Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T15:36:17.648Z Has data issue: false hasContentIssue false

ATMOSPHERIC CO2 CARBON ISOTOPE COMPOSITION IN URBAN AND CLEAN AREAS OF THE NORTHERN ADRIATIC COAST OF CROATIA

Published online by Cambridge University Press:  11 September 2023

Andreja Sironić
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
Emma Hess
Affiliation:
Department of Physics (student), University of Rijeka, Rijeka, Croatia,
Jadranka Barešić*
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
Tjaša Kanduč
Affiliation:
Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
Damir Borković
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
Ines Krajcar Bronić
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
*
*Corresponding author. Email: jbaresic@irb.hr

Abstract

Over the course of one year (2021), we monitored the carbon isotope composition of atmospheric CO2 at three locations in Croatia: the Adriatic port city of Rijeka (Cfa climate) and at two rural sites: Gornje Jelenje (Cfb climate) in the vicinity of a main road and clean-air site Parg (Dfb climate). Carbon isotope composition at all sites shows seasonal variation, ranging from –41.3 to 25.2‰ for Δ14C and from –13.1 to –11.3‰ for δ13C. Rijeka systematically has the lowest and Parg the highest Δ14C, and δ13C at the sites are not statistically different one from another. The Δ14C of leaves of deciduous trees reflect the trend of atmospheric Δ14C. Based on the assumption that the investigated area is under the influence of two main sources of CO2: fossil and natural (sea exchange, biosphere, and undisturbed – clean air atmospheric component) the approximate share of fossil CO2 in total atmospheric CO2 has been estimated for Rijeka (2.1 ± 1.3%) and Gornje Jelenje (1.0 ± 0.9%). Comparison of our results with the data from European CO2 sampling stations indicates strong influence of CO2 from sea and biosphere. Backward trajectories indicate a possibility of Δ14CCO2 contribution from distant EU nuclear power plants, but movement of air masses should be considered in more detail to confirm this.

Type
Conference Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Beck, HE, Zimmermann, NE, McVicar, TR, Vergopolan, N, Berg, A, Wood, EF. 2018. Data descriptor: present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5:180214. doi: 10.1038/sdata.2018.214 CrossRefGoogle Scholar
Becker, M, Andersen, N, Erlenkeuser, H, Humphreys, MP, Tanhua, T, Körtzinger, A. 2016. An internally consistent dataset of 13C-DIC in the North Atlantic Ocean – NAC13v1. Earth System Science Data 8:559–70. doi: 10.5194/essd-8-559-2016 CrossRefGoogle Scholar
CBS (Croatian Bureau of Statistics). 2022. https://podaci.dzs.hr/en/statistics/tourism/. Accessed Dec. 14, 2022.Google Scholar
Channell, JET, Hodell, DA, Crowhurst, SJ, Skinner, LC, Muscheler, R. 2018. Relative paleointensity (RPI) in the latest Pleistocene (10–45 ka) and implications for deglacial atmospheric radiocarbon. Quaternaty Science Reviews 191:5772.CrossRefGoogle Scholar
Cherkinsky, AE, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the Center for Applied Isotope Studies, Universiy of Georgia. Nuclear Instruments and Methods in Physics Research B 268 (7–8):867–70.CrossRefGoogle Scholar
CMHS (Croatian Meteorological and Hydrological Service). 2022. Data obtained Dec. 6, 2022.Google Scholar
Coplen, TB. 1996. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio dana. Geochimica et Cosmochimica Acta 60(17):33593360.CrossRefGoogle Scholar
Dietzel, M. 1997. Hydrogeochemische und isotopenchemische Prozesse bei der Aufloesung von Karbonatgestein und bei der Abscheidung von Calcit. In: Geochemie und Umwelt. Berlin: Springer-Verlag. p. 381393.CrossRefGoogle Scholar
Dutta, K, Bhushan, R, Somayajulu, BLK, Rastogi, N. 2006. Inter-annual variation in atmospheric Δ14C over the Northern Indian Ocean. Atmospheric Environment 40(24):45014512.CrossRefGoogle Scholar
Emmenegger, L, Leuenberger, M, Steinbacher, M. 2022. ICOS ATC/CAL 14C Release, Jungfraujoch (5.0 m), 2016-01-04–2021-06-13, ICOS RI, https://hdl.handle.net/11676/plRnhjjPPT-nej6j13nh63rI. Accessed Dec. 17, 2022.Google Scholar
Faivre, S, Bakran-Petricioli, T, Barešić, J, Horvatinčić, N. 2015. New data on the marine radiocarbon reservoir effect in the Eastern Adriatic based on pre-bomb marine organisms from the intertidal zone and shallow sea. Radiocarbon 57(4):527538.CrossRefGoogle Scholar
Fallon, SJ, Guilderson, TP, Caldeira, K. 2003. Carbon isotope constraints on vertical mixing and air-sea CO2 exchange. Geophysical Research Letters 30:2289. doi: 10.1029/2003GL018049 CrossRefGoogle Scholar
Gao, P, Liping, Z, Kexin, L, Xiaomei, X. 2019. Radiocarbon in the maritime air and sea surface water of the South China sea. Radiocarbon 61(2):461472. doi: 10.1017/RDC.2018.100 CrossRefGoogle Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117(D02303). doi: 10.1029/2011JD016535.CrossRefGoogle Scholar
Graven, HD, Keeling, RF, Rogelj, J. 2020. Changes to carbon isotopes in atmospheric CO2 over the Industrial Era and into the future. Global Biogeochemical Cycles 34(11):e2019GB006170. doi: 10.1029/2019GB006170 CrossRefGoogle ScholarPubMed
Guilderson, TP, Schrag, DP, Druffel, ERM, Reimer, RW. 2021. Postbomb subtropical North Pacific surface water radiocarbon history. Journal of Geophysical Research: Oceans 126. e2020JC016881. doi: 10.1029/2020JC016881 CrossRefGoogle Scholar
Hatakka, J. 2022. ICOS ATC/CAL 14C Release, Pallas (12.0 m), 2017-12-14–2021-11-10, ICOS RI. https://hdl.handle.net/11676/FgmSRF_tny15D_apTlggM30r Google Scholar
Heaton, TJ, Bard, E, Bronk Ramsey, C, Butzin, M, Köhler, P, Muscheler, R, Reimer, PJ, Wacker, L. 2021. Radiocarbon: a key tracer for studying the Earth’s dynamo, climate system, carbon cycle and Sun. Science 374:eabd7096. doi: 10.1126/science.abd7096 CrossRefGoogle ScholarPubMed
Heliasz, M, Biermann, T. 2022. ICOS ATC/CAL 14C Release, Hyltemossa (150.0 m), 2015-09-23–2021-11-10, ICOS RI. https://hdl.handle.net/11676/7mdO4oo6IOOzm2VyfYdVCxgP Google Scholar
Horvatinčić, N, Barešić, J, Krajcar Bronić, I, Obelić, B. 2004. Measurement of low 14C activities in a liquid scintillation counter in the Zagreb Radiocarbon Laboratory. Radiocarbon 46(1):105116.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
Hua, Q, Turnbull, J, Santos, G, Rakowski, A, RS, De Pol-Holz, R, Hammer, S, Lehman, SJ, Levin, I, Miller, JB, Palmer, JG, Turney, CSM. 2022. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64(4):723745. doi: 10.1017/RDC.2021.95 CrossRefGoogle Scholar
Kanduč, T. 2015. Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin. Geologija 58(1):3546. doi: 10.5474/geologija.2015.002 CrossRefGoogle Scholar
Kanduč, T, Sedlar, J, Novak, R, Zadnik, I, Jamnikar, S, Verbovšek, T, Grassa, F, Rošer, J. 2021. Exploring the 2013-2018 degassing mechanism from the Pesje and Preloge excavation fields in the Velenje Coal basin, Slovenia: insights from molecular composition and stable isotopes. Isotopes in Environmental and Health Studies 57(6):585609.CrossRefGoogle ScholarPubMed
Keeling, CD, Piper, SC, Bacastow, RB, Wahlen, M, Whorf, TP, Heimann, M, Meijer, HA. 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer, JR, Cerling, TE, Dearing, MD, editors. A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. New York: Springer Verlag. p. 83113.Google Scholar
Keeling, RF, Graven, HD. 2021. Insights from time series of atmospheric carbon dioxide and related tracers. Annual Review of Environment and Resources 46:85110. doi: 10.1146/annurev-environ-012220-125406.CrossRefGoogle Scholar
Kontul’, I, Svetlik, I, Povinec, PP, Pachnerova Brabcova, K, Molnár, M. 2020. Radiocarbon in tree rings from a clean air region in Slovakia. Journal of Environmental Radioactivity 218:106237. doi.org/10.1016/j.jenvrad.2020.106237 CrossRefGoogle ScholarPubMed
Krajcar Bronić, I, Breznik, B, Volčanšek, A, Barešić, B, Borković, D, Sironić, A, Horvatinčić, A, Obelić, B, Lovrenčić Mikelić, I. 14C activity in the atmosphere and biological samples in the vicinity of the Krško nuclear power plant – 10 years of experience. In: Radolić V, Poje Sovilj M, Krajcar Bronić I, ed. Proceedings of the 11th symposium of the Croatian Radiation Protection Association (CRPA), April 5–7, 2017, Osijek, Croatia; Zagreb CRPA; 2017. p. 231–237. In Croatian with English abstract.Google Scholar
Krajcar Bronić, I, Barešić, J, Borković, D, Sironić, A, Lovrenčić Mikelić, I, Vreča, P. 2020. Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water 12:226. doi: 10.3390/w12010226.CrossRefGoogle Scholar
Krajcar Bronić, I, Sironić, A, Barešić, J. 2023. Validation of carbonization as a part of benzene synthesis for radiocarbon measurement. Radiation Physics and Chemistry 204:110721. doi: 10.1016/j.radphyschem.2022.110721 CrossRefGoogle Scholar
Krajcar Bronić, I, Vreča, P, Horvatinčić, N, Barešić, J, Obelić, B. 2006. Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Archives of Industrial Hygiene and Toxicology 57:2329.Google ScholarPubMed
Kubistin, D, Plaß-Dülmer, C, Arnold, S, Kneuer, T, Lindauer, M, Müller-Williams, J. 2022a. ICOS ATC/CAL 14C Release, Steinkimmen (252.0 m), 2019-07-13–2022-01-30, ICOS RI. https://hdl.handle.net/11676/_szD6xqYJD6folY4JFGooV5C Google Scholar
Kubistin, D, Plaß-Dülmer, C, Arnold, S, Kneuer, T, Lindauer, M, Müller-Williams, J, Schumacher, M. 2022b. ICOS ATC/CAL 14C Release, Karlsruhe (200.0 m), 2018-02-01–2021-09-20, ICOS RI. https://hdl.handle.net/11676/-VQTSnP6A5kOF8pgILElKsiA Google Scholar
Kutchera, W. 2022. The versatile uses of the 14C bomb peak. Radiocarbon 64:12951308. doi: 10.1017/RDC.2022.13 CrossRefGoogle Scholar
Levin, I, Hammer, S. 2021. Supplementary data to Levin et al. (2021), Radiocarbon in Global Tropospheric Carbon Dioxide. https://doi.org/10.18160/K6P6-WBH5. Accessed Dec. 15, 2022.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211216. doi: 10.1016/j.scitotenv.2007.10.019 CrossRefGoogle ScholarPubMed
Levin, I, Hammer, S, Kromer, B, Preunkert, S, Weller, R, Worthy, DE. 2022. Radiocarbon in global tropospheric carbon dioxide. Radiocarbon 64(4):781791. doi: 10.1017/RDC.2021.102 CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuels CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194. doi: 10.1029/2003GL018477 CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646. doi: 10.1111/j.1600-0889.2009.00446.x CrossRefGoogle Scholar
Longinelli, A, Giglio, F, Langone, L, Moggio, L, Ori, C, Selmo, E, Sgavetti, M. 2012. Atmospheric CO2 concentrations and δ13C values between New Zealand and Antarctica, 1998 to 2010: some puzzling results. Tellus B: Chemical and Physical Meteorology 64(1):17472. doi: 10.3402/tellusb.v64i0.17472 CrossRefGoogle Scholar
Major, I, Haszpra, L, Rinyu, L, Futó, I, Bihari, A, Hammer, S, Jull, AJT, Molnár, M. 2018. Temporal variation of atmospheric fossil and modern CO2 excess at a Central European rural tower station between 2008 and 2014. Radiocarbon 60(5):12851299. doi: 10.1017/RDC.2018.79 CrossRefGoogle Scholar
Marek, M, Vítková, G, Komínková, K. 2022. ICOS ATC/CAL 14C Release, Křešín u Pacova (250.0 m), 2017-03-29–2022-01-19, ICOS RI. https://hdl.handle.net/11676/clkf93Q6SDcNBwpXVzwpOwaO Google Scholar
Marklund, P, Ottosson-Löfvenius, M, Smith, P. 2022. ICOS ATC/CAL 14C Release, Svartberget (150.0 m), 2016-02-09–2021-09-29, ICOS RI. https://hdl.handle.net/11676/v_0FrRLGoYWWMB0to2IaGV4g accessed December 17, 2022.Google Scholar
McDonald, L, Chivall, D, Miles, D, Bronk Ramsey, C. 2019. Seasonal variations in the 14C content of tree rings: influences on radiocarbon calibration and single-year curve construction. Radiocarbon 61(1):185194. doi: 10.1017/RDC.2018.64 CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, et al. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6:8611 CrossRefGoogle ScholarPubMed
Menviel, L, Mouchet, A, Meissner, KJ, Joos, F, England, MH. 2015, Impact of oceanic circulation changes on atmospheric δ13CO2 . Global Biogeochemical Cycles 29:19441961. doi: 10.1002/2015GB005207 CrossRefGoogle Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240242.CrossRefGoogle ScholarPubMed
Molnár, M, Major, I, Haszpra, L, Svetlik, I, Svingor, É, Veres, M. 2010. Fossil fuel CO2 estimation by atmospheric 14C measurement and CO2 mixing ratios in the city of Debrecen, Hungary. Journal of Radioanalytical and Nuclear Chemistry 286:471476. doi: 10.1007/s10967-010-0791-2 CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Muscheler, R, Beer, J, Kubik, PW, Synal, H-A. 2005. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews 24:18491860.CrossRefGoogle Scholar
NOAA HYSPLIT. 2023. https://www.ready.noaa.gov/hypub-bin/trajasrc.pl. Accessed May 9, 2023.Google Scholar
NOAA – GML. 2023. https://gml.noaa.gov/dv/site/. Accessed April 25, 2023.Google Scholar
Nydal, R, Lövseth, K. 1965. Distribution of radiocarbon from nuclear tests. Nature 206:10291031.CrossRefGoogle ScholarPubMed
Pazdur, A, Nakamura, T, Pawelczyk, S, Pawlyta, J, Piotrowska, N, Rakowski, A, Sensula, B, Szczepanek, M. 2007. Carbon isotopes in tree rings: climate and the Suess effect interferences in the last 400 years. Radiocarbon 49(2):775788.CrossRefGoogle Scholar
Peel, MC, Finlyanson, BL, McMahon, TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth System Science 11:16331644.CrossRefGoogle Scholar
Peharda, M, Sironić, A, Markulin, K, Jozić, S, Borković, D, Andersson, C. 2019. The bivalve glycymeris pilosa as an archive of 14C in the Mediterranean Sea. Radiocarbon 61(2):599613. doi: 10.1017/RDC.2018.146 CrossRefGoogle Scholar
Piotrowska, N, Pazdur, A, Pawełczyk, S, Rakowski, AZ, Sensuła, B, Tudyka, K. 2019. Human activity recorded in carbon isotopic composition of atmospheric CO2 in Gliwice urban area and surroundings (southern Poland) in the years 2011–2013. Radiocarbon 62(1):141–56. doi: 10.1017/RDC.2019.92 CrossRefGoogle Scholar
Rakowski, AZ, Kuc, T, Nakamura, T, Pazdur, A. 2005. Radiocarbon concentration in urban area. Geochronometria 24:6368.Google Scholar
Rakowski, AZ, Nakamura, T, Pazdur, A. 2008. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. Journal of Environmental Radioactivity 99(10):15581565.CrossRefGoogle ScholarPubMed
Ramonet, M, Conil, S, Delmotte, M, Laurent, O. 2022. ICOS ATC/CAL 14C Release, Observatoire pérenne de l’environnement (120.0 m), 2015-09-28–2021-11-22, ICOS RI. https://hdl.handle.net/11676/llsaJzNxT8jv_k_dN2oSVhf9 Google Scholar
Rolph, G, Stein, A, Stunder, B. 2017. Real-time Environmental Applications and Display sYstem: READY. Environmental Modelling & Software 95:210228. doi: 10.1016/j.envsoft.2017.06 CrossRefGoogle Scholar
Sakurai, H, Tokanai, F, Kat, K, Takahashi, Y, Sato, T, Kikuchi, S, Tavera, W. 2013. Latest 14C concentrations of plant leaves at high altitudes in the northern and southern hemispheres: vertical stability of local Suess effect. Radiocarbon 55(3):15731579. doi: 10.1017/S0033822200048499 CrossRefGoogle Scholar
Scripps CO2 Program. 2022. https://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo.html. Accessed Dec. 17, 2022.Google Scholar
Sironić, A, Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Obelić, B, Felja, I. 2013. Status report on the Zagreb radiocarbon laboratory—AMS and LSC results of VIRI intercomparison samples. Nuclear Instruments and Methods in Physics Research B 294:185188. doi: 10.1016/j.nimb.2012.01.048.CrossRefGoogle Scholar
Skinner, LC, Primeau, F, Freeman, E, de la Fuente, M, Goodwin, PA, Gottschalk, E, Huang, E, McCave, IN, Noble, TL, Scrivner, AE. 2017. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2 . Nature Communications 8:16010. doi: 10.1038/ncomms16010 CrossRefGoogle Scholar
Suess, H E. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415417. doi: 10.1126/science.122.3166.415.b CrossRefGoogle Scholar
Stein, AF, Draxler, RR, Rolph, GD, Stunder, BJB, Cohen, MD, Ngan, F. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modelling system. Bulletin of the American Meteorological Society 96:20592077. doi: 10.1175/BAMS-D-14-00110.CrossRefGoogle Scholar
Špoler Čanić, K, Vidič, S, Bencetić Klaić, Z. 2009. Precipitation chemistry in Croatia during the period 1981–2006. Journal of Environmental Monitoring 11:839851. doi: 10.1039/b816432k CrossRefGoogle ScholarPubMed
Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground c dynamics. Ecological Applications 10(2):399411.CrossRefGoogle Scholar
Turnbull, J, Rayner, P, Miller, J, Naegler, T, Ciais, P, Cozic, A. 2009. On the use of 14CO2 as a tracer for fossil fuel CO2: quantifying uncertainties using an atmospheric transport model. Journal of Geophysical Research 114:D22302. doi: 10.1029/2009JD012308 CrossRefGoogle Scholar
van der Plicht, J, Hogg, A. 2006. A note on reporting radiocarbon results and discussion. Quaternary Geochronology 1:237240.CrossRefGoogle Scholar
Varga, T, Barnucz, P, Major, I, Lisztes-Szabó, Z, Jull, AJT, László, E, Pénzes, J, Molnár, M. 2019. Fossil carbon load in urban vegetation for Debrecen, Hungary. Radiocarbon 61(5):1199–210. doi: 10.1017/RDC.2019.81 CrossRefGoogle Scholar
Vaughn, BH, Evans, CU, White, JWC, Still, CJ, Masarie, KA, Turnbull, J. 2010. Global network measurements of atmospheric trace gas isotopes. In: West JB, et al., editors. Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer Science+Business Media B.V. Za NOAA GML. doi: 10.1007/978-90-481-3354-3_1 CrossRefGoogle Scholar
Vilibić, I, Supić, N. 2005. Dense water generation on a shelf: the case of the Adriatic Sea. Ocean Dynamics 55(5):403415. doi: 10.1007/s10236-005-0030-5 CrossRefGoogle Scholar
Vreča, P, Krajcar Bronić, I, Horvatinčić, N, Barešić, J. 2006. Isotopic characteristics of precipitation in Slovenia and Croatia: comparisom of continental and maritime stations. Journal of Hydrology 330:457469.CrossRefGoogle Scholar
Yttri, KE, Simpson, D, Bergström, R, Kiss, G, Szidat, S, et al. 2019. The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics 19:42114233. doi: 10.5194/acp-19-4211-2019 CrossRefGoogle Scholar
Supplementary material: File

Sironić et al. supplementary material

Sironić et al. supplementary material

Download Sironić et al. supplementary material(File)
File 60.9 KB