Skip to main content Accessibility help
×
Home

Isotope Analytical Characterization of Carbon-Based Nanocomposites

  • Tibor Szabó (a1) (a2), Róbert Janovics (a1), Marianna Túri (a1), István Futó (a1), István Papp (a1), Mihály Braun (a1), Krisztián Németh (a3), Gergő Péter Szekeres (a3), Anikó Kinka (a3), Anna Szabó (a3), Klára Hernádi (a3), Kata Hajdu (a1) (a2), László Nagy (a2) and László Rinyu (a1)...

Abstract

Carbon-based nanomaterials of different dimensions (1–3D, tubes, bundles, films, papers and sponges, graphene sheets) have been created and their characteristic properties have been discussed intensively in the literature. Due to their unique advantageous, tunable properties these materials became promising candidates in new generations of applications in many research laboratories and, recently, in industries as well. Protein-based bio-nanocomposites are referred to as materials of the future, which may serve as conceptual revolution in the development of integrated optical devices, e.g. optical switches, microimaging systems, sensors, telecommunication technologies or energy harvesting and biosensor applications. In our experiments, we designed various carbon-based nanomaterials either doped or not doped with nitrogen or sulfur during catalytic chemical vapor deposition synthesis. Radio- and isotope analytical studies have shown that the used starting materials, precursors and carriers have a strong influence on the geometry and physico-/chemical characteristics of the carbon nanotubes produced. After determining the 14C isotope constitution 53 m/m% balance was found in the reaction center protein/carbon nanotubes complex in a sensitive way that was prepared in our laboratory. The result is essential in determining the yield of conversion of light energy to chemical potential in this bio-hybrid system.

Copyright

Corresponding author

*Corresponding author. Email: szabo.tibor@med.u-szeged.hu.

References

Hide All
Bhushan, B. 2004. Handbook of Nanotechnology. Berlin: Springer.
Carmeli, I, Frolov, L, Carmeli, C, Richter, S. 2007. Photovoltaic activity of photosystem I-based self-assembled monolayer. Journal of American Chem. Soc. 129:1235212353.
Crespilho, FN. 2013. Nanobioelectrochemistry: from Implantable Biosensors to Green Power Generation. Berlin: Springer.
Darder, M, Pilar Aranda, P, Ruiz-Hitzky, E. 2007. Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater. 19:13091319.
Duclaux, L. 2002. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 40(10):17511764.
Evangelos, M. 2007. Nanocomposites: stiffer by design. Nature Materials 6(1):911.
Fábián, L, Wolff, EK, Oroszi, L, Ormos, P, Dér, A. 2010. Fast integrated optical switching by the protein bacteriorhodopsin. Appl. Phys. Lett. 97:023305.
Fábián, L, Heiner, Z, Mero, M, Kiss, M, Wolff, EK, Ormos, P, Osvay, K, Dér, A. 2011. Protein-based ultrafast photonic switching. Optics Express. 19:1886118870.
Fei, Z, Rodin, AS, Andreev, GO, Bao, W, McLeod, AS, Wagner, M, Zhang, LM, Zhao, Z, Thiemens, M, Dominguez, G, Fogler, MM, Castro Neto, AH, Lau, CN, Keilmann, F, Basov, DN. 2012. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:8285.
Flanagan, MT, Sloper, AN, Ashworth, RH. 1988. From electronic to opto-electronic biosensors: an engineering view. Analytica Chimica Acta. 213:2333.
Geranio, L, Hommes, G, Shahgaldian, P, Wirth-Heller, A, Pieles, U, Corvini, PFX. 2010. Radio (14C)- and fluorescent-doubly labeled silica nanoparticles for biological and environmental toxicity assessment. Environmental Chemistry Letters 8:247251.
Gerd, K. 2016. Biophotonics – Concepts to Application. Singapore: Springer.
Giraldo, JP, Landry, P, Faltermeier, SM, McNicholas, TP, Iverson, NM, Boghossian, AA, Reuel, NF, Hilmer, AJ, Sen, F, Brew, JA, Strano, MS. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13:400408.
Gottselig, N, Amelung, W, Kirchner, JW, Bol, R, Eugster, W, Granger, SJ, Hernández-Crespo, C, Herrmann, F, Keizer, JJ, Korkiakoski, M, Laudon, H, Lehner, I, Löfgren, S, Lohila, A, Macleod, CJA, Mölder, M, Müller, C, Nasta, P, Nischwitz, V, Paul-Limoges, E, Pierret, MC. 2017. Elemental composition of natural nanoparticles and fine colloids in European forest stream waters and their role as phosphorus carriers. Global Biogeochemical Cycles 31(10):15921607.
Hajdu K, Szabó T, Magyar M, Bencsik G, Németh Z, Nagy K, Forró L, Váró G, Hernádi K, Nagy L. 2011. Photosynthetic reaction center protein in nanostructures. Phys. Status Solidi B 248:2700–3.
Hajdu K, Gergely C, Martin M, Cloitre T, Zimányi L, Tenger K, Khoroshyy P, Palestino G, Agarwal V, Hernádi K, Németh Z, Nagy L. 2012. Porous silicon/photosynthetic reaction center hybrid nanostructure. Langmuir 28:11866–73.
Hartmann, V, Kothe, T, Poller, S, El-Mohsnawy, E, Nowaczyk, MM, Plumere, N, Schuhmann, W, Rogner, M. 2014. Phys. Chem. Chem. Phys. 16:11936.
Hou, S, Zhang, A, Su, M. 2016. Nanomaterials for Biosensing Applications. Nanomaterials 6:58.
Janovics, R. 2016. Development of radiocarbon-based measuring methods and their application for nuclear environmental monitoring [PhD thesis, in Hungarian]. University of Debrecen and Hungarian Academy of Sciences Institute for Nuclear Research. https://dea.lib.unideb.hu/dea/handle/2437/217939?locale-attribute=en.
Jones, MR. 2009. The petite purple photosynthetic powerpack. Biochem Soc. Trans., 37:400407.
Kamigaito, O. 1991. What can be improved by nanometer composites? J. Jpn. Soc. Powder Powder Metall. 38:315321.
Kietzke, T. 2007. Recent Advances in Organic Solar Cells. Adv. Opto Electron. Article ID 40285, 15 p.
Kim, H, Osofsky, M, Prokes, SM, Glembocki, OJ, Pique, A. 2013. Optimization of Al-doped ZnO films for low-loss plasmonic materials at telecommunications wavelengths. Appl. Phys. Lett. 102:171103.
Kim, J, Naik, GV, Shalaev, VM, Gavrilenko, AV, Dondapati, K, Gavrilenko, VI, Prokes, SM, Glembocki, OJ, Boltasseva, A. 2014. Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first principles theory and experiment. Phys Rev X. 3(4):041037.
Kneipp, J. 2017. Interrogating cells, tissues, and living animals with new generations of surface-enhanced Raman scattering probes and labels. ACS Nano. 11(2):11361141.
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295297.
Lee, CW, Kim, OY, Lee, JY. 2014. Organic materials for organic electronic devices. J. Ind. Eng. Chem. 20:11981208.
Li, S, Singh, J, Li, H, Ipsita, A, Banerjee, IA. 2011. Biosensor Nanomaterials. Wiley-VCH Verlag GmbH & Co. KgaA.
Liu, S, Li, GZ, Gao, YY, Xiao, ZR, Zhang, JF, Wang, QF, Zhang, XW, Wang, L. 2017. Doping carbon nanotubes with N, S, and B for electrocatalytic oxygen reduction: a systematic investigation on single, double, and triple doped modes. Catalysis Science & Technology 7(18):40074016.
Magyar, M, Hajdu, K, Szabó, T, Endrődi, B, Hernádi, K, Horváth, E, Magrez, A, Forró, L, Visy, C, Nagy, L. 2013. Sensing hydrogen peroxide by carbon nanotube/horse radish peroxidase bio-nanocomposite. Phys. Status Solidi B 250:25592563.
Major, I, Gyökös, B, Túri, M, Futó, I, Filep, Á, Hoffer, A, Furu, E, Jull, AJT, Molnár, M. 2017. Evaluation of an automated EA-IRMS method for total carbon analysis of atmospheric aerosol at HEKAL. Journal of Atmospheric Chemistry 75(1):8596.
Maróti, P, Wraight, CA. 1988. Flash-induced H+ binding by bacterial photosynthetic reaction centers: Comparison of spectrophotometric and conductimetric methods. Biochim Biophys Acta. 934:314328.
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, HA. 2013. EnvironMICADAS: A mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory on Environmental Studies (HEKAL). Radiocarbon 55(2):338344.
Nagy L, Hajdu K, Fisher B, Hernádi K, Nagy K, Vincze J. 2010. Photosynthetic reaction centres − from basic research to application possibilities. Not. Sci. Biol. 2:7–13.
Nagy, L, Magyar, M, Szabo, T, Hajdu, K, Giotta, L, Dorogi, M, Milano, F. 2014. Photosynthetic machineries in nano-systems. Current Protein & Peptide Science 15:363373.
Nemeth, K, Kovacs, L, Reti, B, Belina, K, Hernadi, K. 2017. The synthesis and investigation of SiO2-MgO coated multiwalled carbon nanotube/polymer composites. Journal of Nanoscience and Nanotechnology 17(8):54455452.
Orsovszki, G, Rinyu, L. 2015. Flame-sealed tube graphitization using zinc as the sole reduction agent: Precision improvement of EnvironMICADAS 14C measurements on graphite targets. Radiocarbon 57(3):979990.
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, HA. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnár, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS. Nuclear Instruments and Methods in Physics Research B 361:406413.
Roig, JL, Gómez-Vallejo, V, Gibson, PN. 2016. Isotopes in Nanoparticles: Fundamentals and Applications. Singapore: Pan Stanford Publishing.
Ruiz-Hitzky, E, Darder, M, Aranda, P. 2010. Progress in bionanocomposite materials. In: Cao G, Zhang Q, Brinker CJ, editors. Annual Review of Nanoresearch. Singapore: World Scientific Publishing. p 149189.
Scholes, GD, Fleming, GR, Olaya-Castro, A, van Grondelle, R. 2011. Lessons from nature about solar light harvesting. Nature Chem. 3:763774.
Sharma, A, Dasgupta, K, Patwardhan, A, Joshi, J. 2017. Kinetic study of nitrogen doped carbon nanotubes in a fixed bed. Chemical Engineering Science 170:756766.
Shoseyov, O, Levy, I. 2008. Nanobiotechnology: Bioinspired Devices and Materials of the Future. Totowa: Humana Press.
Siström, WR. 1960. A requirement for sodium in the growth of Rhodopseudomonas spheroides . J Gen Microbiol. 22:778785.
Synal, HA, Döbeli, M, Jacob, S, Stocker, M, Suter, M. 2004. Radiocarbon AMS towards its lower-energy limits. Nuclear Instruments and Methods in Physics Research B 223–224:339345.
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713.
Szabó, T, Nyerki, E, Tóth, T, Csekő, R, Magyar, M, Horváth, E, Hernádi, K, Endrődi, B, Visy, Cs, Forró, L, Nagy, L. 2015. Generating photocurrent by nanocomposites based on photosynthetic reaction centre protein. Phys. Status Solidi B252(11):26142619.
Szabó, T, Csekő, R, Hajdu, K, Nagy, K, Sipos, O, Galajda, P, Garab, Gy, Nagy, L. 2017. Sensing photosynthetic herbicides in an electrochemical flow cell. Photosynth. Res. 132(2):127134.
Szabó, T, Nyerki, E, Tóth, T, Csekő, R, Magyar, M, Horváth, E, Hernádi, K, Endrődi, B, Visy, C, Forró, L, Nagy, L. 2015a. Generating photocurrent by nanocomposites based on photosynthetic reaction centre protein. Phys. Status Solidi B 252:26142619.
Szabó, T, Magyar, M, Hajdu, K, Dorogi, M, Nyerki, E, Tóth, T, Lingvay, M, Garab, G, Hernádi, K, Nagy, L. 2015b. Structural and functional hierarchy in photosynthetic energy conversion—from molecules to nanostructures. Nanoscale Research Letters 10:458470.
Szekeres, GP, Nemeth, K, Kinka, A, Magyar, M, Reti, B. 2015. Controlled nitrogen doping and carboxyl functionalization of multi-walled carbon nanotubes. Phys. Status Solidi B 252(11):24722478.
Wilson, BC, Tuchin, VV, Tanev, S. 2005. Advances in Biophotonics. NATO Science Series: Life & Behavioural Sciences.
Wolf, EL, editor. 2004. Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience. Weinheim: Wiley-VCH.
Wong, MH, Giraldo, JP, Kwak, S-Y, Koman, VB, Sinclair, R, Lew, TTS, Gili, Bisker, Pingwei Liu, P, Strano, MS. 2017. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nature Materials 16:264272.
Yadav, RM, Shripathi, T, Srivastava, A, Srivastava, ON. 2005. Effect of ferrocene concentration on the synthesis of bamboo-shaped carbon-nitrogen nanotube bundles. J Nanosci Nanotechnol 5(5):820824.
Yang, Z, Dai, Y, Wang, S, Chenga, H, Yu, J. 2015. In situ incorporation of a S, N doped carbon/sulfur composite for lithium sulfur batteries. RSC Advances 5:7801778025.
Yedra, L, Eswara, S, Dowsett, D, Wirtz, T. 2016. In-situ isotopic analysis at nanoscale using parallel ion electron spectrometry: a powerful new paradigm for correlative microscopy. Scientific Reports 6:28705.

Keywords

Isotope Analytical Characterization of Carbon-Based Nanocomposites

  • Tibor Szabó (a1) (a2), Róbert Janovics (a1), Marianna Túri (a1), István Futó (a1), István Papp (a1), Mihály Braun (a1), Krisztián Németh (a3), Gergő Péter Szekeres (a3), Anikó Kinka (a3), Anna Szabó (a3), Klára Hernádi (a3), Kata Hajdu (a1) (a2), László Nagy (a2) and László Rinyu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed