Skip to main content Accessibility help


  • C Espic (a1) (a2), M Liechti (a1), M Battaglia (a1) (a2), D Paul (a3), T Röckmann (a3) and S Szidat (a1) (a2)...


Methane contributes substantially to global warming as the second most important anthropogenic greenhouse gas. Radiocarbon (14C) measurements of atmospheric methane can be used as a source apportionment tool, as they allow distinction between thermogenic and biogenic methane sources. However, these measurements remain scarce due to labor-intensive methods required. A new setup for the preparation of atmospheric methane samples for radiocarbon analysis is presented. The system combines a methane preconcentration line with a preparative gas chromatography technique to isolate pure methane samples for a compound-specific radiocarbon analysis. In order to minimize sample preparation time, we designed a simplified preconcentration line for the extraction of methane from 50 L atmospheric air, which corresponds to 50 µg C as required for a reliable 14C analysis of methane-derived CO2 gas measurement with accelerator mass spectrometry (AMS). The system guarantees a quantitative extraction of methane from atmospheric air samples for 14C analysis, with a good repeatability and a low processing blank. The setup was originally designed for the measurement of samples with low methane concentrations, but it can also be adapted to apportion sources from environmental compartments with high methane levels such as freshwaters or wetlands.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. Email:


Hide All

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018



Hide All
Bergamaschi, P, Brenninkmeijer, CAM, Hahn, M, Röckmann, T, Scharffe, DH, Crutzen, PJ, Elansky, NF, Belikov, IB, Trivett, NBA, Worthy, DEJ. 1998. Isotope analysis based source identification for atmospheric CH4 and CO sampled across Russia using the Trans-Siberian railroad. Journal of Geophysical Research: Atmospheres 103(D7):82278235. doi: 10.1029/97JD03738.
Berhanu, TA, Szidat, S, Brunner, D, Satar, E, Schanda, R, Nyfeler, P, Battaglia, M, Steinbacher, M, Hammer, S, Leuenberger, M. 2017. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland. Atmospheric Chemistry and Physics 17(17):1075310766. doi: 10.5194/acp-17-10753-2017.
Bock, M, Schmitt, J, Behrens, M, Möller, L, Schneider, R, Sapart, C, Fischer, H. 2010. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision δD measurements of atmospheric methane extracted from ice cores. Rapid Communications in Mass Spectrometry 24(5):621633. doi: 10.1002/rcm.4429.
Bousquet, P, Ciais, P, Miller, JB, Dlugokencky, EJ, Hauglustaine, DA, Prigent, C, der Werf, GRV, Peylin, P, Brunke, E-G, Carouge, C, et al. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439443. doi: 10.1038/nature05132.
Brass, M, Röckmann, T. 2010. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane. Atmospheric Measurement Techniques 3(6):17071721. doi: 10.5194/amt-3-1707-2010.
Bräunlich, M. 2000. Study of atmospheric carbon monoxide and methane using isotopic analysis [dissertation]. Heidelberg, Germany: University of Heidelberg.
Brenninkmeijer, CAM. 1991. Robust, high-efficiency, high-capacity cryogenic trap. Analytical Chemistry 63(D6):11821184.
Brenninkmeijer, CAM. 1993. Measurement of the abundance of 14CO in the atmosphere and the 13C/12C and 18O/16O ratio of atmospheric CO with applications in New Zealand and Antarctica. Journal of Geophysical Research 98(D6):1059510614. doi: 10.1029/93JD00587.
Brenninkmeijer, CAM, Röckmann, T. 1996. Russian doll type cryogenic traps: improved design and isotope separation effects. Analytical Chemistry 68(17):30503053. doi: 10.1021/ac960208w.
Brown, TA, Southon, JR. 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 123(1–4):208213. doi: 10.1016/S0168-583X(96)00676-3.
Dean, JF, Middelburg, JJ, Röckmann, T, Aerts, R, Blauw, LG, Egger, M, Jetten, MSM, de Jong, AEE, Meisel, OH, Rasigraf, O, et al. 2018. Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics 56(1):207250. doi: 10.1002/2017RG000559.
Dlugokencky, EJ, Nisbet, EG, Fisher, R, Lowry, D. 2011. Global atmospheric methane: budget, changes and dangers. Philos. Trans. R. Soc. London Ser. A 369(1943):2058–72. doi: 10.1098/rsta.2010.0341.
Dumke, I, Faber, E, Poggenburg, J. 1989. Determination of stable carbon and hydrogen isotopes of light hydrocarbons. Analytical Chemistry 61(19):2149–54. doi: 10.1021/ac00194a007.
Eisma, R, van der Borg, K, de Jong, AFM, Kieskamp, WM, Veltkamp, AC. 1994. Measurements of the 14C content of atmospheric methane in The Netherlands to determine the regional emissions of 14CH4 . Nuclear Instruments and Methods in Physics Research B 92(1–4):410412. doi: 10.1016/0168-583X(94)96044-5.
Garnett, MH, Hardie, SML, Murray, C. 2011. Radiocarbon and stable carbon analysis of dissolved methane and carbon dioxide from the profile of a raised peat bog. Radiocarbon 53(1):7183. doi: 10.1017/S0033822200034366.
Garnett, MH, Murray, C, Gulliver, P, Ascough, PL. 2019. Radiocarbon analysis of methane at the NERC Radiocarbon Facility (East Kilbride). Radiocarbon. doi: 10.1017/RDC.2019.3.
Hiller, RV, Bretscher, D, DelSontro, T, Diem, T, Eugster, W, Henneberger, R, Hobi, S, Hodson, E, Imer, D, Kreuzer, M, et al. 2014. Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory. Biogeosciences 11(7):1941–59. doi: 10.5194/bg-11-1941-2014.
Jacob, DJ, Turner, AJ, Maasakkers, JD, Sheng, J, Sun, K, Liu, X, Chance, K, Aben, I, McKeever, J, Frankenberg, C. 2016. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics 16(22):1437114396. doi: 10.5194/acp-16-14371-2016.
Kessler, JD, Reeburgh, WS. 2005. Preparation of natural methane samples for stable isotope and radiocarbon analysis. Limnology and Oceanography: Methods 3(9):408418. doi: 10.4319/lom.2005.3.408.
Lassey, KR, Lowe, DC, Smith, AM. 2007. The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source. Atmospheric Chemistry and Physics 7(8):21412149. doi: 10.5194/acp-7-2141-2007.
Loosli, HH, Heimann, M, Oeschger, H. 1980. Low-level gas proportional counting in an underground laboratory. Radiocarbon 22(2):461-9. doi: 10.1017/S0033822200009772.
Lowe, DC, Brenninkmeijer, CAM, Tyler, SC, Dlugkencky, EJ. 1991. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic. Journal of Geophysical Research 96(D8):15,45515,467. doi: 10.1029/91JD01119.
Matsumoto, T, Han, L-F, Jaklitsch, M, Aggarwal, PK. 2013. A portable membrane contactor sampler for analysis of noble gases in groundwater. Groundwater 51(3):461468. doi: 10.1111/j.1745-6584.2012.00983.x.
McIntyre, CP, McNichol, AP, Roberts, ML, Seewald, JS, von Reden, KF, Jenkins, WJ. 2013. Improved precision of radiocarbon measurements for CH4 and CO2 using GC and continuous-flow AMS achieved by summation of repeated injections. Radiocarbon 55(2):677685. doi: 10.1017/S0033822200057830.
Miller, JB, Mack, KA, Dissly, R, White, JWC, Dlugokencky, EJ, Tans, PP. 2002. Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research 107(D13):4178. doi: 10.1029/2001JD000630.
Němec, M, Wacker, L, Gäggeler, H. 2010. Optimization of the graphitization process at AGE-1. Radiocarbon 52(2–3):13801393. doi: 10.1017/S0033822200046464.
Nisbet, E, Weiss, R. 2010. Top-down versus bottom-up. Science 28(5983):12411243. doi: 10.1126/science.1189936.
Pack, MA, Xu, X, Lupascu, M, Kessler, JD, Czimczik, CI. 2015. A rapid method for preparing low volume CH4 and CO2 gas samples for 14C AMS analysis. Organic Geochemistry 78:8998. doi: 10.1016/j.orggeochem.2014.10.010.
Palonen, V, Uusitalo, J, Seppälä, E, Oinonen, M. 2017. A portable methane sampling system for radiocarbon-based bioportion measurements and environmental CH4 sourcing studies. Review of Scientific Instruments 88:075102. doi: 10.1063/1.4993920.
Petrenko, VV, Smith, AM, Brailsford, G, Riedel, K, Hua, Q, Lowe, D, Severinghaus, JP, Levchenko, V, Bromley, T, Moss, R, et al. 2008. A new method for 14C analyzing of methane in ancient air extracted from glacial ice. Radiocarbon 50(1):5373. doi: 10.1017/S0033822200043368.
Petrenko, VV, Smith, AM, Schaefer, H, Riedel, K, Brook, E, Baggenstos, D, Harth, C, Hua, Q, Buizert, C, Schilt, A, et al. 2017. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548(7668):443–6. doi: 10.1038/nature23316.
Quay, P, Stutsman, J, Wilbur, D, Snover, A, Dlugokencky, E, Brown, T. 1999. The isotopic composition of atmospheric methane. Global Biogeochemical 13(2):445461. doi: 10.1029/1998GB900006.
Rinta, P, Bastviken, D, van Hardenbroek, M, Kankaala, P, Leuenberger, M, Schilder, J, Stötter, T, Heiri, O. 2015. An inter-regional assessment of concentrations and δ13C values of methane and dissolved inorganic carbon in small European lakes. Aquatic Sciences 77(4):667680. doi: 10.1007/s00027-015-0410-y.
Röckmann, T. 1998. Measurement and interpretation of 13C, 14C, 17O and 18O variations in atmospheric carbon monoxide [dissertation]. Heidelberg, Germany: University of Heidelberg.
Salazar, G, Zhang, YL, Agrios, K, Szidat, S. 2015. Development of a method for fast and automatic radiocarbon measurement of aerosol samples by online coupling of an elemental analyzer with a MICADAS AMS. Nuclear Instruments and Methods in Physics Research B 361:163167. doi: 10.1016/j.nimb.2015.03.051.
Sapart, CJ, Shakhova, N, Semiletov, I, Jansen, J, Szidat, S, Kosmach, D, Dudarev, O, van der Veen, C, Egger, M, Sergienko, V, et al. 2017. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 14(9):22832292. doi: 10.5194/bg-2016-367.
Saunois, M, Bousquet, P, Poulter, B, Peregon, A, Ciais, P, Canadell, JG, Dlugokencky, EJ, Etiope, G, Bastviken, D, Houweling, S, et al. 2016. The global methane budget 2000–2012. Earth System Science Data 8(2):697751. doi: 10.5194/essd-8-697-2016.
Schmitt, J, Seth, B, Bock, M, van der Veen, C, Möller, L, Sapart, CJ, Prokopiou, M, Sowers, T, Röckmann, T, Fischer, H. 2013. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry. Atmospheric Measurement Techniques 6(5):1425–45. doi: 10.5194/amt-6-1425-2013.
Sparrow, KJ, Kessler, JD. 2017. Efficient collection and preparation of methane from low concentration waters for natural abundance radiocarbon analysis. Limnology and Oceanography: Methods 15(7):601617. doi: 10.1002/lom3.10184.
Stolper, DA, Martini, AM, Clog, M, Douglas, PM, Shusta, SS, Valentine, DL, Sessions, AL, Eiler, JM. 2015. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta 161:219247. doi: 10.1016/j.gca.2015.04.015.
Szidat, S, Jenk, TM, Gäggeler, HW, Synal, H-A, Hajdas, I, Bonani, G, Saurer, M. 2004. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nuclear Instruments and Methods in Physics Research B 223–224:829836. doi: 10.1016/j.nimb.2004.04.153.
Szidat, S, Salazar, G, Vogel, E, Battaglia, M, Wacker, L, Synal, H-A, Türler, A. 2014. 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56(2):561566. doi: 10.2458/56.17457.
Townsend-Small, A, Tyler, SC, Pataki, DE, Xu, X, Christensen, LE. 2012. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions. Journal of Geophysical Research 117:D07308. doi: 10.1029/2011JD016826.
Wahlen, M, Tanaka, N, Henry, R, Deck, B, Zeglen, J, Vogel, JS, Southon, J, Shemesh, A, Fairbanks, R, Broecker, W. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science 245(4915):286290. doi: 10.1126/science.245.4915.286.
Walter, KM, Zimov, SA, Chanton, JP, Verbyla, D, Chapin, III FS. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107):7175. doi: 10.1038/nature05040.
Walter, KM, Chanton, JP, Chapin, III FS, Schuur, EAG, Zimov, SA. 2008. Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages. Journal of Geophysical Research 113:G00A08. doi: 10.1029/2007JG000569.
Zimov, SA, Voropaev, YV, Semiletov, IP, Davidov, SP, Prosiannikov, SF, Chapin, III FS, Chapin, MC, Trumbore, S, Tyler, S. 1997. North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277(5827):800802. doi: 10.1126/science.277.5327.800.


Type Description Title
Supplementary materials

Espic et al. supplementary material
Espic et al. supplementary material 1

 Word (41 KB)
41 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed