Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-18T18:17:48.870Z Has data issue: false hasContentIssue false

Decadally Resolved Lateglacial Radiocarbon Evidence from New Zealand Kauri

Published online by Cambridge University Press:  24 October 2016

Alan Hogg*
Affiliation:
Waikato Radiocarbon Laboratory, University of Waikato, Private Bag 3105, Hamilton, New Zealand
John Southon*
Affiliation:
Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA
Chris Turney
Affiliation:
Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
Jonathan Palmer
Affiliation:
Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
Christopher Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
Pavla Fenwick
Affiliation:
Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
Gretel Boswijk
Affiliation:
School of Environment, University of Auckland, New Zealand
Ulf Büntgen
Affiliation:
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Michael Friedrich
Affiliation:
Institute of Environmental Physics, University of Heidelberg, INF 229, D-69120 Heidelberg, Germany Institute of Botany, Hohenheim University, D-70593 Stuttgart, Germany
Gerhard Helle
Affiliation:
GFZ German Research Centre for GeoSciences, Dendrochronology Laboratory, Telegrafenberg, 14473 Potsdam, Germany
Konrad Hughen
Affiliation:
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Richard Jones
Affiliation:
Department of Geography, Exeter University, Devon, EX4 4RJ, UK
Bernd Kromer
Affiliation:
Institute of Environmental Physics, University of Heidelberg, INF 229, D-69120 Heidelberg, Germany
Alexandra Noronha
Affiliation:
Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA
Frederick Reinig
Affiliation:
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Linda Reynard
Affiliation:
Department of Human Evolutionary Biology, Harvard University, Divinity Avenue, Cambridge, MA 02138USA
Richard Staff
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, HPK, H29, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
*
*Corresponding authors. Email: alan.hogg@waikato.ac.nz; jsouthon@uci.edu.
*Corresponding authors. Email: alan.hogg@waikato.ac.nz; jsouthon@uci.edu.

Abstract

The Last Glacial–Interglacial Transition (LGIT; 15,000–11,000 cal BP) was characterized by complex spatiotemporal patterns of climate change, with numerous studies requiring accurate chronological control to decipher leads from lags in global paleoclimatic, paleoenvironmental, and archaeological records. However, close scrutiny of the few available tree-ring chronologies and radiocarbon-dated sequences composing the IntCal13 14C calibration curve indicates significant weakness in 14C calibration across key periods of the LGIT. Here, we present a decadally resolved atmospheric 14C record derived from New Zealand kauri spanning the Lateglacial from ~13,100–11,365 cal BP. Two floating kauri 14C time series, curve-matched to IntCal13, serve as a 14C backbone through the Younger Dryas. The floating Northern Hemisphere (NH) 14C data sets derived from the YD-B and Central European Lateglacial Master tree-ring series are matched against the new kauri data, forming a robust NH 14C time series to ~14,200 cal BP. Our results show that IntCal13 is questionable from ~12,200–11,900 cal BP and the ~10,400 BP 14C plateau is approximately 5 decades too short. The new kauri record and repositioned NH pine 14C series offer a refinement of the international 14C calibration curves IntCal13 and SHCal13, providing increased confidence in the correlation of global paleorecords.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th /234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):10851092.CrossRefGoogle Scholar
Beck, W, Richards, D, Edwards, R, Silverman, B, Smart, P, Donahue, D, Hererra-Osterheld, S, Burr, G, Calsoyas, L, Jull, T, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292(5526):24532458.Google Scholar
Björck, S, Walker, MJC, Cwynar, LC, Johnsen, S, Knudsen, K-L, Lowe, JJ, Wohlfarth, B, INTIMATE members. 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13:283292.3.0.CO;2-A>CrossRefGoogle Scholar
Blockley, S, Lane, C, Hardiman, M, Rasmussen, S, Seierstad, I, Steffensen, J, Svensson, A, Lotter, A, Turney, C, Bronk Ramsey, C, INTIMATE members. 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36:210.CrossRefGoogle Scholar
Boswijk, G, Fowler, A, Lorrey, A, Palmer, J, Ogden, J. 2006. Extension of the New Zealand kauri (Agathis australis) chronology to 1724 BC. The Holocene 16(2):188199.Google Scholar
Boswijk, G, Fowler, A, Palmer, J, Fenwick, P, Hogg, A, Lorrey, A, Wunder, J. 2014. The late Holocene kauri chronology: assessing the potential of a 4500-yr record for palaeoclimate reconstruction. Quaternary Science Reviews 90:128142.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):10231045.Google Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr BP. Science 338(6105):370374.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Taylor, FW, Récy, J, Edwards, RL, Cabioch, G, Corrège, T, Donahue, DJ, O’Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):10931105.CrossRefGoogle Scholar
Burr, GS, Galang, C, Taylor, FW, Gallup, CD, Edwards, RL, Cutler, KB, Quirk, B. 2004. Radiocarbon results from a 13-kyr BP coral from the Huon Peninsula, Papua New Guinea. Radiocarbon 46(3):12111224.CrossRefGoogle Scholar
Cooper, A, Turney, C, Hughen, KA, Brook, BW, McDonald, HG, Bradshaw, CJA. 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349(6248):602606.CrossRefGoogle ScholarPubMed
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):11271160.CrossRefGoogle Scholar
Dillehay, TD, Ramírez, C, Pino, M, Collins, MB, Rossen, J, Pino-Navarro, JD. 2008. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320(5877):784786.CrossRefGoogle ScholarPubMed
Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Alexander, L, Thomas, A, Henderson, G, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th ages in coral from 10DP310 cores offshore Tahiti. Radiocarbon 55(4):19471974.Google Scholar
Edwards, R, Beck, W, Burr, G, Donahue, D, Chappell, J, Bloom, A, Druffel, E, Taylor, F. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962968.CrossRefGoogle ScholarPubMed
Fairbanks, RG, Mortlock, RA, Chiu, TC, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):17811796.Google Scholar
Friedrich, M, Kromer, B, Spurk, M, Hofmann, J, Kaiser, KF. 1999. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61:2739.Google Scholar
Friedrich, M, Kromer, B, Kaiser, KF, Spurk, M, Hughen, KA, Johnsen, SJ. 2001a. High resolution climate signals in the Bølling/Allerød Interstadial (Greenland Interstadial 1) as reflected in European tree-ring chronologies compared to marine varves and ice-core records. Quaternary Science Reviews 20(11):12231232.Google Scholar
Friedrich, M, Knipping, M, von der Kroft, P, Renno, A, Ullrich, O, Vollbrecht, J. 2001b. Ein Wald am Ende der letzten Eiszeit. Untersuchungen zur Besiedelungs-, Landschafts- und Vegetationsentwicklung an einem verlandeten See im Tagebau Reichwalde, Niederschlesischer Oberlausitzkreis. Arbeits- und For- schungsberichte zur sächsischen Bodendenkmalpflege 43:2194.Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):11111122.CrossRefGoogle Scholar
Hanebuth, T, Stattegger, K, Grootes, PM. 2000. Rapid flooding of the Sunda Shelf: a Late-Glacial sea-level record. Science 288(5468):10331035.Google Scholar
Hoffmann, DL, Beck, JW, Richards, DA, Smart, PL, Singarayer, JS, Ketchmark, T, Hawkesworth, CJ. 2010. Towards radiocarbon calibration beyond 28ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289(1):110.Google Scholar
Hogg, A, McCormac, F, Higham, T, Baillie, M, Palmer, J. 2002. High-precision 14C measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633640.Google Scholar
Hogg, A, Turney, C, Palmer, J, Southon, J, Kromer, B, Bronk Ramsey, C, Boswijk, G, Fenwick, P, Noronha, A, Staff, R, Friedrich, M. 2013a. The New Zealand kauri (Agathis australis) research project: a radiocarbon dating intercomparison of Younger Dryas wood and implications for IntCal13. Radiocarbon 55(4):20352048.CrossRefGoogle Scholar
Hogg, A, Hua, Q, Blackwell, P, Niu, M, Buck, C, Guilderson, T, Heaton, T, Palmer, J, Reimer, P, Reimer, R, Turney, C, Zimmerman, S. 2013b. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.CrossRefGoogle Scholar
Hogg, A, Southon, J, Turney, C, Palmer, J, Bronk Ramsey, C, Fenwick, P, Boswijk, G, Friedrich, M, Helle, G, Hughen, K, Jones, R, Kromer, B, Noronha, A, Reynard, L, Staff, R, Wacker, L. 2016. Punctuated shutdown of Atlantic Meridional Overturning Circulation during Greenland Stadial 1. Scientific Reports 6:25902.CrossRefGoogle ScholarPubMed
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25):29822990.Google Scholar
Hughen, K, Southon, J, Lehman, S, Overpeck, T. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):19511954.CrossRefGoogle ScholarPubMed
Hughen, KA, Southon, JR, Bertrand, CJ, Frantz, B, Zermeño, P. 2004. Cariaco Basin calibration update: revisions to calendar and 14C chronologies for core PL07-58PC. Radiocarbon 46(3):11611187.CrossRefGoogle Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23):32163227.Google Scholar
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Remmele, S, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute—an inventory. Quaternary Science Reviews 36:7890.Google Scholar
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, F, Remmele, S, Schaub, M, Talamo, S. 2004. Late Glacial 14C ages from a floating, 1382-ring pine chronology. Radiocarbon 46(3):12031209.Google Scholar
Lowe, JJ, Rasmussen, SO, Björck, S, Hoek, WZ, Steffensen, JP, Walker, MJC, Yu, ZC, INTIMATE Members. 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27(1):617.CrossRefGoogle Scholar
Marra, MJ, Alloway, BV, Newnham, RM. 2006. Paleoenvironmental reconstruction of a well-preserved Stage 7 forest sequence catastrophically buried by basaltic eruptive deposits, northern New Zealand. Quaternary Science Reviews 25(17):21432161.Google Scholar
Mayle, FE, Bell, M, Birks, HH, Brooks, SJ, Coope, GR, Lowe, JJ, Sheldrick, C, Shijie, L, Turney, CSM, Walker, MJC. 1999. Climate variations in Britain during the Last Glacial-Holocene transition (15.0–11.5 cal ka BP): comparison with the GRIP ice-core record. Journal of the Geological Society of London 156:411423.Google Scholar
McGlone, MS, Turney, CSM, Wilmshurst, JM, Pahnke, K. 2010. Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nature Geoscience 3:622626.Google Scholar
Metcalf, JL, Turney, C, Barnett, R, Martin, F, Bray, SC, Vilstrup, JT, Orlando, L, Salas-Gismondi, R, Loponte, D, Medina, M, De Nigris, M. 2016. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances 2(6):e1501682.CrossRefGoogle ScholarPubMed
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1(4):263267.Google Scholar
Muscheler, R, Adolphi, F, Knudsen, MF. 2014. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations. Quaternary Science Reviews 106:8187.Google Scholar
Ogden, J, Wilson, A, Hendy, C, Hogg, A, Newnham, R. 1992. The late Quaternary history of kauri (Agathis australis) in NZ, and its climatic significance. Journal of Biogeography 19(6):611622.Google Scholar
Palmer, J, Lorrey, A, Turney, CS, Hogg, A, Baillie, M, Fifield, K, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779787.Google Scholar
Palmer, JG, Turney, CS, Hogg, AG, Lorrey, AM, Jones, RJ. 2015. Progress in refining the global radiocarbon calibration curve using New Zealand kauri (Agathis australis) tree-ring series from Oxygen Isotope Stage 3. Quaternary Geochronology 27:158163.Google Scholar
Petchey, F, Ulm, S. 2012. Marine reservoir variation in the Bismarck region: an evaluation of spatial and temporal variation in ΔR and R over the last 3000 years. Radiocarbon 54(1):145158.Google Scholar
Rach, O, Brauer, A, Wilkes, H, Sachse, D. 2014. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nature Geoscience 7:109112.Google Scholar
Rasmussen, SO, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Johnsen, SJ, Fischer, H, Gkinis, V, Guillevic, M, Hoek, WZ, Lowe, JJ, Pedro, JB, Popp, T, Seierstad, IK, Steffensen, JP, Svensson, AM, Vallelonga, P, Vinther, BM, Walker, MJC, Wheatley, JJ, Winstrup, M. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106:1428.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Schaub, M. 2007. Lateglacial environmental conditions on the Swiss Plateau. A multi-proxy approach using tree rings and sediment-based proxies. In: Haeberli W, Maisch M, editors. Physische Geographie 54. 164 p.Google Scholar
Schaub, M, Kaiser, F, Kromer, B, Talamo, S. 2005. Extension of the Swiss Lateglacial tree-ring chronologies. Dendrochronologia 23:1118.Google Scholar
Schaub, M, Kaiser, F, Frank, D, Buentgen, U, Kromer, B, Talamo, S. 2008a. Environmental change during the Allerød and Younger Dryas reconstructed from tree-ring data. Boreas 37(1):7486.Google Scholar
Schaub, M, Büntgen, U, Kaiser, F, Kromer, B, Talamo, S, Andersen, K, Rasmussen, S. 2008b. Lateglacial environmental variability derived from Swiss tree rings. Quaternary Science Reviews 27(1):2941.Google Scholar
Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.CrossRefGoogle Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):353363.Google Scholar
Turney, CSM, Kershaw, AP, Lowe, JJ, van der Kaars, S, Johnston, R, Rule, S, Moss, P, Radke, L, Tibby, J, McGlone, MS, Wilmshurst, JM, Vandergoes, MJ, Fitzsimons, SJ, Bryant, C, James, S, Branch, NP, Cowley, J, Kalin, RM, Ogle, N, Jacobsen, G, Fifield, LK. 2006. Climatic variability in the southwest Pacific during the Last Termination (20–10 kyr BP). Quaternary Science Reviews 25(9–10):886903.Google Scholar
Turney, C, Fifield, K, Palmer, J, Hogg, A, Baillie, M, Galbraith, R, Ogden, J, Lorrey, A, Tims, S. 2007. Towards a radiocarbon calibration for Oxygen Isotope Stage 3 using New Zealand kauri (Agathis australis). Radiocarbon 49(2):447457.CrossRefGoogle Scholar
Turney, CSM, Palmer, J, Bronk Ramsey, C, Adolphi, F, Muscheler, R, Hughen, KA, Staff, RA, Jones, RT, Thomas, ZA, Fogwill, CJ, Hogg, A. 2016. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quaternary Science Reviews 137:126134.CrossRefGoogle Scholar
WAIS Divide Project Members. 2015. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520(7549):661665.Google Scholar
Waters, MR, Stafford, TW Jr. 2007. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315(5815):11221126.CrossRefGoogle ScholarPubMed
Wigley, T, Briffa, K, Jones, P. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23:201213.Google Scholar
Supplementary material: File

Hogg supplementary material

Hogg supplementary material 1

Download Hogg supplementary material(File)
File 126.4 KB