
Home

Annual variations of 14C concentration in the tree rings in the vicinity of Ignalina Nuclear Power Plant

  • Žilvinas Ežerinskis (a1), Justina Šapolaitė (a1), Algirdas Pabedinskas (a1), Laurynas Juodis (a1), Andrius Garbaras (a1), Evaldas Maceika (a1), Rūta Druteikienė (a1), Darius Lukauskas (a2) and Vidmantas Remeikis (a1)...
Abstract

In this paper we analyze the radiocarbon (14C) concentration changes over the whole operational period of the Ignalina Nuclear Power Plant (INPP) including the post-shutdown decommissioning. Environmental samples from the vicinity of the INPP and a rural area as background of pine tree rings were analyzed with the single stage accelerator mass spectrometer (SSAMS). The analysis shows the local influence of the INPP from 3 to 7 pMC. The whole time span from 1983 to 2015 is divided into three periods representing the early and late operational and post-shutdown stages of the INPP with different 14C profiles in analyzed samples. The influence of the maintenance of the INPP and radioactive waste management activities are indicated and discussed.

Copyright
Corresponding author
*Corresponding author. Email: zilvinas.ezerinskis@ftmc.lt.
Footnotes
Hide All

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

Footnotes
References
Hide All
Almenas, K, Kalietka, A, Ushpuras, E. 1994. Ignalina RBMK-1500.
Gaiko, VB, Korablev, NA, Solov’ev, EN, Trosheva, TI, Shamov, VP, Umanets, MP, Shcherbina, VG. 1985. Discharge of 14C by nuclear power stations with RBMK-1000 reactors. Soviet Atomic Energy 59:703–5.
Graven, HD, Gruber, N. 2011. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2 . Atmospheric Chemistry and Physics 11:12339–49.
Ignalina NPP (Ignalina Nuclear Power Plant). 1999. Nuclear safety reports.
Isogai, K, Cook, G, Anderson, R. 2002. Reconstructing the history of 14C discharges from Sellafield: Part 1—atmospheric discharges. Journal of Environmental Radioactivity 59:207222.
Janovics, R, Kern, Z, Güttler, D, Wacker, L, Barnabás, I, Molnár, M. 2013. Radiocarbon Impact on a Nearby Tree of a Light-Water VVER-Type Nuclear Power Plant, Paks, Hungary. Radiocarbon 55(2):826832.
Ješkovský, M, Povinec, PP, Steier, P, Šivo, A, Richtáriková, M, Golser, R. 2015. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique. Nuclear Instruments and Methods in Physics Research B 361:129132.
Koarashi, J, Fujita, H, Nagaoka, M. 2016. Atmospheric discharge of 14C from the Tokai reprocessing plant: comprehensive chronology and environmental impact assessment. Journal of Nuclear Science and Technology 53:546553.
Konstantinov, EA, Korablev, NA, Solov’ev, EN, Shamov, VP, Fedorov, VL, Litvinov, AM, Olariu, A, Zakaria, M, Rääf, C, Mattsson, S. 1989. 14C emission from RBMK-1500 reactors and features determining it. Soviet Atomic Energy 66:77–9.
Kunz, C. 1985. Carbon-14 discharge at three light-water reactors. Health Physics 49:2535.
Levin, I, Kromer, B, Barabas, M, Munnich, KO. 1988. Environmental distribution and long-term dispersion of reactor 14CO2 around two German nuclear power plants. Health Physics 54:149156.
Magnusson, Å, Stenström, K, Skog, G, Adliene, D, Adlys, G, Hellborg, R, Olariu, A, Zakaria, M, Rääf, C, Mattsson, S. 2004. Levels of 14C in the terrestrial environment in the vicinity of two European nuclear power plants. Radiocarbon 46(2):863868.
Magnusson, Å, Stenström, K, Skog, G, Adliene, D, Adlys, G, Dias, C, Rääf, C, Zakaria, M, Mattsson, S. 2007. Carbon-14 levels in the vicinity of the Lithuanian nuclear power plant Ignalina. Nuclear Instruments and Methods in Physics Research B 259:530555.
Mazeika, J, Petrosius, R, Pukiene, R. 2007. Carbon-14 in tree rings in the vicinity of Ignalina Nuclear Power Plant, Lithuania. Geochronometria 28:3137.
Mazeika, J, Petrosius, R, Pukiene, R. 2008. Carbon-14 in tree rings and other terrestrial samples in the vicinity of Ignalina Nuclear Power Plant, Lithuania. Journal of Environmental Radioactivity 99:238247.
Mazeika, J. 2010. Carbon-14 in terrestrial and aquatic environment of Ignalina nuclear power plant: sources of production, releases and dose estimates. In: Tsvetjov P, editor. Nuclear Power. Intech.
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3):1358–70.
Plukis, A, Remeikis, V, Juodis, L, Plukienė, R, Lukauskas, D, Gudelis, A. 2008. Analysis of nuclide content in Ignalina NPP radioactive waste streams. Lithuanian Journal of Physics 48.
Povinec, P, Chudý, M, Šivo, A. 1986. Anthropogenic radiocarbon: past, present and future. Radiocarbon 28(2A):668672.
Povinec, P, Šivo, A, Ješkovský, M, Svetlik, I, Richtáriková, M, Kaizer, J. 2015. Radiocarbon in the atmosphere of the Žlkovce monitoring station of the Bohunice NPP: 25 years of continuous monthly measurements. Radiocarbon 57(3):355362.
Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425430.
Remeikis, V, Juodis, L, Plukis, A, Vycinas, L, Rozkov, A, Jasiulionis, R. 2012. Indirect assessment of 135Cs activity in the ventilation system of the Ignalina NPP RBMK-1500 reactor. Nuclear Engineering and Design 242:420424.
Stenström, K, Erlandsson, B, Mattsson, S, Thornberg, C, Hellborg, R, Kiisk, M. 2000. 14 C Emission from Swedish Nuclear Power Plants and its Effect on the 14 C Levels in the Environment. Report.
Stenstrom, K, Skog, G, Thornberg, C, Erlandsson, B, Hellborg, R, Mattsson, S, Persson, P. 1997. 14C levels in the vicinity of two Swedish nuclear power plants and at two “clean-air” sites in southernmost Sweden. Radiocarbon 40(1):433–8.
Stuiver, M. 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon 25(2):793–5.
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.
Svetlik, I, Fejgl, M, Tomaskova, L, Turek, K, Michalek, V. 2012. 14C studies in the vicinity of the Czech NPPs. Journal of Radioanalytical and Nuclear Chemistry 291:689695.
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly. United Nations.
Veres, M, Hertelendi, E, Uchrin, G, Csaba, E, Barnabás, I, Ormai, P, Volent, G, Futó, I. 1995. Concentration of radiocarbon and its chemical forms in gaseous effluents, environmental air, nuclear waste and primary water of a pressurized water reactor power plant in Hungary. Radiocarbon 37(2):497504.
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268:931–4.
Wang, Z, Xiang, Y, Guo, Q. 2012. 14C levels in tree rings located near Qinshan nuclear power plant, China. Radiocarbon 54(2):195202.
Xu, S, Cook, GT, Cresswell, AJ, Dunbar, E, Freeman, SPHT, Hastie, H, Hou, X, Jacobsson, P, Naysmith, P, Sanderson, DCW, Tripney, BG, Yamaguchi, K. 2016. 14C levels in the vicinity of the Fukushima Dai-ichi Nuclear Power Plant prior to the 2011 accident. Journal of Environmental Radioactivity 157:9096.
Yim, M-S, Caron, F. 2006. Life cycle and management of carbon-14 from nuclear power generation. Progress in Nuclear Energy 48:236.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between 2nd July 2018 - 15th August 2018. This data will be updated every 24 hours.