Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T00:12:15.807Z Has data issue: false hasContentIssue false

High-Precision Decadal Calibration of the Radiocarbon Time Scale, AD 1950–6000 BC

Published online by Cambridge University Press:  18 July 2016

Minze Stuiver
Affiliation:
Department of Geological Sciences and Quaternary Research Center, University of Washington Seattle, Washington 98195 USA
Bernd Becker
Affiliation:
Institute für Botanik, Universität Hohenheim, D-7000 Stuttgart 70 Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The radiocarbon ages of dendrochronologically-dated wood samples, each covering 10 years, are now available for the cal AD 1950–6000 BC age range. The decadal calibration curve constructed from these data comprises 1) the previously published AD 1950–2500 BC portion (Stuiver & Becker 1986), to which minor 14C age corrections were applied, and 2) the new 2500–6000 BC extension.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Becker, B. 1993 An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon, this issue.CrossRefGoogle Scholar
Ferguson, C. W. and Graybill, D. A. 1983 Dendrochronology of bristlecone pine: A progress report. in Stuiver, M. and Kra, R. S., Proceedings of the 11th International Radiocarbon Conference. Radiocarbon 25(2): 287288.CrossRefGoogle Scholar
Kromer, B., Rhein, M., Bruns, M., Schoch-Fischer, H., Münnich, K. O., Stuiver, M. and Becker, B. 1986 Radiocarbon calibration data for the 6th to the 8th Millennia BC. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 954960.CrossRefGoogle Scholar
Pearson, G. W. and Stuiver, M. 1993 High-precision bidecadal calibration of the radiocarbon time scale, 500-2500 BC. Radiocarbon, this issue.Google Scholar
Pilcher, J. R., Baillie, M. G. L., Schmidt, B. and Becker, B. 1984 A 7,272-year tree-ring chronology for western Europe. Nature 312: 150152.CrossRefGoogle Scholar
Scott, E. M., Long, A. and Kra, R., eds., 1990 Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories. Radiocarbon 32(3): 253397.Google Scholar
Stuiver, M. 1982 A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24(1): 126.CrossRefGoogle Scholar
Stuiver, M. and Becker, B. 1986 High-precision decadal calibration of the radiocarbon time scale, AD 1950-2500 BC. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 863910.Google Scholar
Stuiver, M. and Braziunas, T. F. 1993 Modeling radiocarbon ages of marine samples back to 10,000 BC. Radiocarbon, this issue.Google Scholar
Stuiver, M. and Pearson, G. W. 1992 Calibration of the radiocarbon time scale, 2500-5000 BC. in Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer Verlag: 1933.Google Scholar
Stuiver, M. and Pearson, G. W. 1993 High-precision calibration of the radiocarbon time scale, AD 1950-500 BC and 2500-6000 BC. Radiocarbon, this issue.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P.J. 1993 Extended 14C data base and revised CALIB radiocarbon age calibration program. Radiocarbon, this issue.Google Scholar
Vogel, J.C., Fuls, A., Visser, E. and Becker, B. 1993 Pretoria calibration curve for short-lived samples, 1930 BC-3350 BC. Radiocarbon, this issue.CrossRefGoogle Scholar