Skip to main content Accessibility help

Comparison of Two Bone-Preparation Methods for Radiocarbon Dating: Modified Longin and Ninhydrin

  • J-P Dumoulin (a1), C Messager (a1), H Valladas (a2), L Beck (a1), I Caffy (a1), E Delqué-Količ (a1), C Moreau (a1) and M Lebon (a3)...


In this paper, first results comparing modified Longin and ninhydrin collagen extraction methodologies are presented. The goal of this study is to investigate the bones of several species with different ages, preservation conditions, and collagen contents to determine the most suitable preparation method. Different types of samples are used such as VIRI samples, previously dated bones, and background samples. Each bone has undergone elemental analysis, infrared analysis, and 14C measurement. The results are presented and the advantages and disadvantages of each preparation method are discussed. In general, results obtained by the two methods are in accordance with the consensus value for 2σ uncertainty. For VIRI I and a mammoth bone, the ninhydrin preparation gives, respectively, 8450±70 BP and 14,870±60 BP whereas the modified Longin process gives 8365±45 BP and 14,750±100 BP in agreement with the expected values. From the experimental point of view, the modified Longin process is easier to implement than the ninhydrin protocol. From this approach, we can conclude that the modified Longin process could be preferred in most cases and particularly when the amount of bone is small and the sample is not too contaminated.


Corresponding author

*Corresponding author. Email:


Hide All

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016.



Hide All
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431451.
Beck, L, Cuif, J-P, Pichon, L, Vaubaillon, S, Dambricourt Malassé, A, Abel, RL. 2012. Checking collagen preservation in a bone fragment of the potentially Oldest Modern Indian by non-destructive studies. Nuclear Instruments and Methods in Physics Research B 273:203207.
Bocherens, H, Drucker, D, Billiou, D, Moussa, I. 2005. A new approach for assessing the preservation state of bone and collagen for isotopic analysis (radiocarbon dating, carbon and nitrogen stable isotopes). L’anthropologie 109:557567.
Brock, F, Bronk Ramsey, C, Higham, TFG. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.
Brock, F, Higham, T, Bronk Ramsey, C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855865.
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.
Dauphin, Y. 2015. Messages d’os: Archéométrie du squelette animal et humain. In: Balasse M, Brugal J-P, Dauphin Y, Geigl E-M, Oberlin C, Reiche I, editors. Edition des archives contemporaines, Chapter 2p 521.
Debenham, NC. 1998. Thermoluminescence dating of stalagmitic calcite from la grotte Scladina at Sclayn (Namur). In: Otte M, Patou-Mathis M, Bonjean D, editors. Recherches aux grottes de Sclayn Volume 2. Liège: L.Archéologie ERAUL. p 3943.
DeNiro, MJ. 1985. Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.
Dumoulin, JP, Caffy, I, Comby-Zerbino, C, Delqué-Količ, E, Hain, S, Massault, M, Moreau, C, et al. 2013. Development of a line for dissolved inorganic carbon extraction at lMC14 Artemis Laboratory in Saclay, France. Radiocarbon 55(2):10431049.
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59(3):713726.
Gillespie, R, Hedges, REM, Wand, JO. 1984. Radiocarbon dating of bones by accelerator. Journal of Archaeological Science 11:165170.
Lebon, M, Reiche, I, Gallet, X, Bellot-Gurlet, L, Zazzo, A. 2016. Rapid quantification of bone collagen content by ATR-FTIR Spectroscopy. Radiocarbon 58(1):131145.
Leroy, S, L’Héritier, M, Delqué-Kolic, E, Dumoulin, JP, Moreau, C, Dillmann, P. 2015. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French GothicCathedrals. Journal of Archaeological Science 53(2015):190201.
Lewis, SG, Maddy, D, Buckingham, C, Coope, GR, Field, MH, Keen, DH, Pike, AWG, Roe, DA, Scaife, RG, Scott, K. 2006. Pleistocene fluvial sediments, palaeontology and archaeology of the upper River Thames at Latton, Wiltshire, England. Journal of Quaternary Science Review 21(2):181205.
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.
Marom, A, McCullagh, J, Higham, T, Hedges, R. 2013. Hydroxyproline dating: experiments on the 14C analysis of contaminated and low-collagen bones. Radiocarbon 55(2–3):698708.
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B, et al. 2013. Research and development of the Artemis 14C AMS facility: status report. Radiocarbon 55(2–3):331337.
Nelson, DE. 1991. A new method for carbon isotopic analysis of protein. Science 251:552554.
Person, A, Bocherens, H, Mariotti, A, Renard, M. 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126:135150.
Scott, EM, Cook, GT, Naysmith, P. 2010. A report on phase 2 of the Fifth International. Radiocarbon Inter-comparison (VIRI). Radiocarbon 52(3):846858.
Tisnérat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409419.
Ubelaker, DH, Parra, RC. 2011. Radiocarbon analysis of dental enamel and bone to evaluate date of birth and death: perspective from the southern hemisphere. Forensic Science International 208:103107.
Van Klinken, GJ. 1999. Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Sciences 26(6):687695.
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.
Wood, R, Bronk Ramsey, C, Higham, T. 2010. Refining background corrections for radiocarbon dating of bone collagen at ORAU. Radiocarbon 52(2):600611.


Comparison of Two Bone-Preparation Methods for Radiocarbon Dating: Modified Longin and Ninhydrin

  • J-P Dumoulin (a1), C Messager (a1), H Valladas (a2), L Beck (a1), I Caffy (a1), E Delqué-Količ (a1), C Moreau (a1) and M Lebon (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed