Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-20T17:23:50.832Z Has data issue: false hasContentIssue false

Food and Soot: Organic Residues On Outer Pottery Surfaces

Published online by Cambridge University Press:  24 May 2017

Dimitri Teetaert*
Affiliation:
Ghent University, Department of Archaeology, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Steven Saverwyns
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Philippe Crombé
Affiliation:
Ghent University, Department of Archaeology, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
*
*Corresponding author. Email: dimitri.teetaert@ugent.be.

Abstract

Organic residues preserved on the outer surfaces of archaeological pottery are commonly considered to be soot and, not being subject to reservoir effects, as more reliable for radiocarbon (14C) dating compared to food crusts from the inner surface. However, unlike food crusts, outer surface residues are never analyzed prior to 14C dating. This study confronts 14C dates on inner and outer surface residues preserved on prehistoric pottery from Bazel Sluis (Belgium) with the results of stable isotope analysis and thermally assisted hydrolysis and methylation pyrolysis-gas chromatography-mass spectrometry (THM-GC-MS). These analyses clearly show that food residue is also present on the outer pottery surface, causing a possible reservoir effect on 14C dates. At Bazel, 14C dates on both the inner and outer surface residues are too old compared to dates obtained on associated animal bone. In addition, the outer surface residues systematically date younger than the inner food crusts, a discrepancy that is also known from other archaeological sites. It is suggested that these age differences are due to the mixed presence of soot and food residue on the exterior vessel wall as opposed to more homogeneous food crusts on the internal surface.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

References

REFERENCES

Andersen, SH, Malmros, C. 1985. Madskorpe på Ertebøllekar fra Tyrbind Vig. Aarbøger for Nordisk Oldkyndighed of Historie 1984s:7895.Google Scholar
Beck, ME, Skibo, JM, Hally, DJ. 2002. Sample selection for ceramic use-alteration analysis: the effects of abrasion on soot. Journal of Archaeological Science 29:115.CrossRefGoogle Scholar
Boudin, M, Van Strydonck, M, Crombé, P. 2009. Radiocarbon dating of pottery food crusts: reservoir effect or not? The case of the Swifterbant pottery from Doel “Deurganckdok”. In: Crombé P, Van Strydonck M, Boudin M, Sergant J, Bats M, editors. Chronology and Evolution within the Mesolithic of North-West Europe: Proceedings of an International Meeting. Newcastle: Cambridge Scholars Publishing. p 727–45.Google Scholar
Boudin, M, Van Strydonck, M, Crombé, P, De Clercq, W, van Dierendonck, RM, Jongepier, H, Ervynck, A, Lentacker, A. 2010. Fish reservoir effect on charred food residue 14C dates: are stable isotope analyses the solution? Radiocarbon 52(2):697705.CrossRefGoogle Scholar
Boudin, M, Van Strydonck, M, van den Brande, T, Synal, H, Wacker, L. 2016. RICH – A new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Coccato, A, Jehlicka, J, Moens, L, Vandenabeele, P. 2015. Raman spectroscopy for the investigation of carbon-based black pigments. Journal of Raman Spectroscopy 46:10031015.CrossRefGoogle Scholar
Craig, OE. 2004. Organic analysis of “food crusts” from sites in the Scheldt valley, Belgium: a preliminary evaluation. Notae Praehistoricae 24:209217.Google Scholar
Craig, OE, Forster, M, Andersen, SH, Koch, E, Crombé, P, Milner, NJ, Stern, B, Bailey, GN, Heron, CP. 2007. Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry 49(1):135152.CrossRefGoogle Scholar
Crombé, P, Boudin, M, Van Strydonk, M. 2008. Swifterbant pottery in the Scheldt basin and the emergence of the earliest indigenous pottery in the sandy lowlands of Belgium. In: Hartz S, Lüth F, Terberger T, editors. Frühe Keramik im Ostseeraum – Datierung und Sozialer Kontext. Internationaler Workshop in Schleswig vom 20. Bis 21. Oktober 2006. Bericht der Römisch-Germanischen Kommission 89:465–83.Google Scholar
Crombé, P. 2010. Swifterbant pottery from the Lower Scheldt Basin (NW Belgium). In: Vanmontfort B, Louwe Kooijmans L, Amkreutz L, Verhart L, editors. Pots, farmers and foragers. Pottery traditions and social interaction in the earliest Neolithic of the Lower Rhine Area. Archaeological Studies Leiden University 20:161–5.Google Scholar
Crombé, P, Sergant, J, Perdaen, Y, Meylemans, E, Deforce, K. 2015a. Neolithic pottery finds at the wetland site of Bazel-Kruibeke (Flanders, Belgium): evidence of long-distance forager-farmer contact during the late 6th and 5th millennium cal BC in the Rhine-Meuse-Scheldt area. Archäologisches Korrespondenzblatt 45(1):2139.Google Scholar
Crombé, P, Verhegge, J, Deforce, K, Meylemans, E, Robinson, E. 2015b. Wetland landscape dynamics, Swifterbant land use systems, and the Mesolithic–Neolithic transition in the southern North Sea basin. Quaternary International 378:119133.CrossRefGoogle Scholar
Evershed, RP. 2008. Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50(6):895924.CrossRefGoogle Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449466.CrossRefGoogle Scholar
Hally, DJ. 1983. Use alteration of pottery vessel surfaces: an important source of evidence for the identification of vessel function. North American Archaeologist 4:326.CrossRefGoogle Scholar
Hart, JP, Lovis, WA. 2007. The freshwater reservoir and radiocarbon dates on charred cooking residues: old apparent ages or a single outlier? Comment on Fischer and Heinemeier (2003). Radiocarbon 49(3):14031410.CrossRefGoogle Scholar
Hart, JP, Lovis, WA. 2014. A re-evaluation of the reliability of AMS dates on pottery food residues from the Late Prehistoric Central Plains of North America: comment on Roper (2013). Radiocarbon 56(1):341353.CrossRefGoogle Scholar
Heron, C, Craig, OE. 2015. Aquatic resources in foodcrusts: identification and implication. Radiocarbon 57(4):707719.CrossRefGoogle Scholar
Koch, E. 1998. Neolithic Bog Pots from Zealand, Møn, Lolland and Falster. Nordiske Fortidsminder. Series B, Volume 16. Copenhagen.Google Scholar
Meylemans, E, Perdaen, Y, Sergant, J, Bastiaens, J, Crombé, P, Debruyne, S, Deforce, K, Du Rang, E, Ervynck, A, Lentacker, A, Storme, A, Van Neer, W. 2016. Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te ‘Bazel-Sluis 5’ (Gemeente Kruibeke, Provincie Oost-Vlaanderen). Onderzoeksrapport agentschap Onroerend Erfgoed 40.Google Scholar
Miyata, Y, Minami, M, Onbe, S, Sakamoto, M, Matzuzaki, H, Nakamura, T, Imamura, M. 2011. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences 87(8):518528.CrossRefGoogle ScholarPubMed
Oudemans TFM. 2006. Molecular studies of organic residues preserved in ancient vessels [PhD thesis]. Leiden University. https://openaccess.leidenuniv.nl/handle/1887/5418.Google Scholar
Oudemans, TFM, Boon, JJ. 1991. Molecular archaeology: analysis of charred (food) remains from prehistoric pottery by pyrolysis gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis 20:197227.CrossRefGoogle Scholar
Philippsen, B. 2012. Variability of freshwater reservoir effects. Implications for radiocarbon dating of prehistoric pottery and organisms from estuarine environments [PhD thesis]. Aarhus University.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:119.CrossRefGoogle Scholar
Philippsen, B, Meadows, J. 2014. Inland Ertebølle Culture: the importance of aquatic recourses ant the freshwater reservoir effect in radiocarbon dates from pottery food crusts. In: Fernandes R, Meadows J, editors. Human Exploitation of Aquatic Landscapes special issue. Internet Archaeology 37. http://dx.doi.org/10.11141/ia.37.9.Google Scholar
Piezonka, H, Meadows, J, Hartz, S, Kostyleva, E, Nedomolkina, N, Ivanishcheva, M, Kosorukova, N, Terberger, T. 2016. Stone Age pottery chronology in the northeast European Forest Zone: new AMS and EA-IRMS results on foodcrusts. Radiocarbon 58(2):267289.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Roper, DC. 2013. Evaluating the reliability of AMS dates on food residue on pottery from the late prehistoric Central Plains of North America. Radiocarbon 55(1):151162.CrossRefGoogle Scholar
Roper, DC. 2014. A response to Hart and Lovis. Radiocarbon 56(1):355359.CrossRefGoogle Scholar
Shennan, S. 1988. Quantifying Archaeology. Edinburgh: Edinburgh University Press.Google Scholar
Skibo, JM. 1992. Pottery Function: A Use-Alteration Perspective. New York: Plenum Press.CrossRefGoogle Scholar
Skibo, JM. 2013. Understanding Pottery Function. New York: Springer.CrossRefGoogle Scholar
Skibo, JM. 2015. Pottery use-alteration analysis. In: Marreiros J, Bicho N, Gibaja JF, editors. Use-Wear and Residue Analysis in Archaeology. Manuals in Archaeological Method, Theory and Technique. New York: Springer. p 189198.Google Scholar
Van Strydonck, M, Van der Borg, K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin Koninklijk Instituut voor het Kunstpatrimonium 23:228234.Google Scholar
Vos, PC, Van Heeringen, RM. 1997. Holocene geology and occupation history of the province of Zeeland (SW Netherlands). In: Fischer MM, editor. Holocene Evolution of Zeeland (SW Netherlands). Mededelingen Nederlands Instituut voor Toegepaste Wetenschappen TNO 59:5–109.Google Scholar
Wei, S, Fang, X, Cao, X, Schreiner, M. 2011. Characterization of the materials used in Chinese ink sticks by pyrolysis-gas chromatography–mass spectrometry. Journal of Analytical and Applied Pyrolysis 91(1):147153.CrossRefGoogle Scholar