Skip to main content
×
×
Home

On the Relationship Between Radiocarbon Dates and True Sample Ages

  • Minze Stuiver (a1) and Hans E. Suess (a2)
Extract

The result of a radiocarbon determination is commonly expressed as an age given in radiocarbon years. An error is usually assigned to each value as a measure of the statistical uncertainty of the measurement. Date lists published in this journal use a standard form of reporting dates and their errors (see Editorial Statements in Radiocarbon, v. 3 and v. 4). The conversion of a radiocarbon age, given in radiocarbon years B.P. (i.e., radiocarbon years elapsed since the origin of the sample) to a true calendar year makes necessary certain assumptions with respect to: (1) the half-life of C14, (2) the production rate of C14 by cosmic rays, (3) the size of reservoirs into which C14 is distributed and the exchange rate of this distribution. Libby (1955, p. 10) has shown that as an approximation one may assume that reservoir size and production and distribution rates, and therefore the C14 activity in atmospheric CO2 have been constant. However, the more accurate measurements of recent years have shown that at least one of these quantities must have varied with time. This means that a more complicated relationship exists between radiocarbon age and exact calendar age of a sample than had been assumed by Libby. This relationship cannot be determined theoretically, but can be derived empirically by determination of the radiocarbon contents of samples of known age. The following summarizes our present knowledge regarding differences between radiocarbon ages and true ages and the present status of the empirical calibration of the radiocarbon time scale.

Copyright
References
Hide All
Bien, G., Rakestraw, N. W., and Suess, H. E., 1963, Radiocarbon dating of the deep water of the Pacific and Indian Ocean: Radioactive Dating, Athens. Greece. Symp. 159–173, IAEA, Vienna, Proc.; Bull. Inst. Ocean., Monaco, v. 61.
Damon, P. E., Long, A., and Grey, D. C., 1966, Fluctuation of atmospheric carbon-14 during the last six millenia: Jour. Geophys. Research, v. 71, p. 10551064.
De Vries, Hl., 1958, Variations in concentration of radiocarbon with time and location on earth: Koninkl. Ned. Akad. Wetensch. Prodc. B61, p. 94102.
Elsasser, W. E., Ney, P., and Winckler, J. R., 1956, Cosmic-ray intensity and geomagnetism: Nature, v. 178, p. 12261227.
Hughes, E. E., and Mann, W. B., 1964, The half-life of carbon-14: comments on mass-spectroscopic method: Internat. Jour. Appl. Rad. Iso., v. 15, p. 97100.
Karlen, I., Olsson, I. U., Kallberg, P., and Kilicci, S., 1964, Absolute determination of the activity of two C14 dating standards: Arkiv för Geofysik, v. 4, p. 465471.
Keeling, C. D., 1958, The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas: Geochim. et Cosmochim. Acta, v. 13, p. 322334.
Keeling, C. D., 1961, The concentration and isotopic abundances of carbon dioxide in rural and marine air: Geochim et Cosmochim. Acta, v. 24, p. 277298.
Kigoshi, K. and Hasegawa, H., 1965, Secular variations of atmospheric radiocarbon concentration and its dependence on geomagnetism: Jour. Geophys. Research, v. 71., p. 10651072.
Libby, W. F., 1955, Radiocarbon Dating: Chicago, University of Chicago Press.
Libby, W. F., 1963, Accuracy of radiocarbon dates: Science, v. 140, p. 278.
Lingenfelter, R. E., 1963, Production of carbon-14 by cosmic-ray neutrons: Revs. Geophysics, v. 1, p. 1.
Mann, W. B., Marlow, W. F., and Hughes, E. E., 1961, The half-life of carbon-14: Jour. Appl. Rad. Iso., v. 11, p. 5767.
Olsson, I. U., Karlén, I., Turnbull, A. H., and Prosser, N. J. D., 1962, A determination of the half-life of C14 with a proportional counter: Arkiv for Fysik, v. 22, p. 237255.
Olsson, I. U., Karlén, I., 1963, The half-life of C14 and the problems which are encountered on absolute measurements on beta-decaying gases: Radioactive Dating, IAEA, Vienna.
Revelle, R., and Suess, H. E., 1957, Carbon dioxide exchange between atmosphere and ocean: Tellus, v. 9, p. 18.
Schove, D. J., 1955, The sunspot cycle 649 B.C. to 2000 A.D.: Jour. Geophys. Res., v. 60, p. 126145.
Stuiver, M., 1961, Variations in radiocarbon concentration and sunspot activity: Jour. Geophys. Res., v. 66, p. 273276.
Stuiver, M., 1965, Carbon-14 content of 18th and 19th century wood: variations correlated with sunspot activity: Science, v. 149, p. 533535.
Suess, H. E., 1954, Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea: Williams Bay Conf. September 1953, Proc., NAS-NSF Pub., p. 52.
Suess, H. E., 1960, Secular changes in the concentration of atmospheric radiocarbon: Conf. on Problems Related to Interplanetary Matter, Highland Park, Illinois, Proc., Nuclear Science Series Report No. 33, NAS-NRC, Washington, D. C., Pub. 845, p. 90.
Suess, H. E., 1965, Secular variations in the cosmic-ray-produced carbon-14 in the atmosphere and their interpretations: Jour. Geophys. Res., v. 70, p. 59375951.
Suess, H. E., 1966, Climatic changes, solar activity, and the cosmic ray production rate of radiocarbon: Meteorological Monographs, in press.
Vogel, J. C., 1965, Carbon-14 content of wood from different locations: Internat. C14 and H3 Conf., Pullman, Washington, Proc.
Wood, L. and Libby, W. F., 1964, Geophysical implications of radiocarbon date discrepancies: Isotopic and Cosmic Chemistry, Craig, Miller and Wasserberg, , eds., North-Holland Pub. Co., Amsterdam, p. 205210.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed