Skip to main content
×
×
Home

Probabilistic 14C Age-Depth Models Aiding the Reconstruction of Holocene Paleoenvironmental Evolution of a Marshland from Southern Hungary

  • Tünde Törőcsik (a1) (a2), Sándor Gulyás (a1), Dávid Molnár (a1), Réka Tapody (a1), Balázs P Sümegi (a1) (a3), Gábor Szilágyi (a1) (a4), Mihály Molnár (a2), Gusztáv Jakab (a3) (a5), Pál Sümegi (a1) (a3) and Zsolt Novák (a6)...
Abstract

This paper presents first chronological results for a Holocene marshland system from the southern part of the Danube-Tisza Interfluve. Radiocarbon (14C) ages were used to build age-depth models relying of probabilistic tools. Four models have been built: a linear one using dates gained via simple calibration, a P_Sequence model, fitting a polynomial function to calibrated dates; a Gamma_Sequence considering priori given and posterior accumulation rates have been constructed. As there was no significant difference between the mean values of individual models all seem suitable for establishing a reliable chronology despite differences in 95% CI ranges. While P_Sequence models underestimated SR, values calculated from the polynomial model were not significantly different from those of the G_Sequence. Based on multiproxy geochemical, sedimentological, paleoecological data the evolution of the system was reconstructed, covering a timespan of ca. 13,000 years starting from 12,000 BC and lasting until 1300 AD. Highest accumulation rates are dated to the Early Middle Ages from the 11th century. Several climate changes could have been identified which are present in other Hungarian and Western European records too, such as the 5b IRD event at ca. 5800 BC, a humid phase around 1600 BC, and a cool humid phase around the 6th century AD.

Copyright
Corresponding author
*Corresponding author. Email: t.torocsik@geo.u-szeged.hu.
References
Hide All
Aaby, B, Digerfeldt, G. 1986. Sampling techniques for lakes and bogs. In: Berglund BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. New York: Wiley. p 181194.
Behre, KE. 1981. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23:225245.
Behre, KE. 1988. The role of man in European vegetation history. In: Huntley B, Webb T III, editors. Handbook of Vegetation Science 7. Dordrecht: Springer Netherlands. p 633672.
Bennett, KD. 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. Holocene 4:337348.
Blaauw, M. 2010. Methods and code for classical age-modelling of radiocarbon sequences. Quat. Geochronol. 5:512518.
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate ageedepth models using an autoregressive gamma process. Bayesian Analysis 3:457474.
Blaau, M, Christen, JA, Benett, KD, Reimer, PJ. 2018. Double the dates and go for Bayes-Impacts of model choice, dating density and quality of chronologies. Quaternary Science Reviews 188:5866.
Blaauw, M, Heegaard, E. 2012. Estimation of age-depth relationships. In: Birks HJB, Juggins S, Lotter A, Smol JP, editors. Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research 5. Dordrecht: Springer. p 379413.
Borhidi, A. 1961. Klimadiagramme und Klimazonale Karte Ungarns. Annales Universitatis Scientiarium Budapestiensis de Lorando Eötvös Nominatae Sectio Biologica 4:2150.
Borhidi, A. 1993. Social behaviour types of the Hungarian flora its naturalness and relative ecological indicator values . Pécs: Janus Pannonius Tudományegyetem. Kiadványa.
Borhidi, A. 2003. Plant Associations of Hungary. Budapest: Akadémiai Kiadó.
Boycott, AE. 1934. The habitats of land Mollusca in Britain. The Journal of Ecology 22:138.
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.
Büntgen, U, Myglan, VS, Lyungquvist, FC, McCormick, M, Cosmo, N, Sigl, M, Jungclaus, J, Wagner, S, Krusic, PJ, Esper, J, Kaplan, JO, de Vaan, MAC, Luterbacher, J, Wacker, L, Tegel, W, Kirdyanov, AV. 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9:231236.
Clark, RL. 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments Pollen et Spores 24:523535.
Dean, WE Jr. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods Journal of Sedimentary Research 44:242248.
Gulyás, S, Sümegi, P. 2011a. Farming or foraging? New environmental data to the life and economic transformation of Late Neolithic tell communities (Tisza Culture) in SE Hungary Journal of Archaeological Science 38:33233339.
Gulyás, S, Sümegi, P. 2011b. Riparian environment in shaping social and economic behavior during the first phase of the evolution of Late Neolithic tell complexes in SE Hungary Journal of Archaeological Science 38:26832695.
Gulyás, S, Sümegi, P. 2012a. The reconstructions of past hydrologies of River Tisza using multivariable archeomalacological analysis. In: Geiger J, Pál-Molnár E, Malvic T, editors. New Horizons in Central European Geomathematics Geostatistics and Geoinformatics Geolitera Publishers. p 113131.
Gulyás, S, Sümegi, P. 2012b. Édesvízi puhatestűek a környezetrégészetben (Freshwater mollusks in environmental archeology) . Geolitera Szeged 169.
Hertelendi, E, Csongor, É, Záborszky, L, Molnár, J, Gál, J, Győrffi, M, Nagy, S. 1989. A counter system for high-precision 14C dating Radiocarbon 31:399406.
Hertelendi, E, Sümegi, P, Szöőr, G. 1992. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 34:833839.
Jones, G. 1992. Weed phytosociology and crop husbandry: identifying a contrast between ancient and modern practice. Review of Palaeobotany and Palynology 73:133143.
Krolopp, E. 1973. Quaternary malacology in Hungary. Földrajzi Közlemények 21:161171.
Krolopp, E. 1983. Biostratigraphic division of Hungarian Pleistocene Formations according to their Mollusc fauna. Acta Geologica Hungarica 26:6982.
Krolopp, E, Sümegi, P. 1995. Palaeoecological reconstruction of the Late Pleistocene Based on Loess Malacofauna in Hungary. GeoJournal 26:213222.
Langlet, D, Alleman, LY, Plisnier, PD, Hughes, H, André, L. 2006. Mn seasonal upwelling recorded Lake Tanganyika mussels. Biogeosciences Discussions 3:14531471.
Langlet, D, Alleman, LY, Plisnier, PD, Hughes, H, André, L. 2007. Mn content records seasonal upwelling in Lake Tanganyika mussels. Biogeosciences 4:195203.
Lazareth, CE, Vander Putten, E, André, L, Dehairs, F. 2003. High resolution trace element profiles in shells of the mangrove bivalve Isognomonephippium: a record of envrionmental spatio-temporal variations. Estuarine Coastal and Shelf Science 57:11031114.
Ložek, V. 1964. Quartärmollusken der Tschechoslowakei. Rozpravy Ústredniho ústavu geologického 31:1374.
Magny, M, de Beaulieu, JL, Drescher-Schneider, R, Vannière, B, WalterSimonnet, AV, Millet, L, Bossuet, G, Peyron, O. 2006. Climatic oscillations in central Italy during the Last Glacial–Holocene transition: the record from Lake Accesa. Journal of Quaternary Science 21:311320.
Magyari, EK, Chapman, JC, Passmore, DG, Allen, JRM, Huntley, JP, Huntley, B. 2010. Holocene persistence of wooded steppe in the Great Hungarian Plain. Journal of Biogeography 37: 915935.
Michczyński, A. 2007. Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon 49:393401.
Miháltz, I. 1953. Az Észak-Alföld keleti részének földtani térképezése. Földtani Intézet jelentése 1951-ről. p 61–8.
Molnár, B. 2015. A Kiskunsági Nemzeti Park földtana és vízföldtana. Szeged: JATEPress.
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, MAG, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen Hungary). Radiocarbon 55:665676.
Moore, PD, Webb, JA, Collinson, ME. 1991. Pollen Analysis. Oxford: Blackwell Scientific.
Munsell, SCC, Notation, AC. 1954. Munsell Color Company. Baltimore (MD).
Pigati, JS, Quade, J, Shanahan, TM, Haynes, CV Jr. 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of spring-discharge deposits in southern Arizona USA. Palaeogeography Palaeoclimatology Palaeoecology 204:3345.
Pigati, JS, Rech, JA, Nekola, JC. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519532.
Pigati, JS, McGeehin, JP, Muhs, DR, Bettis, EA III. 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76:114128.
Pócs, T. 1991. Növényföldrajz. In: Hortobágyi T, Simon T, editor. Növényföldrajz társulástan és ökológia. Budapest: Tankönyvkiadó. p 27166.
Rakonczay, Z. 2001. A Kiskunságtól Bácsalmásig A Kiskunság természeti értékei. Budapest: Mezőgazda Kiadó.
Reille, M. 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Marseille: Laboratoirede Botanique Historique et Palynologie.
Reille, M. 1995. Pollen et Spores d’Europe et d’Afrique du Nord Supplement 1. Marseille: Laboratoirede Botanique Historique et Palynologie.
Reille, M. 1998. Pollen et Spores d’Europe et d’Afrique du Nord Supplement 2. Marseille: Laboratoirede Botanique Historique et Palynologie.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guil- derson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, CSM, Turney, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.
Richardson, LL, Aguilar, C, Nealson, KH. 1988. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnology and Oceanography 33:352363.
Sokal, RR, Rohlf, FJ. 1995. Biometry: The Principles and Practice of Statistics in Biological Research. New York: WH Freeman. 495
Sparks, BW. 1961. The ecological interpretation of Quaternary non-marine Mollusca. Proceedings of the Linnean Society of London 172:7180.
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:614621.
Sümeghy, J. 1944. A Tiszántúl Magyar Tájak földtani leírása. 6 Magyar Királyi Földtani Intézet kiadványa Budapest.
Sümeghy, J. 1953: A Duna-Tisza közének földtani vázlata . Földtani Intézet Évi Jelentése 1950–ről 233264.
Sümeghy, J. 1955. A magyarországi pleisztocén összefoglaló ismertetése . Földtani Intézet Évi Jelentése 1953–ról 395403.
Sümegi, P. 2003. Early Neolithic man and riparian environment in the Carpathian Basin. In: Jerem E, Raczky P, editors. Morgenrot der Kulturen. Budapest: Archaeoligua Press. p 5360.
Sümegi, P. 2007. Palaeogeographical background of the Mesolithic and Early Neolithic settlement in the Carpathian Basin. In: Kozlowski JK, Nowak M, editors. Mesolithic/Neolithic Interactions in the Balkans and in the Middle Danube Basin. Oxford: Archeopress. BAR International Series 1726:4553.
Sümegi, P, Hertelendi, E. 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15,000–70,000 BP years. Radiocarbon 40:855863.
Sümegi, P, Molnár, S. 2007. The Kiritó meander: sediments and the question of flooding. In: Whittle A, editor. The Ecsegfalva Project. Varia Archaeologica Hungarica sorozat XXI kötet MTA Régészeti Intézet, Budapest. p 6782.
Sümegi, P, Törőcsik, T, Jakab, G, Gulyás, S, Pomázi, P, Majkut, P, Páll, GD, Persaits, G, Bodor, E. 2009. The environmental history of Fenékpuszta with a special attention to the climate and precipitation of the last 2000 years. Journal of Environmental Geography 2:514.
Sümegi, P, Persaits, G, Gulyás, S, 2012. Woodland-grassland ecotonal shifts in environmental mosaics: lessons learnt from the environmental history of the Carpathian Basin (central Europe) during the Holocene and the Last Ice Age based on investigation of paleobotanical and mollusk remains, In: Myster RW, editor. Ecotones Between Forest and Grassland. New York: Springer Press. p 1757.
Tóth, K. 1979. Nemzeti Park a Kiskunságban. Budapest: Natura Kiadó
Tóth, K. 1996. 20 éves a Kiskunsági Nemzeti Park 1975–1995. Kecskemét: Kiskunság Nemzeti Park Igazgatóságának kiadványa.
Troels-Smith, J. 1955. Karakterisering af lose jordater (Characterization of unconsolidated sediments). Danmarks Geologiske Undersogelse serIV [10].
Újvári, G, Molnár, M, Novothny, Á, Páll-Gergely, B, Kovács, J, Várhegyi, A. 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quaternary Science Reviews 106:140154.
Wang, T, Surge, D, Walker, KJ. 2013. Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths SW Florida. Quaternary International 308–309:230241.
Walanus, A. 2008. Drawing the optimal depth-age curve on the basis of calibrated radiocarbon dates. Geochronometria 31:15.
Xu, B, Gu, Z, Han, J, Hao, Q, Lu, Y, Wang, L, Wu, N, Peng, Y. 2011. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6:383389.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Törőcsik et al. supplementary material
Törőcsik et al. supplementary material 1

 Unknown (9 KB)
9 KB
UNKNOWN
Supplementary materials

Törőcsik et al. supplementary material
Törőcsik et al. supplementary material 2

 Unknown (39 KB)
39 KB
UNKNOWN
Supplementary materials

Törőcsik et al. supplementary material
Törőcsik et al. supplementary material 3

 Unknown (9 KB)
9 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed