Skip to main content
×
×
Home

Radiocarbon and Stable Carbon Isotopes of Labile and Inert Organic Carbon in the Critical Zone Observatory in Illinois, USA

  • Hong Wang (a1) (a2), Andrew J. Stumpf (a1) and Praveen Kumar (a3)
Abstract

We applied the high temperature pyrolysis-combustion technique to partition the total soil organic carbon (SOC) into labile and inert carbon pools for accelerator mass spectrometry radiocarbon (AMS 14C) dating and stable carbon isotope (δ13C), SOC, and carbonate carbon (CC) content analyses to examine SOC variability at a Critical Zone Observatory site in Illinois, USA. The AMS 14C dates of labile and inert carbon in the top 1.55 m overlap except in the Bt horizon. Below 1.55 m the labile carbon is younger by 8000–14,800 years. The SOC content decreases from 3.61% to 0.12% and CC content increases from 0% to 19.16% at this depth. Results indicate that SOC production exceeds its loss in the weathering zone causing a continuous turnover of both SOC pools. A small amount of modern SOC infiltrates into deeper sediment below 1.55 m, making the labile carbon pool much younger. Their difference of AMS 14C contents, ΔF14C, reveals 3−5% more modern carbon in the labile SOC pools except in the Bt horizon, further quantifying that <3−5% modern carbon with potential pollutants is translocated into the unweathered sediments. The δ13C reveals the sources for SOC cycling dynamics in both carbon pools at this site.

Copyright
Corresponding author
*Corresponding author. Email: hongwang@illinois.edu.
References
Hide All
Angst, G, John, S, Mueller, CW, Kögel-Knabner, I, Rethemeyer, J. 2016. Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. Scientific Reports 6:29478. DOI: 10.1038/srep29478.
Berendse, F, Berg, B, Bosatta, E. 1985. The effect of lignin and nitrogen on the decomposition of litter nutrient-poor ecosystems: a theoretical approach. Canadian Journal of Botany 65(6):11161120. DOI: 10.1139/b87-155.
Brantley, SL, Goldhaber, MB, Ragnarsdottir, VK. 2007. Crossing disciplines and scales to understand the Critical Zone. Elements 3:307314. DOI: 10.2113/gselements.3.5.307.
Davidson, EA, Janssens, IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165173. DOI: 10.1038/nature04514.
Dawson, HJ, Ugolini, FC, Hrutfiord, BF, Zachara, J. 1978. Role of soluble organics in the soil processes of a podzol, Central Cascades, Washington. Soil Science 126(5):290296. DOI: 10.1097/00010694-197811000-00006.
Dreimanis, A. 1988. Tills their genetic terminology and classification. In: Goldthwait RP, Matsch CL, editors. Genetic Classification of Glacigenic Deposits. Rotterdam: A.A. Balkema. p 1784.
Grimley, DA, Anders, AM, Stumpf, AJ. 2016. Quaternary geology of the Upper Sangamon River Basin: Glacial, postglacial, and postsettlement history. In: Lasemi Z, Elrick SD, editors. 1967–2016— Celebrating 50 Years of Geoscience in the Mid-Continent. Illinois State Geological Survey, Guidebook. 43. p 5596. http://hdl.handle.net/2142/91529.
Gu, B, Schmitt, J, Chen, Z, Liang, L, McCarthy, JF. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science and Technology 28(1):3846. DOI: 10.1021/es00050a007.
Heimann, M, Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289292. DOI: 10.1038/nature06591.
Heimsath, AM, DiBiase, RA, Whipple, KX. 2012. Soil production limits and the transition to bedrock-dominated landscapes. Nature Geoscience 5:210214. DOI: 10.1038/ngeo1380.
Hicks Pries, CE, Castanha, C, Porras, RC, Torn, MS. 2017. The whole-soil carbon flux in response to warming. Science 355(6332):14201423. DOI: 10.1126/science.aal1319.
Hoyle, FC, Murphy, DV. 2006. Seasonal changes in microbial function and diversity associated with stubble retention versus burning. Australian Journal of Soil Research 44(4):407423. DOI: 10.1071/SR05183.
Huang, YS, Li, BC, Bryant, C, Bol, R, Eglinton, G. 1999. Radiocarbon dating of aliphatic hydrocarbons: a new approach for dating passive fraction carbon in soil horizons. Soil Science Society of America Journal 63(5):11811187. https://dl.sciencesocieties.org/publications/sssaj/pdfs/63/5/1181.
Jardine, PM, Weber, NL, McCarthy, JF. 1989. Mechanism of dissolved organic carbon adsorption on soil. Soil Science Society of America Journal 53(5):13781385. DOI: 10.2136/sssaj1989.03615995005300050013x.
Kalbitz, K, Popp, P, Geyer, W, Hanschmann, G. 1997. [beta]-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter. Science of The Total Environment 204(1):3748. DOI: 10.1016/S0048-9697(97)00164-2.
Kalbitz, K, Solinger, S, Park, J-H, Michalzik, B, Matzner, E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165(4):277304. DOI: 10.1097/00010694-200004000-00001.
Kumar, P. 2015. Critical Zone Observatory for Intensively Managed Landscapes (IML-CZO). Annual Report 2015. NSF Award #1331906. https://criticalzone.org/images/national/associatedfiles/IML/IMLCZO_Annual_Report_2015.pdf
Lutzow, MV, Kogel-Knabner, I, Ekschmitt, K, Matzner, E, Guggenberger, G, Marschner, B, Flessa, H. 2006. Stabilization of organic matter in temperate soil: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science 57(4):426445. DOI: 10.1111/j.1365-2389.2006.00809.x.
McDowell, WH, Wood, T. 1984. Soil processes control dissolved organic carbon concentration in stream water. Soil Science 137(1):2332.
O’Leary, MH. 1981. Carbon isotope fractionation in plants. Phytochemistry 20(4):553567. DOI: 10.1016/0031-9422(81)85134-5.
Raulund-Rasmussen, K, Borrggaard, OK, Hansen, HCB, Olsson, M. 1998. Effect of natural soil solutes on weathering rates of soil minerals. European Journal of Soil Science 49(3):397406. DOI: 10.1046/j.1365-2389.1998.4930397.x.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon 55(4):18691887. DOI: 10.2458/azu_js_rc.55.16947.
Richter, DB, Billings, SA. 2015. ‘One physical system’: Tansley’s ecosystem as earth’s critical zone. New Phytologist 206(3):900912. DOI: 10.1111/nph.13338.
Rovira, P, Vallyjo, VR. 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107(1–2):109141. DOI: 10.1016/S0016-7061(01)00143-4.
Rumpel, C, Kögel-Knabner, I. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil 338(1):143158. DOI: 10.1007/s11104-010-0391-5.
Sanderman, J, Baisden, WT, Fallon, S. 2016. Redefining the inert organic carbon pool. Soil Biology and Biochemistry 92:149152. DOI: 10.1016/j.soilbio.2015.10.005.
Southon, JR. 2007. Graphite reactor memory—Where is it from and how to minimize it? Nuclear Instruments and Methods in Physics Research B 259(1):288292. DOI: 10.1016/j.nimb.2007.01.251.
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363. DOI: 10.1017/S0033822200003672.
Trumbore, SE. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411. DOI: 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2.
von Blanckenburg, F, Schuessler, JA. 2014. Element cycling in the Critical Zone as viewed by new isotope tools. Procedia Earth and Planetary Science 10:173178. DOI: 10.1016/j.proeps.2014.08.053.
Wang, H, Hackley, KC, Panno, SV, Coleman, DD, Liu, JC-L, Brown, J. 2003. Pyrolysis combustion 14C dating of soil organic matter. Quaternary Research 60(3):348355. DOI: 10.1016/j.yqres.2003.07.004.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 79 *
Loading metrics...

* Views captured on Cambridge Core between 2nd May 2018 - 24th May 2018. This data will be updated every 24 hours.