Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T13:53:52.763Z Has data issue: false hasContentIssue false

Assessing Groundwater Age in Confined Aquifers from the Central Pampean Plain of Cordoba, Argentina

Published online by Cambridge University Press:  19 August 2016

Marina Luciana Maldonado*
Affiliation:
Departamento de Geología, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, Río Cuarto, Córdoba, Argentina CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
Mónica Teresa Blarasin
Affiliation:
Departamento de Geología, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, Río Cuarto, Córdoba, Argentina
Adriana Edith Cabrera
Affiliation:
Departamento de Geología, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, Río Cuarto, Córdoba, Argentina
Héctor Osvaldo Panarello
Affiliation:
Instituto de Geocronología y Geología Isotópica (INGEIS CONICET-UBA), Pabellón INGEIS, Ciudad Universitaria (1428), Buenos Aires, Argentina
Cristina Dapeña
Affiliation:
Instituto de Geocronología y Geología Isotópica (INGEIS CONICET-UBA), Pabellón INGEIS, Ciudad Universitaria (1428), Buenos Aires, Argentina
*
*Corresponding author. Email: lmaldonado@exa.unrc.edu.ar.

Abstract

In Córdoba Province, Argentina, the population uses groundwater from confined aquifer systems (CASs) for different activities. Therefore, it is necessary to carry out comprehensive studies in order to plan more sustainable use considering that groundwater renewal times can be of several thousands of years. The objective of this research is to evaluate groundwater age in confined aquifers based on hydraulic and isotopic methods. The CASs present variable extension, are multilayered and formed by thin (4–6 m) sand-pebble lenses, and are linked to Neogene fluvial paleosystems. These layers are situated at different depths (120–400 m) and interbedded with thick clay strata. The interpretations made from 2H, 18O, and 3H results and hydraulic calculations suggest that the groundwater is old. Furthermore, an age gradient was observed that increases with depth and flow direction. The 14C ages obtained for the CASs labeled A2, C, and D were 3.6–1.1 ka BP, 10.8 ka BP, and 46.0–40.5 ka BP, respectively. These results indicate that A2 and C contain groundwater recharged during Holocene cold periods, between the Little Ice Age and the ending of the Holocene Climatic Optimum and during the last glaciation. The D CAS contains paleowater that was recharged during the Pleistocene.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Wastewater, 21st edition. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Foundation.Google Scholar
Blarasin, M, Cabrera, A. 2005. Aguas subterráneas: hidrolitología, hidrodinámica e hidrogeoquímica regional. In: Aguas superficiales y subterráneas en el Sur de Córdoba: una perspectiva geoambiental. UNRC. Río Cuarto, Argentina. p 8190.Google Scholar
Blarasin, M, Cabrera, A, Matteoda, E. 2014. Aguas subterráneas de la provincia de Córdoba. Río Cuarto, Argentina: UNRC. 147 p. https://www.unrc.edu.ar/unrc/comunicacion/editorial/repositorio/978-987-688-091-6.pdf.Google Scholar
Cabrera, A, Blarasin, M, Matteoda, E. 2010. Análisis hidrodinámico, geoquímico e isotópico de base para la evaluación de sistemas hidrotermales de baja temperatura en la llanura cordobesa (Argentina). Boletín Geológico y Minero 121(4):387400.Google Scholar
Cabrera, A, Blarasin, M, Dapeña, C, Maldonado, L. 2013. Composición físico-química e isotópica de precipitaciones del Sur de Cba. Estac. Río Cuarto-Red Nacional de Colectores. In: Agua Subterránea Recurso Estratégico Volume 2. La Plata, Argentina: EdULP. p 3542.Google Scholar
Clark, I. 2015. Groundwater Geochemistry and Isotopes. Boca Raton: CRC Press. 456 p.Google Scholar
Cook, P, Böhlke, J. 2000. Determining timescales for groundwater flow and solute transport. In: Cook P, Herczeg A, editors. Environmental Tracers in Subsurface Hydrology. London: Kluwer. p 130.CrossRefGoogle Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12:133149.CrossRefGoogle Scholar
Custodio, E, Llamas, M. 1996. Hidrología subterránea Volume 2. Barcelona: Ed. Omega.Google Scholar
Dapeña, C, Panarello, HO, Cerne, B, González, M, Sanchez-Coyllo, O. 2005. Contribución preliminar a la interpretación del origen de las lluvias en el Norte de Argentina. II Seminario Hispano Latinoamericano sobre Temas actuales de Hidrología Subterránea. Actas. p 3746.Google Scholar
Degiovanni, S. 2005. Geomorfología regional. In: Aguas superficiales y subterráneas en el Sur de Cordoba: una perspectiva geoambiental. Río Cuarto, Argentina: UNRC. p 1925.Google Scholar
Giuliano Albo, MJ, Blarasin, M, Panarello, H. 2015. Evaluación de la geoquímica e isótopos del nitrato en el acuífero libre de una llanura con actividad agropecuaria, Córdoba, Argentina. Revista Académica de la FI-UADY 19(1):2438.Google Scholar
González, M, Dapeña, C, Cerne, B, Sanchez-Coyllo, O, Freitas, S, Silva Dias, P, Panarello, H. 2009. Verification of the geographical origin of modeled air-mass trajectories by means of the isotope composition of rainwater during the SALLJEX experiment. Environmental Fluid Mechanism 9(4):389407.Google Scholar
Gonfiantini, R. 1978. Standards for stable isotope measurements in natural compounds. Nature 271(5645):534536.Google Scholar
IAEA. 1992. Statistical Treatment of Data on Environmental Isotopes in Precipitation . Technical Reports Series N° 331. Vienna: IAEA. 784 p.Google Scholar
IAEA/GNIP. 2014. Precipitation Sampling Guide (V2.02). Vienna: IAEA.Google Scholar
Kazemi, G, Lehr, J, Perrochet, P. 2006. Groundwater Age. Hoboken: Wiley.Google Scholar
Lis, G, Wassenaar, L, Hendry, M. 2008. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry 80(1):287293.CrossRefGoogle ScholarPubMed
Maldonado, L, Cabrera, A, Blarasin, M, Dapeña, C, Panarello, H. 2015. Geochemistry and age of groundwater in confined aquifers from Argentina: the Chacopampeana plain. (IAEA-CN-225-140). In: International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers. Book of Extended Synopses. Vienna: IAEA. p 9093.Google Scholar
McCallum, J, Cook, P, Simmons, C. 2014a. Limitations of the use of environmental tracers to infer groundwater age. Groundwater 53(1):5670.CrossRefGoogle ScholarPubMed
McCallum, J, Cook, P, Simmons, C, Werner, A. 2014b. Bias of apparent tracer ages in heterogeneous environments. Groundwater 52(2):239250.CrossRefGoogle ScholarPubMed
Pearson, F. 1965. Use of 13C/12C ratios to correct radiocarbon ages of materials initially diluted by limestone. In: Proceedings of the International Conference on Radiocarbon and Tritium Dating. Pullman: Washington State University. p 357368.Google Scholar
Pérez, M, Tujchneider, O, Paris, M, D’Elia, M. 2014. Estimacion de la conductividad hidráulica a partir de datos granulométricos (T10-3). In: Martino R, Lira R, Guereschi A, Baldo E, Franzese J, Krohling D, Manassero M, Ortega G, Pinotti L, editors. Actas de XIX Congreso Geológico Argentino. Córdoba, Argentina. 2 p.Google Scholar
Purtschert, R. 2008. Timescales and tracers. In: Edmunds W, Shand P, editors. Natural Groundwater Quality. Oxford: Blackwell. p 91108.CrossRefGoogle Scholar
Russo, A, Ferello, R, Chebli, G. 1979. Geología y estratigrafía de la llanura Chaco Pampeana. In: II Simposio de Geología Regional Argentina. Cordoba: Academia Nacional de Ciencias Volume 1. p 139183.Google Scholar
Salem, O, Visser, J, Dray, M, Gonfiantini, R. 1980. Groundwater flow patterns in the Western Lybiam Arab Jamahiriya evaluated from isotope data. In: Investigations with Isotope Techniques. Vienna: IAEA. p 165180.Google Scholar
Schafmeister, M. 2006. What grains can tell on Darcy velocity? International Symposium Aquifers Systems Management. Dijon, France: Communication DARCY-126. CD ROM edition.Google Scholar
Tamers, M. 1975. Validity of radiocarbon dates on groundwater. Geophysical Survey 2:217239.CrossRefGoogle Scholar
Turnadge, C, Smerdon, B. 2014. A review of methods for modelling environmental tracers in groundwater: advantages of tracer concentration simulation. Journal of Hydrology 519:36743689.Google Scholar
Waugh, D, Hall, T, Haine, T. 2003. Relationships among tracer ages. Journal of Geophysical Research 108(C5):116.Google Scholar