Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T09:15:12.194Z Has data issue: false hasContentIssue false

Bag of Tricks: A Set of Techniques and other Resources to Help 14C Laboratory Setup, Sample Processing, and Beyond

Published online by Cambridge University Press:  26 July 2016

Guaciara M Santos*
Affiliation:
Earth System Science Department, University of California, Irvine, CA 92697, USA
Xiaomei Xu
Affiliation:
Earth System Science Department, University of California, Irvine, CA 92697, USA
*
*Corresponding author. Email: gdossant@uci.edu.

Abstract

Over the last few decades, radiocarbon laboratories have used different procedures for measuring a broad range of carbonaceous materials. To produce reliable results, the processes employed for sample processing, graphite target production, and spectrometer measurement must be rigorous, well tested, and reproducible. Most of the procedures have been developed, improved, and published as part of the laboratories’ quality control and research programs, and can be frequently found in the literature. Nevertheless, there are suites of laboratory techniques (or “small useful skills”), products, and other resources that either have never been described in publications, or have been somewhat hidden in much larger scientific articles and reports. We feel that with the rapid rise of newer laboratories and facilities, a set of resourceful suggestions might come in handy. Here we gathered these skill sets that can be used in all aspects of 14C sample processing, with the intention to simplify and expedite procedures, from glass-tube making to graphitization and measurements. We also included some miscellaneous items to help in laboratory setup.

Type
Chemical Pretreatment Approaches
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Ajie, HO, Kaplan, IA, Slota, PJ, Taylor, RE. 1990. AMS radiocarbon dating of bone osteocalcin. Nuclear Instruments and Methods in Physics Research B 52(3–4):433437.Google Scholar
Ajie, HO, Kaplan, IA, Hauschka, PV, Kirner, DN, Slota, PJ, Taylor, RE. 1992. Radiocarbon dating of bone osteocalcin: isolating and characterizing a non-collagen protein. Radiocarbon 34(3):296305.CrossRefGoogle Scholar
Ascough, P, Bird, MI, Meredith, W, Wood, RE, Snape, CE, Brock, F, Higham, TF, Large, DJ, Apperley, DC. 2010. Hydropyrolysis: implications for radiocarbon pretreatment and characterization of black carbon. Radiocarbon 52(3):13361350.Google Scholar
Ascough, PL, Bird, MI, Francis, SM, Lebl, T. 2011a. Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. Journal of Archaeological Science 38(1):6978.CrossRefGoogle Scholar
Ascough, PL, Bird, MI, Francis, SM, Thornton, B, Midwood, AJ, Scott, AC, Apperley, D. 2011b. Variability in oxidative degradation of charcoal: influence of production conditions and environmental exposure. Geochimica et Cosmochimica Acta 75(9):23612378.CrossRefGoogle Scholar
Beaumont, W, Beverly, R, Southon, JR, Taylor, RE. 2010. Bone preparation at the KCCAMS Laboratory. Nuclear Instruments and Methods in Physics Research B 268(7–8):906909.CrossRefGoogle Scholar
Beverly, RK, Beaumont, W, Tauz, T, Ormsby, KM, von Reden, KF, Santos, GM, Southon, JR. 2010. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: status report. Radiocarbon 52(2–3):301309.Google Scholar
Bird, MI, Ascough, PL. 2012. Isotopes in pyrogenic carbon: a review. Organic Geochemistry 42(12):15291539.Google Scholar
Bird, MI, Ayliffe, LK, Fifield, LK, Turney, CM, Cresswell, RG, Barrows, TT, David, B. 1999a. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41(2):127140.CrossRefGoogle Scholar
Bird, MI, Moyo, C, Veenendaal, EM, Lloyd, J, Frost, P. 1999b. Stability of elemental carbon in a savanna soil. Global Biogeochemical Cycles 13(4):923932.CrossRefGoogle Scholar
Birkholz, A, Smittenberg, RH, Hajdas, I, Wacker, L, Bernasconi, SM. 2013. Isolation and compound specific radiocarbon dating of terrigenous branched glycerol dialkyl glycerol tetraethers (brGDGTs). Organic Geochemistry 60:919.CrossRefGoogle Scholar
Boaretto, E. 2009. Dating materials in good archaeological contexts: the next challenge for radiocarbon analysis. Radiocarbon 51(1):275281.Google Scholar
Brock, F, Higham, TFG. 2009. AMS radiocarbon dating of Paleolithic-aged charcoal from Europe and the Mediterranean Rim using ABOX-SC. Radiocarbon 51(2):839846.CrossRefGoogle Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187.CrossRefGoogle Scholar
Brock, F, Geoghegan, V, Thomas, B, Jurkschat, K, Higham, TFG. 2013. Analysis of bone “collagen” extraction products for radiocarbon dating. Radiocarbon 55(2):445463.Google Scholar
Brown, TA, Southon, JR. 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 123(1):208213.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction modified Longin method. Radiocarbon 30(2):171177.Google Scholar
Buchholz, BA, Freeman, SP, Haack, KW, Vogel, JS. 2000. Tips and traps in the 14C bio-AMS preparation laboratory. Nuclear Instruments and Methods in Physics Research B 172(1):404408.Google Scholar
Burky, RR, Kirner, DL, Taylor, RE, Hare, PE, Southon, JR. 1998. 14C dating of bone using γ-carboxyglutamic acid and α-carboxyglycine (aminomalonate). Radiocarbon 40(1):1120.Google Scholar
Castro, MD, Macario, KD, Gomes, PRS. 2015. New software for AMS data analysis developed at IF-UFF Brazil. Nuclear Instruments and Methods in Physics Research B 361:526530.Google Scholar
Chappell, J, Polach, HA. 1972. Some effects of partial recrystallisation on 14C dating Late Pleistocene corals and molluscs. Quaternary Research 2(2):244252.Google Scholar
Currie, LA, Polach, HA. 1980. Exploratory analysis of the international radiocarbon cross-calibration data: consensus values and interlaboratory error. Radiocarbon 22(3):933935.Google Scholar
Currie, LA, Benner, BA Jr, Kessler, JD, Klinedinst, DB. 2002. A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a. Journal of Research of the National Institute of Standards and Technology 107(3):279298.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.Google Scholar
Douka, K, Hedges, RE, Higham, TF. 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52(3):735751.Google Scholar
Druffel, ER, Zhang, D, Xu, X, Ziolkowski, LA, Southon, JR, Santos, GM, Trumbore, SE. 2010. Compound-specific radiocarbon analyses of phospholipid fatty acids and n-alkanes in ocean sediments. Radiocarbon 52(2–3):12151223.Google Scholar
Fallon, S, Strzepek, K, Wood, RE, Alford, S. 2012. There’s carbon in the iron dear Liza, dear Liza. Presentation at the 21st International Radiocarbon Conference, UNESCO Headquarters in Paris, France, 9 to 13 July 2012, abstract S03-P-054.Google Scholar
Fernandez, A, Santos, GM, Williams, EK, Pendergraft, MA, Vetter, L, Rosenheim, BE. 2014. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon. Analytical Chemistry 86(24):12,085092.Google Scholar
Gao, P, Xu, X, Zhou, L, Pack, MA, Griffin, S, Santos, GM, Southon, JR, Liu, K. 2014. Rapid sample preparation of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry. Limnology and Oceanography: Methods 12(4):174190.Google Scholar
George, D, Southon, J, Taylor, RE. 2005. Resolving an anomolous radiocarbon determination on mastodon bone from Monte Verde, Chile. American Antiquity 70(4):766772.Google Scholar
Gillespie, R, Hedges, RE. 1984. Laboratory contamination in radiocarbon accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):294296.Google Scholar
Grothe, PR, Cobb, KM, Bush, SL, Cheng, H, Santos, GM, Southon, JR, Edwards, RL, Deocampo, DM, Sayani, HR. 2016. A comparison of U/Th and rapid-screen 14C dates from Line Island fossil corals: implications for paleoclimate reconstruction. Geochemistry, Geophysics, Geosystems. DOI: 10.1002/2015GC005893.Google Scholar
Gupta, SK, Polach, HA. 1985. Radiocarbon Dating Practices at ANU. Handbook, Radiocarbon Dating Laboratory. Canberra: Research School of Pacific Studies, ANU. 173 p.Google Scholar
Haesaerts, P, Damblon, F, Nigst, PR, Hublin, JJ. 2013. ABA and ABOx radiocarbon cross-dating on charcoal from Middle Pleniglacial loess deposits in Austria, Moravia, and Western Ukraine. Radiocarbon 55(3–4):641647.Google Scholar
Hedges, REM. 1992. Sample treatment strategies in radiocarbon dating. In: Taylor RE, Long A, Kra R, editors. Radiocarbon after Four Decades: An Interdisciplinary Perspective. New York: Springer-Verlag. p 165183.Google Scholar
Hedges, REM, van Klinken, GJ. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34(3):279291.CrossRefGoogle Scholar
Higham, T, Brock, F, Peresani, M, Broglio, A, Wood, R, Douka, K. 2009. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28(13–14):12571267.Google Scholar
Hogg, AG, Higham, T, Robertson, S, Beukens, R, Kankainen, T, Mccormac, FG. 1995. Radiocarbon age assessment of a new, near-background IAEA C quality assurance material. Radiocarbon 37(2):797805.Google Scholar
Ingalls, AE, Pearson, A. 2005. Ten years of compound-specific radiocarbon analysis. Oceanography 18(3):1831.Google Scholar
Ingalls, AE, Shah, SR, Hansman, RL, Aluwihare, LI, Santos, GM, Druffel, ERM, Pearson, A. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proceedings of the National Academy of Sciences of the USA 103(17):64426447.CrossRefGoogle ScholarPubMed
Ingalls, AE, Ellis, E, Santos, GM, McDuffee, K, Truxal, L, Keil, RG, Druffel, ERM. 2010. HPLC purification of higher plant-derived lignin phenols for radiocarbon dating. Analytical Chemistry 82(21):89318938.Google Scholar
Johnson, L, Komada, T. 2011. Determination of radiocarbon in marine sediment porewater dissolved organic carbon by thermal sulfate reduction. Limnology and Oceanography: Methods 9(10):485498.Google Scholar
Jull, AJT, Donahue, DJ, Toolin, LJ. 1990. Discussion: recovery from tracer contamination in AMS sample preparation. Radiocarbon 32(1):8485.Google Scholar
Khosh, MS, Xu, X, Trumbore, SE. 2010. Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 268(7):927930.Google Scholar
Kimer, DL, Taylor, RE, Southon, JR. 1995. Reduction in backgrounds of microsamples for AMS 14C dating. Radiocarbon 37(2):697704.Google Scholar
Komada, T, Anderson, MR, Dorfmeier, CL. 2008. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnology and Oceanography: Methods 6(6):254262.Google Scholar
Kusakabe, M. 2005. A closed pentane trap for separation of SO2 from CO2 for precise δ18O and δ34S measurements. Geochemical Journal 39(3):285287.Google Scholar
Kwong, LLW, Povinec, PP, Jull, AJT. 2004. Preparation of graphite targets from small marine samples for AMS radiocarbon measurements. Radiocarbon 46(1):133140.Google Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295297.Google Scholar
Liebl, J, Ortiz, RA, Golser, R, Handle, F, Kutschera, W, Steier, P, Wild, EM. 2010. Studies on the preparation of small 14C samples with an RGA and 13C-enriched material. Radiocarbon 52(3):13941404.Google Scholar
Loyd, DH, Vogel, JS, Trumbore, S. 1991. Lithium contamination in AMS measurement of 14C. Radiocarbon 33(3):297301.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, RM, Oliveira, MI, Pereira, BB, Oliveira, VN, Muniz, M, Linares, R, Gomes, PRS, Anjos, RM, Castro, MD, Anjos, L, Marques, AN, Rodrigues, LF. 2015. Report on sample preparation at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research B 361:402405.Google Scholar
Martin, EE, Ingalls, AE, Richey, JE, Keil, R, Santos, GM, Truxal, LT, Alin, SR, Druffel, ER. 2013. Age of riverine carbon suggests rapid export of terrestrial primary production in tropics. Geophysical Research Letters 40(21):56875691.Google Scholar
Marzaioli, F, Borriello, G, Passariello, I, Lubritto, C, Cesare, ND, D’Onofrio, A, Terrasi, F. 2008. Zinc reduction as an alternative method for AMS radiocarbon dating: process optimization at CIRCE. Radiocarbon 50(1):139149.CrossRefGoogle Scholar
McGeehin, J, Burr, GS, Hodgins, G, Bennett, SJ, Robbins, JA, Morehead, N, Markewich, H. 2004. Stepped-combustion 14C dating of bomb carbon in lake sediment. Radiocarbon 46(2):893900.Google Scholar
McNichol, AP, Gagnon, AR, Jones, GA, Osborne, EA. 1992. Illumination of a black box: analysis of gas composition during graphite target preparation. Radiocarbon 34(3):321329.Google Scholar
Mizutani, Y, Oana, S. 1973. Separation of CO2 from SO2 with frozen n-pentane as a technique for the precision analysis of 18O in sulfates. Mass Spectroscopy 21(3):255258.CrossRefGoogle Scholar
Mouteva, GO, Fahrni, SM, Santos, GM, Randerson, JT, Zhang, YL, Szidat, S, Czimczik, CI. 2015. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol. Atmospheric Measurement Techniques 8(9):37293743.CrossRefGoogle Scholar
Ognibene, TJ, Vogel, JS. 2005. A GUI-based AMS data analysis program [poster]. The 10th International Conference on Accelerator Mass Spectrometry, Berkeley, California, 5–10 September 2005 (UCRL-POST-21532).Google Scholar
Ognibene, TJ, Bench, G, Vogel, JS, Peaslee, GF, Murov, S. 2003. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Analytical Chemistry 75(9):21922196.Google Scholar
Plante, AF, Beaupré, SR, Roberts, ML, Baisden, T. 2013. Distribution of radiocarbon ages in soil organic matter by thermal fractionation. Radiocarbon 55(3):10771083.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Rosenheim, BE, Day, MB, Domack, E, Schrum, H, Benthien, A, Hayes, JM. 2008. Antarctic sediment chronology by programmed‐temperature pyrolysis: Methodology and data treatment. Geochemistry, Geophysics, Geosystems 9. DOI: 10.1029/2007GC001816.Google Scholar
Rozanski, K. 1991. Report on consultants’ group meeting on C reference materials for radiocarbon laboratories. IAEA internal report. Vienna: International Atomic Energy Agency. 54 p.Google Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2–3):534544.Google Scholar
Santos, GM, Bird, MI, Pillans, B, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.Google Scholar
Santos, GM, Southon, JR, Druffel-Rodriguez, KC, Griffin, S, Mazon, M. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46(1):165173.Google Scholar
Santos, GM, Fabra, M, Laguens, A, Demarchi, D, Southon, JR, Taylor, RE, George, D. 2006. 14C-AMS as a tool for archaeological investigation: implications for human settlement in South America. Invited paper for The Peopling of the Americas International Symposium, 16–22 December 2006, Capivara National Park, Piaui, Brazil.Google Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007a. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research B 259(1):293302.Google Scholar
Santos, GM, Moore, R, Southon, J, Griffin, S, Hinger, E, Zhang, D. 2007b. AMS 14C preparation at the KCCAMS/UCI Facility: status report and performance of small samples. Radiocarbon 49(2):255269.Google Scholar
Santos, GM, Mazon, M, Southon, JR, Rifai, S, Moore, R. 2007c. Evaluation of iron and cobalt powders as catalysts for 14C-AMS target preparation. Nuclear Instruments and Methods in Physics Research B 259(1):308315.Google Scholar
Santos, GM, Southon, JR, Drenzek, NJ, Ziolkowski, LA, Druffel, E, Xu, X, Zhang, D, Trumbore, S, Eglinton, TI, Hughen, KA. 2010. Blank assessment for ultra-small radiocarbon samples. Radiocarbon 52(3):13221335.Google Scholar
Scott, EM. 2003. The Fourth International Radiocarbon Intercomparison (FIRI). Radiocarbon 45(2):135180.Google Scholar
Scott, EM, Cook, G, Naysmith, P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 53(2–3):859865.Google Scholar
Shah, SR, Pearson, A. 2007. Ultra-microscale (5–25 mg C) analysis of individual lipids by 14C AMS: assessment and correction for sample processing blanks. Radiocarbon 49(1):6982.Google Scholar
Shah, SR, Mollenhauer, G, Ohkouchi, N, Eglinton, TI, Pearson, A. 2008. Origins of archaeal tetraether lipids in sediments: insights from radiocarbon analysis. Geochimica et Cosmochimica Acta 72(18):45774594.Google Scholar
Shah Walter, SR, Gagnon, A, Roberts, M, McNichol, AP, Lardie Gaylord, M, Klein, E. 2015. Ultra-small graphitization reactors for ultra-microscale 14C analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility. Radiocarbon 57(1):109122.Google Scholar
Smith, AM, Petrenko, VV, Hua, Q, Southon, J, Brailsford, G. 2007. The effect of N2O, catalyst, and means of water vapor removal on the graphitization of small CO2 samples. Radiocarbon 49(2):245254.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.Google Scholar
Stafford, TW, Jull, AJT, Brendel, K, Duhamel, RC, Donahue, DJ. 1987. Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Faculty for radioisotope analysis. Radiocarbon 29(1):2444.Google Scholar
Stafford, TW, Hare, PE, Currie, L, Jull, AJT, Donahue, DJ. 1990. Accuracy of North American human skeleton ages. Quaternary Research 34(1):111120.Google Scholar
Steier, P, Shah, SR, Drosg, R, Pearson, A, Fedi, M, Kutschera, W, Schock, M, Wagenbach, D, Wild, EM. 2006. Radiocarbon determination of particulate organic carbon in non-temperated, Alpine glacier ice. Radiocarbon 48(1):6982.Google Scholar
Steinhof, A. 2013. Data analysis at the Jena 14C laboratory. Radiocarbon 55(2–3):282293.Google Scholar
Stuiver, M. 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon 25(2):793795.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Switsur, R. 1990. A consideration of some basic ideas for quality assurance in radiocarbon dating. Radiocarbon 32(3):341346.Google Scholar
Szidat, S, Bench, G, Bernardoni, V, Calzolai, G, Czimczik, C, Derendorp, L, Dusek, U, Elder, K, Fedi, M, Genberg, J, Gustafsson, O, Kirillova, E, Kondo, M, McNichol, AP, Perron, N, dos Santos, GM, Stenstrom, K, Swietlicki, E, Uchida, M, Vecchi, R, Wacker, L, Zhang, Y, Prevot, A. 2013. Intercomparison of 14C analysis of carbonaceous aerosols: exercise 2009. Radiocarbon 55(3–4):14961509.Google Scholar
Taylor, RE, Bar-Yosef, O. 2014. Radiocarbon Dating: An Archaeological Perspective. 2nd edition. Walnut Creek: Left Coast Press. 404 p.Google Scholar
Taylor, RE, Smith, DG, Southon, JR. 2001. The Kennewick skeleton: chronological and biomolecular contexts. Radiocarbon 43(3):965976.Google Scholar
Trumbore, SE, Zheng, SH. 1996. Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon 38(2):219229.Google Scholar
Trumbore, S, Xu, X, Santos, GM, Czimczik, C, Beaupré, SR, Pack, MA, Hopkins, F, Stills, A, Lupascu, M, Ziolkowski, LA. 2016. Preparation for radiocarbon analysis. In: Schuur EAG, Druffel E, Trumbore SE, editors. Radiocarbon and Climate Change. Dordrecht: Springer International Publishing. p 279315.Google Scholar
Tumey, SJ, Grabowski, KS, Knies, DL, Mignerey, AC. 2004. Radiocarbon data collection, filtering and analysis at the NRL TEAMS facility. Nuclear Instruments and Methods in Physics Research B 223–224:216220.Google Scholar
Turney, CSM, Bird, MI, Fifield, LK, Kershaw, AP, Cresswell, RG, Santos, GM, di Tada, ML, Hausladen, PA, Youping, Z. 2001. Development of a robust 14C chronology for Lynch’s Crater (North Queensland, Australia) using different pretreatment strategies. Radiocarbon 43(1):4554.Google Scholar
Vandeputte, K, Moens, L, Dams, R. 1998. Study of the 14C-contamination potential of C-impurities in CuO and Fe. Radiocarbon 40(1):103110.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.Google Scholar
Vogel, JS. 1992. Rapid production of graphite without contamination for biomedical AMS. Radiocarbon 34(3):344350.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.Google Scholar
Vogel, JS, Nelson, DE, Southon, J. 1987. 14C background levels in an AMS system. Radiocarbon 29(3):323333.Google Scholar
Wacker, L, Christl, M, Synal, HA. 2010. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7):976979.Google Scholar
Yokoyama, Y, Miyairi, Y, Matsuzaki, H, Tsunomori, F. 2007. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation. Nuclear Instruments and Methods in Physics Research B 259(1):330334.Google Scholar
Xu, X, Trumbore, SE, Zheng, SH, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1):320329.Google Scholar
Xu, X, Gao, P, Salamanca, EG. 2013. Ultra small-mass graphitization by sealed tube zinc reduction method for AMS 14C measurements. Radiocarbon 55(2):608616.Google Scholar
Zermeño, P, Kurdyla, DK, Buchholz, BA, Heller, SJ, Kashgarian, M, Frantz, BR. 2004. Prevention and removal of elevated radiocarbon contamination in the LLNL/CAMS natural radiocarbon sample preparation laboratory. Nuclear Instruments and Methods in Physics Research B 223–224:293297.Google Scholar
Zhou, W, Wu, S, Lange, TE, Lu, X, Cheng, P, Xiong, X, Cruz, RJ, Liu, Q, Fu, Y, Zhao, W. 2012. High-Level 14C contamination and recovery at Xi’an AMS Center. Radiocarbon 54(2):187193.Google Scholar