Skip to main content

Forecasting Atmospheric Radiocarbon Decline to Pre-Bomb Values

  • Carlos A Sierra (a1)

In this manuscript, I present an estimation of the rate of decline in atmospheric radiocarbon and the amplitude of its seasonal cycle for the past four decades for the northern and southern hemispheres, and forecast the time required to reach pre-1950 levels (i.e. Δ14C<0‰). Using a set of 30 different exponential smoothing state-space models, the time series were decomposed into their error, trend, and seasonal components, choosing the model that best represented the observed data. According to the best model, the rate of change in Δ14C has decreased considerably since the 1970s and reached values below −5‰ per year since 2005. Overall, the time-series showed larger rates of radiocarbon decline in the northern than in the southern hemisphere, and relatively stable seasonal cycles for both hemispheres. A forecast of the exponential smoothing models predicts that radiocarbon values will reach pre-1950 levels by 2021 in the northern hemisphere with 20% probability, and by around 2035 in the southern hemisphere. However, at regional levels radiocarbon concentrations have already reached pre-1950 levels in several industrialized regions and cities around the world as a consequence of fossil-fuel emissions.

Corresponding author
*Corresponding author. Email:
Hide All
Athanasopoulos, G, Hyndman, RJ, Kourentzes, N, Petropoulos, F. 2017. Forecasting with temporal hierarchies. European Journal of Operational Research 262(1):6074.
Berger, R, Jackson, TB, Michael, R, Suess, HE. 1987. Radiocarbon content of tropospheric CO2 at China Lake, California 1977–1983. Radiocarbon 29(1):1823.
Caldeira, K, Rau, GH, Duffy, PB. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophysical Research Letters 25(20):38113814.
Cleveland, WS, Freeny, AE, Graedel, TE. 1983. The seasonal component of atmospheric CO 2 : Information from new approaches to the decomposition of seasonal time series. Journal of Geophysical Research: Oceans 88(C15):1093410946.
Currie, KI, Brailsford, G, Nichol, S, Gomez, A, Sparks, R, Lassey, KR, Riedel, K. 2011. Tropospheric 14CO2 at wellington, new zealand: the world’s longest record. Biogeochemistry 104(1):522.
Graven, HD. 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences 112(31):95429545.
Graven, HD, Guilderson, TP, Keeling, RF. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research: Atmospheres 117(D2):D02303.
Hertelendi, E, Csongor, E. 1983. Anthropogenic 14C excess in the troposphere between 1951 and 1978 measured in tree rings. Radiochemical and Radioanalytical letters 56(2):103110.
Hsueh, DY, Krakauer, NY, Randerson, JT, Xu, X, Trumbore, SE, Southon, JR. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters 34(2):n/a–n/a, L02816.
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14c data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):12731298.
Hua, Q, Barbetti, M, Jacobsen, G, Zoppi, U, Lawson, E. 2000. Bomb radiocarbon in annual tree rings from Thailand and Australia. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1):359–365. 8th International Conference on Accelerator Mass Spectrometry.
Hua, Q, Barbetti, M, Levchenko, VA, D’Arrigo, RD, Buckley, BM, Smith, AM. 2012. Monsoonal influence on southern hemisphere 14CO2 . Geophysical Research Letters 39(19):L19806.
Hua, Q, Barbetti, M, Rakowski, A. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.
Hyndman, AR, Koehler, A, Ord, K, Snyder, R. 2008. Forecasting with Exponential Smoothing. Springer Series in Statistics. Springer Berlin Heidelberg.
Hyndman, RJ, Khandakar, Y. 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software 27(3):122.
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205218.
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the northern hemisphere (1959–2003). Radiocarbon 46(3):12611272.
Levin, I, Kromer, B, Hammer, S. 2013. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65(0.
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646.
Levin, I, Schuchard, J, Kromer, B, Muennich, K. 1989. The continental European Suess effect. Radiocarbon 31(3):431440.
Manning, MR, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.
Meijer, HAJ, Pertuisot, MH, van der Plicht, J. 2006. High-accuracy 14C measurements for atmospheric CO2 samples by AMS. Radiocarbon 48(3):355372.
Naegler, T, Levin, I. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research: Atmospheres 111(D12):n/a–n/aD12311.
Nijman, TE, Palm, FC. 1990. Predictive accuracy gain from disaggregate sampling in ARIMA models. Journal of Business & Economic Statistics 8(4):405415.
Nydal, R, Loevseth, K. 1996. Carbon-14 Measurements in Atmospheric CO2 from Northern and Southern Hemisphere Sites, 1962-1993. Oak Ridge National Laboratory.
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168192.
Park, JH, Kim, JC, Cheoun, MK, Kim, IC, Youn, M, Liu, YH, Kim, ES. 2002. 14C level at Mt Chiak and Mt Kyeryong in Korea. Radiocarbon 44(2):559566.
Rakowski, AZ, Nadeau, M-J, Nakamura, T, Pazdur, A, Pawełczyk, S, Piotrowska, N. 2013. Radiocarbon method in environmental monitoring of CO2 emission. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294:503–507. Proceedings of the Twelfth International Conference on Accelerator Mass Spectrometry, Wellington, New Zealand, 20–25 March 2011.
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16(4):59–159–19.
Rossana, RJ, Seater, JJ. 1995. Temporal aggregation and economic time series. Journal of Business & Economic Statistics 13(4):441451.
Sierra, CA, Müller, M, Trumbore, SE. 2014. Modeling radiocarbon dynamics in soils: SoilR, version 1.1. Geosci. Model Dev 7(7):19191931, GMD.
Steinhof, A, Adamiec, G, Gleixner, G, Wagner, T, van Klinken, G. 2004. The new 14C analysis laboratory in Jena, Germany. Radiocarbon 46(1):5158.
Suess, HE. 1953. Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea. In: Nuclear Processes in Geological Settings. National Research Council Publications. p 52–6.
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415417.
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):713, Accelerator Mass Spectrometry.
Tans, PP, de Jong, AFM, Mook, WG. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280(5725):826828.
Trumbore, SE, Sierra, CA, Hicks Pries, CE. 2016. Radiocarbon nomenclature, theory, models, and interpretation: Measuring age, determining cycling rates, and tracing source pools. In: Schuur AE, Druffel E, Trumbore ES, editors. Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques. Springer International Publishing. p 45–82.
Turnbull, J, Rayner, P, Miller, J, Naegler, T, Ciais, P, Cozic, A. 2009. On the use of 14CO2 as a tracer for fossil fuel CO 2 : Quantifying uncertainties using an atmospheric transport model. Journal of Geophysical Research: Atmospheres 114(D22):D22302.
Turnbull, JC, Lehman, SJ, Miller, JB, Sparks, RJ, Southon, JR, Tans, PP. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research: Atmospheres 112(D11):D11310.
Vogel, JC, Marais, M. 1971. Pretoria radiocarbon dates I. Radiocarbon 13(2):378394.
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Nĕmec, M, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52(2):252262.
Yamada, Y, Yasuike, K, Komura, K. 2005. Temporal variation of carbon-14 concentration in tree-ring cellulose for the recent 50 years. Journal of Nuclear and Radiochemical Sciences 6(2):135138.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Sierra supplementary material
Sierra supplementary material 1

 Unknown (45 KB)
45 KB


Full text views

Total number of HTML views: 6
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between 25th April 2018 - 24th May 2018. This data will be updated every 24 hours.