Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-nrv4r Total loading time: 0.347 Render date: 2021-07-25T22:31:52.152Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP

Published online by Cambridge University Press:  18 July 2016

P J Reimer
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom.
M G L Baillie
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom.
E Bard
Affiliation:
CEREGE, Collège de France, CNRS, IRD, University Paul-Cézanne Aix-Marseille, Europole de l'Arbois BP 80, 13545 Aix en Provence Cedex 4, France.
A Bayliss
Affiliation:
English Heritage, 1 Waterhouse Square, 138-142 Holborn, London EC1N 2ST, United Kingdom.
J W Beck
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721, USA.
P G Blackwell
Affiliation:
Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom.
C Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, United Kingdom.
C E Buck
Affiliation:
Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom.
G S Burr
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA.
R L Edwards
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minnesota 55455-0219, USA.
M Friedrich
Affiliation:
Institute of Botany (210), Hohenheim University, D-70593 Stuttgart, Germany. Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
P M Grootes
Affiliation:
Leibniz Laboratory, Christian-Albrechts-Universität zu Kiel 24098, Germany.
T P Guilderson
Affiliation:
Center for Accelerator Mass Spectrometry L-397, Lawrence Livermore National Laboratory, Livermore, California 94550, USA. Ocean Sciences Department, University of California-Santa Cruz, Santa Cruz, California 95064, USA.
I Hajdas
Affiliation:
Labor für Ionenstrahlphysik, ETH, 8092 Zurich, Switzerland.
T J Heaton
Affiliation:
Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom.
A G Hogg
Affiliation:
Radiocarbon Dating Laboratory, University of Waikato, Private Bag 3105, Hamilton, New Zealand.
K A Hughen
Affiliation:
Woods Hole Oceanographic Institution, Department of Marine Chemistry & Geochemistry, Woods Hole, Massachusetts 02543, USA.
K F Kaiser
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland. Department of Geography, University of Zurich-Irchel, 8057 Zurich, Switzerland.
B Kromer
Affiliation:
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
F G McCormac
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom.
S W Manning
Affiliation:
Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, Cornell Tree Ring Laboratory, Cornell University, Ithaca, New York 14853, USA.
R W Reimer
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom.
D A Richards
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom.
J R Southon
Affiliation:
Department of Earth System Science, University of California-Irvine, Irvine, California 92697, USA.
S Talamo
Affiliation:
Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6 D-04103 Leipzig, Germany.
C S M Turney
Affiliation:
School of Geography, University of Exeter, Exeter EX4 4RJ, United Kingdom.
J van der Plicht
Affiliation:
Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands. Faculty of Archaeology, Leiden University, P.O.Box 9515, 2300 RA Leiden, Netherlands.
C E Weyhenmeyer
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244-1070, USA.
Rights & Permissions[Opens in a new window]

Abstract

The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Abrantes, F. 2000. 200,000 yr diatom records from Atlantic upwelling sites reveal maximum productivity during LGM and a shift in phytoplankton community structure at 185,000 yr. Earth and Planetary Science Letters 176(1):716.CrossRefGoogle Scholar
Ascough, PL, Cook, GT, Dugmore, AJ. 2009. North Atlantic marine 14C reservoir effects: implications for late-Holocene chronological studies. Quaternary Geochronology 4(3):171–80.CrossRefGoogle Scholar
Austin, WEN, Wilson, LJ, Hunt, JB. 2004. The age and chronostratigraphical significance of North Atlantic Ash Zone II. Journal of Quaternary Science 19(2): 137–46.CrossRefGoogle Scholar
Austin, WEN, Abbott, PM. In press. Comment: “Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies” by Blaauw, M, Wohlfarth, B, Christen, JA, Ampel, L, Veres, D, Hughen, K, Preusser, F, Svensson, A. Journal of Quaternary Science doi: 10.1002/jqs.1366.Google Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Bard, E, Ménot-Combes, G, Rostek, F. 2004a. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):1189–202.CrossRefGoogle Scholar
Bard, E, Rostek, F, Ménot-Combes, G. 2004b. A better radiocarbon clock. Science 303(5655):178–9.CrossRefGoogle ScholarPubMed
Bard, E, Rostek, F, Ménot-Combes, G. 2004c. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204–14.CrossRefGoogle Scholar
Bard, E, Menot, G, Licari, L. 2009. Radiocarbon calibration-comparison records based on marine sediments from the Pakistan and Iberian Margins. Geophysical Research Abstracts 11:EGU20096985.Google Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Herrera-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292(5526): 2453–8.CrossRefGoogle Scholar
Björck, S, Koç, N, Skog, G. 2003. Consistently large marine reservoir ages in the Norwegian Sea during the Last Deglaciation. Quaternary Science Reviews 22(5–7):429–35.CrossRefGoogle Scholar
Blaauw, M, Wohlfarth, B, Christen, JA, Ampel, L, Veres, D, Hughen, KA, Preusser, F, Svensson, A. 2009. Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies. Journal of Quaternary Science 24: doi: 10.1002/jqs.330.Google Scholar
Blackwell, PG, Buck, CE. 2008a. Estimating radiocarbon calibration curves: rejoinder. Bayesian Analysis 3(2):263–8.Google Scholar
Blackwell, PG, Buck, CE. 2008b. Estimating radiocarbon calibration curves. Bayesian Analysis 3(2):225–48.CrossRefGoogle Scholar
Blockley, SPE, Housley, RA. 2009. Calibration commentary. Radiocarbon 51(1):287–90.CrossRefGoogle Scholar
Bond, GC, Lotti, R. 1995. Iceberg discharges into the North-Atlantic on millennial time scales during the last glaciation. Science 267(5200):1005–10.CrossRefGoogle Scholar
Bronk Ramsey, C, Buck, CE, Manning, SW, Reimer, PJ, van der Plicht, J. 2006. Developments in radiocarbon calibration for archaeology. Antiquity 80(310):783–98.Google Scholar
Bronk Ramsey, C, Nakagawa, T, Pearson, E, Payne, R, Brock, F, Staff, RA, Bryant, C, Lamb, H, Marshall, M, Yokoyoma, Y, Tyler, J, Brauer, A, Schlolaut, G, Tarasov, P. 2008. Suigetsu-2006: preliminary AMS radiocarbon results and age depth model. Paper presented at the AMS-11: Eleventh International Conference on Accelerator Mass Spectrometry. 14–19 September 2008, Rome.Google Scholar
Buck, CE, Blackwell, PG. 2004. Formal statistical models for estimating radiocarbon calibration curves. Radiocarbon 46(3):1093–102.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Taylor, FW, Récy, J, Edwards, RL, Cabioch, G, Corrège, T, Donahue, DJ, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1093–105.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Corrège, T, Cabioch, G, Taylor, FW, Donahue, DJ. 2009. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51(1):319–35.CrossRefGoogle Scholar
Butzin, M, Prange, M, Lohmann, G. 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth and Planetary Science Letters 235(1–2):4561.CrossRefGoogle Scholar
Cheng, H, Adkins, J, Edwards, RL, Boyle, EA. 2000. U-Th dating of deep-sea corals. Geochimica et Cosmochimica Acta 64(14):2401–16.CrossRefGoogle Scholar
Clark, PU, Pisias, NG, Stocker, TF, Weaver, AJ. 2002. The role of the thermohaline circulation in abrupt climate change. Nature 415(6874):863–9.CrossRefGoogle Scholar
Coste, B, Fiuza, AFG, Minas, HJ. 1986. Conditions hydrologiques et chimiques associées à l'upwelling côtier du Portugal en fin d'été. Oceanologica Acta 9(2):149–57.Google Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):1127–60.CrossRefGoogle Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahljensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjörnsdóttir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–20.CrossRefGoogle Scholar
Davies, SM, Wastegård, S, Rasmussen, TL, Svensson, A, Johnsen, SJ, Steffensen, JP, Andersen, KK. 2008. Identification of the Fugloyarbanki tephra in the NGRIP ice core: a key tie-point for marine and ice-core sequences during the last glacial period. Journal of Quaternary Science 23(5):409–14.CrossRefGoogle Scholar
de Vries, H. 1958. Variation in concentration of radiocarbon with time and location on Earth. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen Series B-Palaeontology Geology Physics Chemistry Anthropology B61:94102.Google Scholar
de Vries, H. 1959. Measurement and use of natural radiocarbon. In: Abelson, PH, editor. Researches in Geochemistry. New York: John Wiley & Sons. p 169–89.Google Scholar
Delanghe, D, Bard, E, Hamelin, B. 2002. New TIMS constraints on the uranium-238 and uranium-234 in sea-waters from the main ocean basins and the Mediterranean Sea. Marine Chemistry 80(1):7993.CrossRefGoogle Scholar
Druffel, ERM. 1989. Decade time scale variability of ventilation in the North Atlantic: high-precision measurements of bomb radiocarbon in banded corals. Journal of Geophysical Research-Oceans 94(C3):3271–85.CrossRefGoogle Scholar
Druffel, ERM, Robinson, LF, Griffin, S, Halley, RB, Southon, JR, Adkins, JF. 2008. Low reservoir ages for the surface ocean from mid-Holocene Florida corals. Paleoceanography 23, PA2209, doi: 10.1029/2007PA001527.CrossRefGoogle Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962–8.CrossRefGoogle ScholarPubMed
Eiriksson, J, Larsen, G, Knudsen, KL, Heinemeier, J, Símonarson, LA. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23(20–22):2247–68.CrossRefGoogle Scholar
Esat, TM, Yokoyama, Y. 2006. Variability in the uranium isotopic composition of the oceans over glacial-interglacial timescales. Geochimica et Cosmochimica Acta 70(16):4140–50.CrossRefGoogle Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):1781–96.CrossRefGoogle Scholar
Fontugne, M, Carré, M, Bentaleb, I, Julien, M, Lavallée, D. 2004. Radiocarbon reservoir age variations in the South Peruvian Upwelling during the Holocene. Radiocarbon 46(2):531–7.CrossRefGoogle Scholar
Franke, J, Paul, A, Schultz, M. 2008. Modeling variations of marine reservoir ages during the last 45 000 years. Climate of the Past 4:125–36.CrossRefGoogle Scholar
Friedrich, M, Lucke, A, Hanisch, S. 2004a. Late Glacial environmental and climatic changes from synchronized terrestrial archives of Central Europe: the Network PROSIMUL. PAGES News 12(2):27–9.Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004b. The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.CrossRefGoogle Scholar
Genty, D, Vokal, B, Obelić, B, Massault, M. 1998. Bomb 14C time history recorded in two modern stalagmites—importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160(3–4):795809.CrossRefGoogle Scholar
Genty, D, Massault, M, Gilmour, M, Baker, A, Verheyden, S, Kepens, E. 1999. Calculation of past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/Th ages on two Holocene stalagmites. Radiocarbon 41(3):251–70.CrossRefGoogle Scholar
Giaccio, B, Hajdas, I, Peresani, M, Fedele, FG, Isai, R. 2006. The Campanian Ignimbrite (c. 40 ka BP) and its relevance for the timing of the Middle to Upper Palaeolithic shift: timescales and regional correlations. In: Conard, NJ, editor. When Neanderthals and Modern Humans Met. Tübingen Publications in Prehistory. Tübingen: Kerns Verlag. p 343–75.Google Scholar
Griggs, CB, Kromer, B. 2008. Wood macrofossils and dendrochronology of three mastodon sites in upstate New York. Palaeontographica Americana(61):4961.Google Scholar
Grootes, PM, Stuiver, M, White, JWC, Johnsen, S, Jouzel, J. 1993. Comparison of oxygen-isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366(6455):552–4.CrossRefGoogle Scholar
Guilderson, TP, Schrag, DP, Goddard, E, Kashgarian, M, Wellington, GM, Linsley, BK. 2000. Southwest subtropical Pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42(2):249–56.CrossRefGoogle Scholar
Heaton, TJ, Blackwell, PG, Buck, CE. 2009. A Bayesian approach to the estimation of radiocarbon calibration curves: the IntCal09 methodology. Radiocarbon, this issue.Google Scholar
Hoffmann, DL, Beck, JW, Richards, DA, Smart, PL, Singarayer, JS, Ketchmark, T, Hawkesworth, CJ. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289(1–2):110.CrossRefGoogle Scholar
Hogg, AG, Turney, CSM, Palmer, JG, Fifield, LK, Baillie, MGL. 2006. The potential for extending IntCal04 using OIS-3 New Zealand sub-fossil Kauri. PAGES News 14(3):11–2.Google Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Peterson, LC, Trumbore, S. 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380(6569):51–4.CrossRefGoogle Scholar
Hughen, K, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004a. C-14 activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.CrossRefGoogle Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Ramsey, CB, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004b. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.CrossRefGoogle Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived C-14 calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24): 3216–27.CrossRefGoogle Scholar
Indermuhle, A, Stocker, TF, Joos, F, Fischer, H, Smith, HJ, Wahlen, M, Deck, B, Mastroianni, D, Tschumi, J, Blunier, T, Meyer, R, Stauffer, B. 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–6.Google Scholar
Jöris, O, Weninger, B. 1998. Extension of the 14C calibration curve to ca. 40,000 cal BC by synchronizing Greenland 18O/16O ice core records and North Atlantic foraminifera profiles: a comparison with U/Th coral data. Radiocarbon 40(1):495504.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the C-14 calibration curve. Radiocarbon 40(1):505–15.Google Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3):369–80.CrossRefGoogle Scholar
Klein, J, Lerman, JC, Damon, PE, Ralph, EK. 1982. Calibration of radiocarbon dates: tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale. Radiocarbon 24(2):103–50.CrossRefGoogle Scholar
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, F, Remmele, S, Schaub, M, Talamo, S. 2004. Late Glacial 14C ages from a floating 1382-ring pine chronology. Radiocarbon 46(3):1203–9.CrossRefGoogle Scholar
Kromer, B, Manning, S, Friedrich, M, Talamo, S. 2009. 14C calibration in the 2nd and 1st millennium BC—Eastern Mediterranean Radiocarbon Comparison Project. Paper presented at 20th International Radiocarbon Conference. 31 May-5 June 2009. Kona, Hawaii.Google Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.CrossRefGoogle Scholar
McCormac, FG, Bayliss, A, Brown, DM, Reimer, PJ, Thompson, MM. 2008. Extended radiocarbon calibration in the Anglo-Saxon period, AD 395–485 and AD 735–805. Radiocarbon 50(1):11–7.CrossRefGoogle Scholar
McGregor, HV, Gagan, MK, McCulloch, MT, Hodge, E, Mortimer, G. 2008. Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quaternary Geochronology 3(3):213–25.CrossRefGoogle Scholar
Meissner, KJ. 2007. Younger Dryas: a data to model comparison to constrain the strength of the overturning circulation. Geophysical Research Letters 34, L21705, doi: 10.1029/2007GL031304.CrossRefGoogle Scholar
Mellars, P. 2006a. Archaeology: progress and pitfalls in radiocarbon dating (reply). Nature 443(7108):E4.CrossRefGoogle Scholar
Mellars, P. 2006b. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439(7079):931–5.CrossRefGoogle ScholarPubMed
Millard, AR. 2008. Estimating radiocarbon calibration curves: comment on article by Blackwell and Buck. Bayesian Analysis 3(2):255–62.CrossRefGoogle Scholar
Monge Soares, AM. 1993. The 14C content of marine shells: evidence for variability in coastal upwelling off Portugal during the Holocene. In: Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and Atmosphere. Vienna: International Atomic Energy Agency. p 471–85.Google Scholar
Mortlock, RA, Fairbanks, RG, Chiu, TC, Rubenstone, J. 2005. 230Th/234U/238U and 231Pa/235U ages from a single fossil coral fragment by multi-collector magnetic-sector inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta 69(3):649–57.CrossRefGoogle Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1:263–7.CrossRefGoogle Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92.CrossRefGoogle Scholar
Pailler, D, Bard, E. 2002. High frequency palaeoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the Iberian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 181(4):431–52.CrossRefGoogle Scholar
Palmer, J, Lorrey, A, Turney, CSM, Hogg, A, Baillie, M, Fifield, K, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779–87.CrossRefGoogle Scholar
Paterne, M, Ayliffe, LK, Arnold, M, Cabioch, G, Tisnerat-Laborde, N, Hatté, C, Douville, E, Bard, E. 2004. Paired 14C and 230Th/U dating of surface corals from the Marquesas and Vanuatu (sub-equatorial Pacific) in the 3000 to 15,000 cal yr interval. Radiocarbon 46(2):551–66.CrossRefGoogle Scholar
Pearson, GW, Stuiver, M. 1986. High-precision calibration of the radiocarbon time scale, 500–2500 BC. Radiocarbon 28(2B):839–62.CrossRefGoogle Scholar
Pearson, GW, Stuiver, M. 1993. High-precision bidecadal calibration of the radiocarbon time scale, 500–2500 BC. Radiocarbon 35(1):2533.CrossRefGoogle Scholar
Reimer, PJ, Hughen, KA, Guilderson, TP, McCormac, G, Baillie, MGL, Bard, E, Barratt, P, Beck, JW, Buck, CE, Damon, PE, Friedrich, M, Kromer, B, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, van der Plicht, J. 2002. Preliminary report of the first workshop of the IntCal04 radiocarbon calibration/comparison working group. Radiocarbon 44(3):653–61.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.CrossRefGoogle Scholar
Ritz, SP, Stocker, TF, Müller, SA. 2008. Modeling the effect of abrupt ocean circulation change on marine reservoir age. Earth and Planetary Science Letters 268(1–2):202–11.CrossRefGoogle Scholar
Roark, EB, Guilderson, TP, Dunbar, RB, Fallon, SJ, Mucciarone, DA. 2009. Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences of the United States of America 106(13):5204–8.CrossRefGoogle ScholarPubMed
Robinson, LF, Belshaw, NS, Henderson, GM. 2004a. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas. Geochimica et Cosmochimica Acta 68(8):1777–89.CrossRefGoogle Scholar
Robinson, LF, Henderson, GM, Hall, L, Matthews, I. 2004b. Climatic control of riverine and seawater uranium-isotope ratios. Science 305(5685):851–4.CrossRefGoogle Scholar
Salgueiro, E, Voelker, AHL, de Abreu, L, Abrantes, F, Meggers, H, Wefer, G. In press. Temperature and productivity changes off the western Iberian Margin during the last 150 ky. Quaternary Science Reviews doi: 10.1016/j.quascirev.2009.11.013 Google Scholar
Sarnthein, M, Grootes, PM, Kennett, JP, Nadeau, M-J. 2007. 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Schmittner, A, Chiang, J, Hemming, S, editors. Ocean Circulation: Mechanisms and Impacts. American Geophysical Union. p 175–96.Google Scholar
Schaub, M, Buntgen, U, Kaiser, KF, Kromer, B, Talamo, S, Andersen, KK, Rasmussen, SO. 2008a. Lateglacial environmental variability from Swiss tree rings. Quaternary Science Reviews 27(1–2):2941.CrossRefGoogle Scholar
Schaub, M, Kaiser, KF, Frank, DC, Buntgen, U, Kromer, B, Talamo, S. 2008b. Environmental change during the Allerød and Younger Dryas reconstructed from Swiss tree-ring data. Boreas 37(1):7486.CrossRefGoogle Scholar
Shackleton, NJ, Fairbanks, RG, Chiu, T-C, Parrenin, F. 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23(14–15):1513–22.CrossRefGoogle Scholar
Singarayer, JS, Richards, DA, Ridgwell, A, Valdes, PJ, Austin, WEN, Beck, JW. 2008. An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters 35, L14707, doi: 10.1029/2008GL034074.CrossRefGoogle Scholar
Singer, BS, Guillou, H, Jicha, BR, Laj, C, Kissel, C, Beard, BL, Johnson, CM. 2009. 40Ar/39Ar, K-Ar and 230Th-238U dating of the Laschamp excursion: a radioisotopic tie-point for ice core and climate chronologies. Earth and Planetary Science Letters 286(1–2):80–8.CrossRefGoogle Scholar
Skinner, LC. 2008. Revisiting the absolute calibration of the Greenland ice-core age-scales. Climate of the Past 4(4):295302.CrossRefGoogle Scholar
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon—evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.CrossRefGoogle Scholar
Staff, RA, Bronk Ramsey, C, Bryant, C, Brock, F, Lamb, H, Marshall, M, Brauer, A, Schlolaut, G, Tarasov, P, Payne, R, Pearson, E, Yokoyama, Y, Tyler, J, Haraguchi, T, Gotanda, K, Yonenobu, H, Nakagawa, T. 2009. Suigetsu 2006: a wholly terrestrial radiocarbon calibration curve. Paper presented at 20th International Radiocarbon Conference. 31 May–5 June 2009. Kona, Hawaii.Google Scholar
Stambaugh, MC, Guyette, RP. 2009. Progress in constructing a long oak chronology from the central United States. Tree-Ring Research 65(2):147–56CrossRefGoogle Scholar
Stuiver, M. 1971. Evidence for the variation of atmospheric 14C content in the Late Quaternary. In: Turekian, KK, editor. The Late Cenozoic Glacial Ages. New Haven: Yale University Press.Google Scholar
Stuiver, M. 1982. A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24(1):126.CrossRefGoogle Scholar
Stuiver, M, Becker, B. 1986. High-precision decadal calibration of the radiocarbon time scale, AD 1950–2500 BC. Radiocarbon 28(2B):863910.CrossRefGoogle Scholar
Stuiver, M, Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35(1):3565.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Suess, HE. 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8:534–40.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.CrossRefGoogle Scholar
Suess, HE. 1965. Secular variations of the cosmic-ray produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research 70:5937–52.CrossRefGoogle Scholar
Taylor, RE, Southon, J, Des Lauriers, MR. 2007. Holocene marine reservoir time series ΔR values from Cedros Island, Baja California. Radiocarbon 49(2):899904.CrossRefGoogle Scholar
Turney, CSM, Roberts, RG, Jacobs, Z. 2006. Archaeology: progress and pitfalls in radiocarbon dating. Nature 443(7108):E3.CrossRefGoogle ScholarPubMed
Turney, CSM, Fifield, LK, Palmer, JG, Hogg, AG, Baillie, MGL, Galbraith, R, Ogden, J, Lorrey, A, Tims, SG. 2007. Towards a radiocarbon calibration for oxygen isotope stage 3 using New Zealand kauri (Agathis australis). Radiocarbon 49(2):447–57.CrossRefGoogle Scholar
van Andel, TH. 2005. The ownership of time: approved 14C calibration or freedom of choice? Antiquity 79(306):944–8.CrossRefGoogle Scholar
van der Plicht, J, Beck, JW, Bard, E, Baillie, MGL, Blackwell, PG, Buck, CE, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Ramsey, CB, Reimer, PJ, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Stuiver, M, Weyhenmeyer, CE. 2004. NotCal04—comparison/calibration 14C records 26–50 cal kyr BP. Radiocarbon 46(3):1225–38.CrossRefGoogle Scholar
Voelker, AHL, Grootes, PM, Nadeau, M-J, Sarnthein, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.CrossRefGoogle Scholar
Walton, A, Baxter, MS. 1968. Calibration of the radiocarbon time scale. Nature 220(5166):475–6.CrossRefGoogle ScholarPubMed
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, CC, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–8.CrossRefGoogle ScholarPubMed
Weninger, B, Jöris, O. 2004. Glacial radiocarbon age calibration: the CalPal program. In: Higham, T, Bronk Ramsey, C, Owen, C, editors. Radiocarbon and Archaeology. Oxford: Oxford University School of Archaeology. p 915.Google Scholar
Weninger, B, Jöris, O. 2008. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55(5):772–81.CrossRefGoogle ScholarPubMed
Weyhenmeyer, CE, Burns, SJ, Fleitmann, D, Kramers, JD, Matter, A, Waber, HN, Reimer, PJ. 2003. Changes in atmospheric 14C between 55 and 42 ky BP recorded in a stalagmite from Socotra Island, Indian Ocean. EOS Transactions 84(46): Fall Meeting Supplement. Abstract PP32B–0298.Google Scholar
Wohlfarth, B, Possnert, G. 2000. AMS radiocarbon measurements from the Swedish varved clays. Radiocarbon 42(3):323–33.CrossRefGoogle Scholar
Stuiver, M, Braziunas, T. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3(4):289305.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):11271151.CrossRefGoogle Scholar
Pearson, GW, Pilcher, JR, Baillie, MGL, Corbett, DM, Qua, F. 1986. High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840 to 5210 BC. Radiocarbon 28(2B):911934.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25(9):13211324.CrossRefGoogle Scholar
Hogg, AG, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633640.CrossRefGoogle Scholar
McCormac, FG, Bayliss, A, Baillie, MGL, Brown, DM. 2004. Radiocarbon calibration in the Anglo-Saxon period: AD 495–725. Radiocarbon 46(3):11231125.CrossRefGoogle Scholar
Pearson, GW, Becker, B, Qua, F. 1993. High-precision 14C measurement of German and Irish oaks to show the natural 14C variations from 7890 to 5000 BC. Radiocarbon 35(1):93104.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25(9):13211324.CrossRefGoogle Scholar
Hogg, AG, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633640.CrossRefGoogle Scholar
de Jong, AFM, Becker, B, Mook, WG. 1986. High-precision calibration of the radiocarbon time scale, 3930–3230 cal BC. Radiocarbon 28(2B):939941.CrossRefGoogle Scholar
de Jong, AFM, Becker, B, Mook, WG. 1989. Corrected calibration of the radiocarbon time scale, 3904–3203 cal BC. Radiocarbon 31(2):201210.CrossRefGoogle Scholar
Vogel, JC, van der Plicht, J. 1993. Calibration curve for short-lived samples, 1900–3900 BC. Radiocarbon 35(1):8791.CrossRefGoogle Scholar
Kromer, B, Becker, B. 1993. German oak and pine 14C calibration, 7200–9439 BC. Radiocarbon 35(1):125135.CrossRefGoogle Scholar
Kromer, B, Spurk, M. 1998. Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon 40(3):11171125.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294(5551):25292532.CrossRefGoogle ScholarPubMed
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.CrossRefGoogle Scholar
Vogel, JC, van der Plicht, J. 1993. Calibration curve for short-lived samples, 1900–3900 BC. Radiocarbon 35(1):8791.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345(6274):405–110.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):10851092.CrossRefGoogle Scholar
Bard, E, Ménot-Combes, G, Rostek, F. 2004. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):11891202.CrossRefGoogle Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):17811796.CrossRefGoogle Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962968.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Taylor, FW, Récy, J, Edwards, RL, Cabioch, G, Corrège, T, Donahue, DJ, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):10931105.CrossRefGoogle Scholar
Burr, GS, Galang, C, Taylor, FW, Gallup, CD, Edwards, RL, Cutler, KB, Quirk, B. 2004. Radiocarbon results from a 13-kyr BP coral from the Huon Peninsula, Papua New Guinea. Radiocarbon 46(3):12111224 CrossRefGoogle Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):11271160.CrossRefGoogle Scholar
Hughen, KA, Southon, JR, Bertrand, CJH, Frantz, B, Zermeño, P. 2004. Cariaco Basin calibration update: revisions to calendar and 14C chronologies for core PL07–58PC. Radiocarbon 46(3):11611187.CrossRefGoogle Scholar
Hughen, KA, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202207.CrossRefGoogle ScholarPubMed
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):19511954.CrossRefGoogle ScholarPubMed
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):32163227.CrossRefGoogle Scholar
Bard, E, Rostek, F, Ménot-Combes, G. 2004. A better radiocarbon clock. Science 303(5655):178179.CrossRefGoogle Scholar
Bard, E, Rostek, F, Ménot-Combes, G. 2004. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204214.CrossRefGoogle Scholar
Shackleton, NJ, Fairbanks, RG, Chiu, T-C, Parrenin, F. 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23(14–15):15131522.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004b. The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):11111122.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10291058.CrossRefGoogle Scholar
You have Access
3626
Cited by