Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:56:08.441Z Has data issue: false hasContentIssue false

Natural Radiocarbon Measurements in Brazilian Soils Developed on Basic Rocks

Published online by Cambridge University Press:  18 July 2016

L. C. R. Pessenda
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
E. P. E. Valencia
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
P. B. Camargo
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
E. C. C. Telles
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
L. A. Martinelli
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
C. C. Cerri
Affiliation:
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
Ramon Aravena
Affiliation:
Earth Science Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Kazimierz Rozanski
Affiliation:
Isotope Hydrology Section, International Atomic Energy Agency, Wagramerstr. 5, P. O. Box 100, A-1400 Vienna, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents 14C, 13C and chemical data of soil organic matter (SOM) in three soil profiles under native forests from Brazil: Londrina (southern), Piracicaba (southeastern) and Altamira (northern). The main objective is to use carbon isotopes in tropical and subtropical soils of Brazil to provide information about vegetation changes that occurred in relation to climate changes during the Holocene. 14C data from SOM indicate that the organic matter in the soils studied is of at least Holocene age. 13C data indicate that C4 plants probably provided the dominant vegetation in Londrina and Piracicaba during the early and mid-Holocene and that C3 plants provided the dominant vegetation in the Altamira region during the Holocene.

Type
14C and Soil Dynamics: Special Section
Copyright
Copyright © The American Journal of Science 

References

Absy, M. L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., Soubies, F., Suguio, K., Turcq, B. and van der Hammen, T. 1991 Mise en évidence de quatre phases d'ouverture de la forět dense dans le sud-est de l'Amazonie au cours des 60000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus de l'Académie des Sciences de Paris. 2nd series, 312: 673678.Google Scholar
Anderson, D. W. and Paul, E. A. 1984 Organo-mineral complexes and their study by radiocarbon dating. Journal of the American Soil Science Society 48: 298301.Google Scholar
Balesdent, J. 1987 The turnover of soil organic fractions estimated by radiocarbon dating. The Science of the Total Environment 62: 405408.CrossRefGoogle Scholar
Campbell, C. A., Paul, E. A., Rennie, D. A. and MacCallum, K. J. 1967 Applicability of the carbon dating method of analysis to soil humus studies. Soil Science 104(3): 217224.Google Scholar
Cerri, C. C. (ms.) 1986 Dinâmica da matéria orgânica do solo no agrossistema cana-de-açucar. Livre Docencia thesis, University of São Paulo.Google Scholar
Dabin, B. 1971 Etude d'une méthode d'extraction de la matière humique du sol. Science du Sol 1: 4763.Google Scholar
Desjardins, T., Volkoff, B., Andreux, F. and Cerri, C. 1991 Distribution du carbone total et de l'isotope 13C dans le sols ferrallitiques du Brésil. Science du Sol 29: 175187.Google Scholar
Goh, K. M. and Molloy, B. P. J. 1978 Radiocarbon dating of paleosols using organic matter components. The Journal of Soil Science 29(4): 567573.Google Scholar
Ledru, M. P. 1993 Late Quaternary environmental and climatic changes in Central Brazil. Quaternary Research 39: 9098.Google Scholar
Martel, Y. A. and Paul, E. A. 1974 The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proceedings 38: 501506.Google Scholar
Martinelli, L. A., Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Cerri, C. C., Victória, R. L., Aravena, R., Richey, J. E. and Trumbore, S. 1996 Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia 106: 376381.Google Scholar
Nowaczyk, B. and Pazdur, M. F. 1990 Problems concerning the 14C dating of fossil dune soils. Quaestiones Geographicae 11/12: 135151.Google Scholar
O'Brien, B. J. 1984 Soil organic fluxes and turnover rates estimated from radiocarbon enrichment. Soil Biology and Biochemistry 16: 115120.Google Scholar
Pessenda, L. C. R and de Camargo, P. B. 1991 A new radiocarbon dating laboratory in Brazil (abstract). Radiocarbon 33(2): 230.Google Scholar
Pessenda, L. C. R., Valencia, E. P. E., Aravena, R., Telles, E. C. C. and Boulet, R., in press, Paleoclimate studies in Brazil using carbon isotopes in soils. In Wasserman, J. C. F. A., ed., Environmental Geochemistry of Tropical Countries. Niterói, Rio de Janeiro, Federal Fluminense University Press.Google Scholar
Rocha, G. C. (ms.) 1990 Características da Dinâmica de Coberturas Pedológicas Sobre Rochas Básicas nas Regiões Norte e Sul do Brasil. Ph.D. dissertation, University of São Paulo, Brazil.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar