Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T03:19:30.768Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Shells and Foraminifera from the Skagen Core, Denmark: Evidence of Reworking

Published online by Cambridge University Press:  18 July 2016

Susanne Heier-Nielsen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark AMS 14C Dating Laboratory, Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
Keld Conradsen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
Jan Heinemeier
Affiliation:
AMS 14C Dating Laboratory, Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
K. L. Knudsen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
H. L. Nielsen
Affiliation:
AMS 14C Dating Laboratory, Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
Niels Rud
Affiliation:
AMS 14C Dating Laboratory, Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
Á. E. Sveinbjörnsdóttir
Affiliation:
Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavík, Iceland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on 69 radiocarbon dates of mollusk shells and benthic foraminifera from the upper 132 m of the marine shelf sediments of the Skagen Core (220 m total length). The dated sequence covers the Late Glacial and the Holocene (from 15 ka bp to Recent). Sedimentation rates range from 1 to 70 m ka−1. The macrofossil shell dates follow a smooth curve constituting an age model for dating the sediments. The foraminiferal dates fall into two groups: those that agree exactly with the mollusk shells and those that deviate substantially, always being older than the shells by as much as 5 ka. One mixed foraminiferal sample consisted of members from both groups, and as a result, the age deviation of the sample turned out to be some weighted average. The data indicate that the age deviations are due to admixtures of reworked older foraminifera.

Type
I. 14C in the Reconstruction of Past Environments
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Andersen, B. G. 1968 Glacial geology of Western Troms, North Norway. Norges Geologiske Unders⊘kelse 256: 1160.Google Scholar
Andersen, G. J., Heinemeier, J., Nielsen, H. L., Rud, N., Thomsen, M. S., Johnsen, S., Sveinbjörnsdóttir, Á. and Hjartarson, A. 1989 AMS 14C dating on the Fossvogur sediments, Iceland. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 592600.CrossRefGoogle Scholar
Andrée, M., Beer, J., Oeschger, H., Broecker, W., Mix, A., Ragano, N., O'Hara, P., Bonani, G., Hofmann, H. J., Morenzoni, E., Nessi, M., Suter, M. and Wölfli, W. 1984 14C measurements on foraminifera of deep sea core V28–238 and their preliminary interpretation. Nuclear Instruments and Methods in Physics Research B5: 340345.CrossRefGoogle Scholar
Bard, E., Fairbanks, R., Arnold, M., Maurice, P., Duprat, J., Moyes, J. and Duplessy, J.-C. 1989 Sea-level estimates during the last deglaciation based on δ18O and accelerator mass spectrometry 14C ages measured in Globigerina bulloides. Quaternary Research 31: 381391.CrossRefGoogle Scholar
Broecker, W. S., Andrée, M., Bonani, G., Wölfli, W., Klas, M., Mix, A. and Oeschger, H. 1988 Comparison between radiocarbon ages obtained on coexisting planktonic foraminifera. Paleoceanography 3(6): 647658.CrossRefGoogle Scholar
Broecker, W. S., Mix, A., Andrée, M. and Oeschger, H. 1984 Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: Potential for reconstructing ocean ventilation times over the past 20,000 years. Nuclear Instruments and Methods in Physics Research B5: 331339.CrossRefGoogle Scholar
Broecker, W. S., Trumbore, S., Bonani, G., Wölfli, W. and Klas, M. 1989 Anomalous AMS radiocarbon ages for foraminifera from high-deposition-rate ocean sediments. Radiocarbon 31(2): 157162.CrossRefGoogle Scholar
Conradsen, K. and Heier-Nielsen, S. 1995 Holocene paleoceanography and paleoenvironments of the Skagerrak-Kattegat, Scandinavia. Paleoceanography 10 (4): 801813.CrossRefGoogle Scholar
Fairbanks, R. G. 1989 A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637642.CrossRefGoogle Scholar
Feyling-Hanssen, R. W., J⊘rgensen, J. A., Knudsen, K. L. and Lykke-Andersen, A.-L. 1971 Late Quaternary foraminifera from Vendsyssel, Denmark and Sandnes, Norway. Bulletin of the Geological Society of Denmark 21: 67317.Google Scholar
Jones, G. A., Jull, A. J. T., Linick, T. W. and Donahue, D. J. 1989 Radiocarbon dating of deep-sea sediments: A comparison of accelerator mass spectrometer and beta-decay methods. Radiocarbon 31(2): 105116.CrossRefGoogle Scholar
Knudsen, K. L. 1994 The marine Quaternary in Denmark: A review of new evidence from glacial-interglacial studies. Bulletin of the Geological Society of Denmark 41: 203218.CrossRefGoogle Scholar
Kristensen, P., Heier-Nielsen, S. and Hylleberg, J. 1995 Late-Holocene salinity fluctuations in Bjoernsholm Bay, Limfjorden, Denmark, as deduced from micro-and macrofossil analysis. The Holocene 5(3): 313322.CrossRefGoogle Scholar
Krog, H., Tauber, H. 1974 C-14 chronology of late- and postglacial marine deposits in North Jutland. Geological Survey of Denmark, Yearbook 1973 : 93105.Google Scholar
Nielsen, S. H. 1992 Foraminiferanalyse, 14C-dateringer og stabil isotop analyse i kerne 95, Limfjorden. Dansk geoklogisk Forening, Årsskrift for 1990–1991 : 3945.Google Scholar
Nielsen, S. H., Heinemeier, J. and Rud, N. 1994 High marine reservoir ages for Danish fiords compared to open waters. (Abstract) 15th International 14C Conference, Glasgow, Scotland, 15–19 August.Google Scholar
Oehmig, R. 1993 Entrainment of planktonic foraminifera: Effect of bulk density. Sedimentology 40: 869877.CrossRefGoogle Scholar
Olsson, I. and Blake, W. 1961 Problems of radiocarbon dating of raised beaches, based on experience in Spitsbergen. Norsk Geografisk Tidsskrift 18: 4764.CrossRefGoogle Scholar
Peng, T.-H. and Broecker, W. 1984 The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. Nuclear Instruments and Methods in Physics Research B5: 346352.CrossRefGoogle Scholar
Seidenkrantz, M.-S. and Knudsen, K. L. 1993 Middle Weichselian to Holocene palaeoecology in the eastern Kattegat, Scandinavia: Foraminifera, stable isotopes and 14C measurements. Boreas 22: 299310.CrossRefGoogle Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Vogel, J. S., Southon, J. R., Nelson, D. E. and Brown, T. A. 1984 Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B5: 289293.CrossRefGoogle Scholar