Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T21:59:06.770Z Has data issue: false hasContentIssue false

Modeling Light Exposure of Quartz Grains During Mortar Making: Consequences for Optically Stimulated Luminescence Dating

Published online by Cambridge University Press:  12 May 2020

Pierre Guibert*
Affiliation:
IRAMAT-CRP2A, UMR5060 CNRS-Université Bordeaux Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607Pessac, France
Petra Urbanová
Affiliation:
IRAMAT-CRP2A, UMR5060 CNRS-Université Bordeaux Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607Pessac, France
Jean-Baptiste Javel
Affiliation:
IRAMAT-CRP2A, UMR5060 CNRS-Université Bordeaux Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607Pessac, France
Guillaume Guérin
Affiliation:
IRAMAT-CRP2A, UMR5060 CNRS-Université Bordeaux Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607Pessac, France
*
*Corresponding author. Email: pierre.guibert@u-bordeaux-montaigne.fr.

Abstract

Dating lime mortar shows great potential for establishing the chronology of a construction. The basic premise of mortar dating by optically stimulated luminescence (OSL) is that quartz in the sand used for making mortar has been optically zeroed during the preparation process (optical bleaching). The moment to be dated is the last exposure of sand grains to light, before being embedded within the masonry and hidden from light. However, the main problem is the frequent partial and heterogeneous bleaching of grains, and this led us to use the single grain technique (SG-OSL) systematically. Some theoretical and experimental aspects of a new statistical treatment (the EED model, as exponential exposure distribution) are detailed and discussed. Our experience shows that SG-OSL dating of mortars is successful in a majority of situations. In a minority of cases (around 15%) difficulties originate when there is inappropriate OSL behavior of grains, and thus OSL dating is not possible. In the other cases, good agreement was obtained between OSL ages and the reference ones for a series of samples from a variety of ages and situations, even in the case of poorly bleached material. Anyway, the present situation of OSL dating methodology justifies the systematic use of SG-OSL in the dating of masonry today.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

Bailiff, IK, Blain, S, Graves, CP, Gurling, T, Temple, S. 2010. Uses and recycling of brick in medieval and Tudor English buildings: insights from the application of luminescence dating and new avenues for further research. The Archaeological Journal 167:165196.10.1080/00665983.2010.11020796CrossRefGoogle Scholar
Blain, S, Guibert, P, Prigent, D, Lanos, P, Oberlin, C, Sapin, C, Bouvier, A, Dufresne, P. 2011. Dating methods combined to building archaeology: the contribution of thermoluminescence to the case of the bell tower of St Martin’s church, Angers (France). Geochronometria 38(1):5563.10.2478/s13386-011-0010-0CrossRefGoogle Scholar
Cunningham, AC, DeVries, DJ, Schaart, DR. 2012. Experimental and computational simulation of beta-dose heterogeneity in sediment. Radiation Measurements 47:10601067.10.1016/j.radmeas.2012.08.009CrossRefGoogle Scholar
Debonne, V. 2011. “Oudenaarde (prov. Oost-Vlaanderen), vml. abdijkerk van Maagdendale. Bouwhistorisch onderzoek van de dakkap”, Onroerend Erfgoed-Rapporten Bouwhistorisch Onderzoek 1, Brussels.Google Scholar
Feathers, JK, Johnson, J, Kembel, SR. 2008. Luminescence dating of monumental stone architecture at Chavín De Huántar, Perú. Journal of Archaeological Method and Theory 15(3):266296.CrossRefGoogle Scholar
Galbraith, RF, Roberts, RG, Laslett, GM, Yoshida, H, Olley, JM. 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: part I, experimental design and statistical models. Archaeometry 41(2):339364. doi:10.1111/j.1475-4754.1999.tb00987.x.CrossRefGoogle Scholar
Galli, A, Martini, M, Montanari, C, Sibilia, E. 2004. Datazione con termoluminescenza (TL) di strutture architettoniche della basilica di San Lorenzo Maggiore a Milano. La Costruzione della Basilica di San Lorenzo a Milano. Milan: L. Fieni Ed. p. 219223.Google Scholar
Gensbeitel, C. 2016. Sérignac sur Garonne, Eglise Notre-Dame, rapport de sondage 2016. Research report to the Service Régional d’Archéologie de Nouvelle Aquitaine. 26 p.Google Scholar
Godfrey-Smith, DI, Huntley, DJ, Chen, WH. 1988. Optical dating studies of quartz and feldspar sediment extracts. Quaternary Sciences Reviews 7:373380.10.1016/0277-3791(88)90032-7CrossRefGoogle Scholar
Goedicke, G. 2003. Dating historical calcite mortar by blue OSL: results from known age samples. Radiation Measurements 37:409415.CrossRefGoogle Scholar
Goedicke, G. 2011. Dating mortar by optically stimulated luminescence: a feasibility study. Geochronometria 38(1):4249.10.2478/s13386-011-0002-0CrossRefGoogle Scholar
Gueli, AM, Stella, G, Troja, SO, Burrafato, G, Fontana, D, Ristuccia, GM, Zuccarello, AR. 2010. Historical buildings: Luminescence dating of fine grains from bricks and mortar. Il Nuovo Cimento B 719. doi:10.1393/ncb/i2010-10892-4.Google Scholar
Guérin, G, Mayank, J, Thomsen, KJ, Murray, AS, Mercier, N. 2015. Modelling dose rate to single grains of quartz in well-sorted sand samples: The dispersion arising from the presence of potassium feldspars and implications for single grain OSL. Quaternary Geochronology 27:5265.10.1016/j.quageo.2014.12.006CrossRefGoogle Scholar
Guérin, G, Christophe, C, Philippe, A, Murray, A, Thomsen, K, Tribolo, C, Urbanová, P, Jain, M, Guibert, P, Mercier, N, Kreutzer, S, Lahaye, C. 2017. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model. Quaternary Geochronology 41:163173.10.1016/j.quageo.2017.04.002CrossRefGoogle Scholar
Guibert, P. 2019. R script: EED-MODEL v2.4, unpublished script in R language designed to determine Kappa, sigma and mean archaeological dose of single quartz grains of lime mortar sample according to the EED-Model (script available on demand).Google Scholar
Guibert, P, Bailiff, IK, Blain, S, Gueli, AM, Martini, M, Sibilia, E, Stella, G, Troja, SO. 2009. Luminescence dating of architectural ceramics from an early medieval abbey: the St-Philbert intercomparison (Loire-tlantique, France). Radiation Measurements 44(5–6):488493.10.1016/j.radmeas.2009.06.006CrossRefGoogle Scholar
Guibert, P, Bailiff, IK, Baylé, M, Blain, S, Bouvier, A, Büttner, S, Chauvin, A, Dufresne, P, Gueli, A, Lanos, P, Martini, M, Prigent, D, Sapin, C, Sibilia, E, Stella, G, Troja, SO. 2012. The use of dating methods for the study of building materials and constructions: state of the art and current challenges. Proceedings of the 4th International Congress on Construction History, Paris, 3–7 July 2012. p 469–480.Google Scholar
Guibert, P, Christophe, C, Urbanová, P, Guérin, G, Blain, S. 2017. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: Towards a new tool for single grain OSL dating of poorly bleached mortars. Radiation Measurements 107:4857. doi: 10.1016/j.radmeas.2017.10.003.CrossRefGoogle Scholar
Guibert, P, Urbanová, P, Lanos, P, Prigent, D. 2019. La détection du remploi de matériaux dans la construction ancienne : quel rôle pour les méthodes de datation?. Aedificare 2018-2, n°4:89118.Google Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Laura, L, Galli, A, Urbanová, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-Comparison Study (MODIS). Radiocarbon 59(6):18451858. doi:10.1017/RDC.2017.112.CrossRefGoogle Scholar
Haneca, K. 2010. “Verslag dendrochronologisch onderzoek. Dakkap van de voormalige kerk van de Abdij van Maagdendale, te Oudenaarde (prov. Oost-Vlaanderen)”. Rapporten Natuurwetenschappelijk Onderzoek VIOE 10, Brussels.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Maspero, F, Panzeri, L, Galli, A, Artioli, G, Addis, A, Secco, M, Boaretto, E, Moreau, Ch, Guibert, P, Urbanová, P, Czernik, J, Goslar, T. 2017. Mortar dating methodology: assessing recurrent issues and needs for other research. Radiocarbon 59(6). doi:10.1017/RDC.2017.129.CrossRefGoogle Scholar
Heydari, M, Guérin, G. 2018. OSL signal saturation and dose rate variability: Investigating the behaviour of different statistical models. Radiation Measurements 120:96103.10.1016/j.radmeas.2018.05.005CrossRefGoogle Scholar
Hüglin, S. 2011. Medieval mortar mixers revisited, Basle and beyond. Zeitschrift für Archäologie des Mittelalters, Jahrgang 39:189212.Google Scholar
Javel, JB, Urbanová, P, Guibert, P, Gaillard, H. 2019. Chronological study of the chapel Saint-Jean-Baptiste de la Cité in Périgueux, France: the contribution of mortar luminescence dating to history of local Christianity. Archeologia dell’architettura XXIV:97114.Google Scholar
Lanos, P, Philippe, A. 2017. Hierarchical Bayesian modeling for combining dates in archaeological context. J. de la Société Française de Statistique 158(2):7288.Google Scholar
Martini, M, Sibilia, E. 2006. Absolute dating of historical buildings: the contribution of thermoluminescence (TL). Journal of Neutron Research 14:6974.CrossRefGoogle Scholar
Mayya, YS, Morthekai, P, Murari, MK, Singhvi, AK. 2006. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41:10321039.CrossRefGoogle Scholar
Michel, A, Berranger, C, Bonnin, L, Cartron, I, Gensbeitel, C, Guez, JC, Guibert, P, Leulier, R, Lataste, JF, Lavaud, S, Regaldo, P, Schlicht, M. Urbanová, P. 2017. Saint Seurin de Bordeaux : un site, une basilique, une histoire. Editions In Situ, Ausonius éditions, EAN : 9782356132086.Google Scholar
Moropoulou, A, Zacharias, N, Delegou, ET, Apostolopoulou, M, Palamara, E, Kolaiti, A. 2018. OSL mortar dating to elucidate the construction history of the Tomb Chamber of the Holy Aedicule of the Holy Sepulchre in Jerusalem. Journal of Archaeological Science: Reports 19:8091. doi:10.1016/j.jasrep.2018.02.024.Google Scholar
Murray, AS, Wintle, AG. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32:5773.10.1016/S1350-4487(99)00253-XCrossRefGoogle Scholar
Nathan, RP, Thomas, PJ, Jain, M, Murray, AS, Rhodes, EJ. 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37, 305313.10.1016/S1350-4487(03)00008-8CrossRefGoogle Scholar
NIST. 2016. consultation of NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, October 2016.Google Scholar
Panzeri, L. 2013. Mortar and surface dating with optically stimulated luminescence (OSL): Innovative techniques for the age determination of buildings. Il Nuovo Cemento 36(4):205216.Google Scholar
Panzeri, L, Caroselli, M, Galli, A, Lugli, S, Martini, M, Sicilia, E. 2019. Mortar OSL and brick TL: The case study of the UNESCO world heritage site of Modena. Quaternary Geochronology 49:20362241. doi:10.1016/j.quageo.2018.03.005.CrossRefGoogle Scholar
Pishro-Nik, H. 2016. Consultation of introduction to probability, statistics, and random processes. https://www.probabilitycourse.com/, special case about memoryless random processes at: https://www.probabilitycourse.com/chapter4/4_2_2_exponential.php, August 2016.Google Scholar
Sanjurjo-Sanchez, J. 2016. An overview of the use of absolute dating techniques in ancient construction materials. Geosciences 6(22). doi:10.3390/geosciences6020022.CrossRefGoogle Scholar
Sanjurjo-Sanchez, J, Urbanová, P, Guibert, P, Gueli, AM, Pasquale, S, Stella, G, Panzeri, L, Martini, M, Sibilia, E. Forthcoming. Luminescence dating of mortar aggregates in historical buildings: latest improvements and possibilities. To be published in Bulletin of Engineering Geology and the Environment.Google Scholar
Stella, G, Fontana, D, Gueli, A, Troja, S. 2013. Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. Geochronometria 40:153164. doi:10.2478/s13386-013-0107-8.CrossRefGoogle Scholar
Stella, G, Almeida, L, Basílio, L, Pasquale, S, Dinis, J, Almeida, M, Gueli, AM. 2018. Historical building dating: A multidisciplinary study of the Convento de São Francisco (Coimbra, Portugal). Geochronometria 45: 119129. doi:10.1515/geochr-2015-0089.CrossRefGoogle Scholar
Thomsen, KJ, Murray, AS, Bøtter-Jensen, L. 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements 39:4761.10.1016/j.radmeas.2004.01.039CrossRefGoogle Scholar
Thomsen, KJ, Murray, AS, Bøtter-Jensen, L, Kinahan, J. 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements 42/3: 370379.10.1016/j.radmeas.2007.01.041CrossRefGoogle Scholar
Urbanová, P. 2015. Recherches sur la datation directe de la construction des édifices : Exploration des potentialités de la datation des mortiers archéologiques par luminescence optiquement stimulée (OSL) [PhD in Physics of Archaeomaterials]. University Bordeaux Montaigne. 284 p.Google Scholar
Urbanová, P, Hourcade, D, Ney, C, Guibert, P. 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheater “Palais-Gallien” in Bordeaux, Radiation Measurements 72:100110.CrossRefGoogle Scholar
Urbanová, P, Delaval, E, Lanos, P, Guibert, P, Dufresne, P, Ney, C, Thernot, R, Mellinand, P. 2016. Multi-method dating comparison of Grimaldi castle foundations in Antibes, France. Archéosciences 40:1733.10.4000/archeosciences.4702CrossRefGoogle Scholar
Urbanová, P, Guibert, P. 2017. Methodological study on single grain OSL dating of mortars: comparison of five reference archaeological sites. Geochronometria 44: 7779.10.1515/geochr-2015-0050CrossRefGoogle Scholar
Urbanová, P, Michel, A, Cantin, N, Guibert, P, Lanos, P, Dufresne, P, Garnier, L. 2018. A novel interdisciplinary approach for building archaeology: The integration of mortar “single grain” luminescence dating into archaeological research, the example of Saint Seurin Basilica, Bordeaux. Journal of Archaeological Science: Reports 20:307323.Google Scholar
Urbanová, P, Boaretto, E, Artioli, G. 2020. The state-of-the-art of dating techniques applied to ancient mortars and binders: a review. Radiocarbon 62. This issue.10.1017/RDC.2020.43CrossRefGoogle Scholar
Zacharias, N, Mauz, BT, Michael, C. 2002. Luminescence quartz dating of lime mortars. A first research approach. Radiat Prot Dosimetry 101:379382.10.1093/oxfordjournals.rpd.a006006CrossRefGoogle ScholarPubMed