Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.419 Render date: 2022-08-16T13:25:08.185Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity

Published online by Cambridge University Press:  18 July 2016

Antje H L Voelker*
Affiliation:
Leibniz–Labor für Altersbestimmung und Isotopenforschung, Universität Kiel, Max-Eyth Strasse 11-13, D-24118 Kiel, Germany
Pieter M Grootes
Affiliation:
Leibniz–Labor für Altersbestimmung und Isotopenforschung, Universität Kiel, Max-Eyth Strasse 11-13, D-24118 Kiel, Germany
Marie-Josee Nadeau
Affiliation:
Leibniz–Labor für Altersbestimmung und Isotopenforschung, Universität Kiel, Max-Eyth Strasse 11-13, D-24118 Kiel, Germany
Michael Sarnthein
Affiliation:
Institut für Geowissenschaften, Universität Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By correlating the climate records and radiocarbon ages of the planktonic foraminifera N. pachyderma(s) of deep-sea core PS2644 from the Iceland Sea with the annual-layer chronology of the GISP2 ice core, we obtained 80 marine 14C calibration points for the interval 11.4-53.3 ka cal BP. Between 27 and 54 ka cal BP the continuous record of 14C/cal age differences reveals three intervals of highly increased 14C concentrations coincident with low values of paleomagnetic field intensity, two of which are attributed to the geomagnetic Mono Lake and Laschamp excursions (33.5-34.5 ka cal BP with maximum 550 marine δ14C, and 40.3-41.7 ka cal BP with maximum 1215 marine δ14C, respectively). A third maximum (marine δ14C: 755) is observed around 38 ka cal BP and attributed to the geomagnetic intensity minimum following the Laschamp excursion. During all three events the A14C values increase rapidly with maximum values occurring at the end of the respective geomagnetic intensity minimum. During the Mono Lake Event, however, our A14C values seem to underestimate the atmospheric level, if compared to the 36Cl flux measured in the GRIP ice core (Wagner et al. 2000) and other records. As this excursion coincides with a meltwater event in core PS2644, the underestimation is probably caused by an increased planktonic reservoir age. The same effect also occurs from 38.5 to 40 ka cal BP when the meltwater lid of Heinrich Event 4 affected the planktonic record.

Type
Comparison Records
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Arikawa, R. 1983. Distribution and taxonomy of globigerina pachyderma (Ehrenberg) off the Sanriku coast, northeast Honshu, Japan. Scientific Reports Tohoku University, 2nd series (Geology) 53(2):103–57.Google Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Melieres, M-A, Sonstegaard, E, Duplessy, J-C. 1994 The. North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126:275–87.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. INTCAL98: calibration issue. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Baumgartner, S, Beer, J, Suter, M, Dittrich-Hannen, B, Synal, H-A, Kubik, PW, Hammer, C, Johnsen, S. 1997. Chlorine 36 fallout in the Summit Greenland Ice Core Project ice core. Journal of Geophysical Research 102(C12):26,65962.CrossRefGoogle Scholar
Baumgartner, S, Beer, J, Masarik, J, Wagner, G, Meynadier, L, Synal, H-A. 1998. Geomagnetic modulation of the 36Cl flux in the GRIP ice core, Greenland. Science 279:1330–32.CrossRefGoogle ScholarPubMed
Beck, WJ, Richards, DA, Donahue, DJ, Smart, PL, Edwards, RL, Hererra-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. Extremely large variations of atmospheric 14C concentration during marine isotope stage 3. Science. Submitted.Google Scholar
Bender, M, Sowers, T, Dickson, M-L, Orchardo, J, Grootes, P, Mayewski, PA, Meese, DA. 1994. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372:663–66.CrossRefGoogle Scholar
Bischoff, JL, Kenneth, L, Garcia, JF, Carbonell, E, Vaquero, M, Stafford, TW Jr, Jull, AJT. 1994. Dating of the basal Aurignacian sandwich at Abric Romani (Catalunya, Spain) by radiocarbon and Uranium-Series. Journal of Archaeological Science 21:541–51.CrossRefGoogle Scholar
Bond, G, Broecker, WS, Johnsen, S, McManus, J, Labeyrie, L, Jouzel, J, Bonani, G. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–47.CrossRefGoogle Scholar
Channell, JET. 1999. Geomagnetic paleointensity and directional secular variation at Ocen Drilling Program (ODP) site 984 (Bjorn Drift) since 500 ka: comparisons with ODP site 983 (Gardar Drift). Journal of Geophysical Research 104(B10):22,937951.CrossRefGoogle Scholar
Channell, JET, Hodell, DA, Lehman, B. 1997. Relative geomagnetic paleointensity and δ18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth and Planetary Science Letters 153:103–18.CrossRefGoogle Scholar
Channell, JET, Stoner, JS, Hodell, DA, Charles, CD. 2000. Geomagnetic paleointensity for the last 100 kyr from the sub-antarctic South Atlantic: a tool for inter-hemispheric correlation. Earth and Planetary Science Letters 175:145–60.CrossRefGoogle Scholar
Chappell, J, Omura, A, Esat, T, McCulloch, M, Pandolfi, J, Ota, Y, Pillans, B. 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141:227–36.CrossRefGoogle Scholar
Charles, CD, Rind, D, Jouzel, J, Koster, RD, Fairbanks, RG. 1994. Glacial-interglacial changes in moisture sources for Greenland: influences on the ice core record of climate. Science 263:508–11.CrossRefGoogle ScholarPubMed
Chauvin, A, Duncan, RA, Bonhommet, N, Levi, S. 1989. Paleointensity of the earth's magnetic field and K-Ar dating of the Louchadiere volcanic flow (central France): new evidence for the Laschamp excursion. Geophyscial Research Letters 16(10):1189–92.Google Scholar
Cortijo, E, Labeyrie, L, Vidal, L, Vautravers, M, Chapman, M, Duplessy, J-C, Elliot, M, Arnold, M, Turon, J-L, Auffret, G. 1997. Changes in sea surface hydrology associated with Heinrich Event 4 in the North Atlanticm-Ocean between 40°N and 60°N. Earth and Planetary Science Letters 146:2945.CrossRefGoogle Scholar
Domack, EW, Jull, AJT, Anderson, JB, Linick, TW, Williams, CR. 1989. Application of tandem accelerator mass-spectrometer dating to late Pleistocene-Holocene sediments of the East Antarctic continental shelf. Quaternary Research 31:277–87.CrossRefGoogle Scholar
Dokken, TM, Jansen, E. 1999. Rapid changes in the mechanism of ocean convection during the last glacial cycle. Nature 401:458–61.CrossRefGoogle Scholar
Duplessy, JC, Labeyrie, L, Blanc, PL. 1988. Norwegian Sea deepwater variations over the last climatic cycle: paleo-oceanographical implications. In: Wanner, H, Siegenthaler, X, editors. Long and short term variability of climate. Heidelberg: Springer Verlag. p 83116.CrossRefGoogle Scholar
Geyh, MA, Schlüchter, C. 1998. Calibration of the 14C time scale beyond 22,000 BP Radiocarbon 40(1):475–82.Google Scholar
Gonzalez, S, Sherwood, G, Böhnel, H, Schnepp, E. 1997. Palaeosecular variation in Central Mexico over the last 30,000 years: the record from lavas. Geophysical Journal International 130:201–19.CrossRefGoogle Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Rozanski, K, Tisnerat, N, Walanus, A, Wicik, B, Wieckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377:414–17.CrossRefGoogle Scholar
Grönvold, K, Oskarsson, N, Johnsen, S, Clausen, HB, Hammer, CU, Bond, G, Bard, E. 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth and Planetary Science Letters 135:149–55.CrossRefGoogle Scholar
Grootes, PM, Stuiver, M, White, JWC, Johnsen, S, Jouzel, J. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–4.CrossRefGoogle Scholar
Grootes, PM, Stuiver, M. 1997. 18O/16O variability in Greenland snow and ice with 10-3 to 105 year time resolution. Journal of Geophysical Research 102(C12):26,45570.CrossRefGoogle Scholar
Haflidason, H, Sejrup, HP, Klitgaard-Kristensen, D, Johnsen, S. 1995. Coupled response of the Late Glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea. Geology 23(12):1059–62.2.3.CO;2>CrossRefGoogle Scholar
Hammer, CU, Andersen, KK, Clausen, HB, Dahl-Jensen, D, Schøtt Hvidberg, C, Iversen, P. 1997. The stratigraphic dating of the GRIP Ice Core. Special report. University of Copenhagen, Denmark: Geophysical Department, Niels Bohr Institute for Astronomic Physics and Geophysics. 14 p.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Southon, J, Kashgarian, M, Peterson, LC. 1997. Radiocarbon change in the Cariaco Basin. Presented. AGU 1997 Fall Meeting, San Francisco, California, 8–12 December. EOS Transactions. Fall Meeting Supplement, F338. AGU 78(46).Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, L, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.CrossRefGoogle Scholar
Indermühle, A, Monnin, E, Stauffer, B, Stocker, TF, Wahlen, M. 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters 27(5):735–8.CrossRefGoogle Scholar
Johnsen, SJ, Dansgaard, W, White, JWC. 1989. The origin of Arctic precipitation under present and glacial conditions. Tellus 41B:452–68.Google Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Fuhrer, K, Gundestrup, N, Hammer, CU, Iversen, P, Jouzel, J, Stauffer, B, Steffensen, JP. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–3.CrossRefGoogle Scholar
Jouzel, J, Alley, RB, Cuffey, KM, Dansgaard, W, Grootes, P, Hoffmann, G, Johnsen, SJ, Koster, RD, Peel, D, Shuman, CA, Stievenar, M, Stuiver, M, White, J. 1997. Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research: 102(C12):26,47188.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998a. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998b. A 40,000-yr varved chronology from Lake Suigetsu, Japan: extension of the radiocarbon calibration curve. Radiocarbon 40(1):505–16.Google Scholar
Kohfeld, KE, Fairbanks, RG, Smith, SL, Walsh, ID. 1996. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracer in polar oceans: evidence from Northeast Water Polynya plankton twos, sediment traps, and surface sediments. Paleoceanography 11(6):679–99.CrossRefGoogle Scholar
Laj, C, Kissel, C, Mazaud, A, Channell, JET, Beer, J. 2000. North Atlantic palaeointensity stack since 75 ka (NA-PIS-75) and the duration of the Laschamp Event. Philosophical Transactions of the Royal Society London A358:1009–25.Google Scholar
Lein, D. 1998. Die Radiolarien-Gemeinschaften von 52 ka bis 12 ka vor heute im Sedimentkern PS2644 aus dernördlichen Dänemarkstraße. : 51 p.Google Scholar
Levi, S, Audunsson, H, Duncan, RA, Kristjansson, L, Gillot, P-Y, Jakobsson, SP 1990. Late Pleistocene geomagntic excursion in Icelandic lavas: confirmation of the Laschamp excursion. Earth and Planetary Science Letters 96:443–57.CrossRefGoogle Scholar
Marco, S, Ron, H, McWilliam, MO, Stein, M. 1998. High-resolution record of geomagneticsecular variation from Late Pleistocene Lake Lisan sediments (paleo Dead Sea). Earth and Planetary Science Letters 161:145–60.CrossRefGoogle Scholar
Meese, DA, Alley, RB, Gow, AJ, Grootes, PM, Mayewski, PA, Ram, M, Taylor, KC, Waddington, ED, Zielinski, GA. 1994. Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 94-1. Hanover, New Hampshire: Cold Regions Research and Engineering Laboratory. 66 p.Google Scholar
Meese, DA, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The GISP2 depth-age scale: methods and results. Journal of Geophysical Research 102(C12):26,41124.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Voelker, A, Bruhn, F, Duhr, A, Oriwall, A. Carbonate 14C background: does it have multiple personalities? Radiocarbon. Submitted.Google Scholar
Neftel, A, Oeschger, H, Staffelbach, T, Stauffer, B. 1988. CO2 record in the Byrd ice core 50,000-5,000 years BP. Nature 331:609–11.CrossRefGoogle Scholar
Rasmussen, TL, Thomsen, E, Labeyrie, L, van Weering, TCE. 1996. Circulation changes in the Faeroe-Shetland Channel correlating with cold events during the last glacial period (58-10 ka). Geology 24(10):937–40.2.3.CO;2>CrossRefGoogle Scholar
Richards, DA, Beck, WJ, Donahue, DJ, Edwards, RL, Silverman, BW, Smart, PL. Atmospheric radiocarbon before 11 ka using submerged speleothems from the Bahamas. Science. Submitted.Google Scholar
Roberts, AP, Lehman, B, Weeks, RJ, Verosub, KL, Laj, C. 1997. Relative paleointensity of the geomagentic field over the last 200,000 years from ODP sites 883 and 884, North Pacific Ocean. Earth and Planetary Science Letters 152:1123.CrossRefGoogle Scholar
Roperch, P, Bonhommet, N, Levi, S. 1988. Paleointensity of the earth's magnetic field during the Laschamp excursion and its geomagentic implications. Earth and Planetary Science Letters 88:209–19.CrossRefGoogle Scholar
Sachs, JP, Lehman, SJ. 1999. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286:756759.CrossRefGoogle ScholarPubMed
Sarnthein, M, Jansen, E, Weinelt, M, Arnold, M, Duplessy, J-C, Erlenkeuser, H, Flatoy, A, Johannessen, G, Johannessen, T, Jung, S, Koc, N, Labeyrie, L, Maslin, M, Pflaumann, U, Schulz, H. 1995. Variations in Atlantic surface ocean paleoceanography, 50-80°N: a time-slice record of the last 30,000 years. Paleoceanography 10(6):1063–94.CrossRefGoogle Scholar
Sarnthein, M, Stattegger, K, Dreger, D, Erlen Keuser, H, Grootsep, , Haupt, B, Jung, S, Kieter, T, Kuhnt, W, Pflaumann, U, Schäfer-Neth, C, Schulz, M, Seidor, D, Simstich, J, van Kreveld-Alfane, S, Vogelsang, E, Voelker, A, Wenelt, M. Fundamental modes and abrupt changes in North Atlantic circulation and cliamte over the last 60 ky–numerical modelling and reconstruction. Forthcoming. In: Schäfer, P, Ritzrau, W, Schlüter, M, Thiede, J, editors. The Northern North Atlantic: a changing environment. Springer Verlag, Heidelberg.Google Scholar
Schleicher, M, Grootes, PM, Nadeau, M-J, Schoon, A. 1998. The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon 40(1):8594.CrossRefGoogle Scholar
Schmitz, WJ, McCartney, MS. 1993. On the North Atlantic circulation. Reviews of Geophysics 31(1):2949.CrossRefGoogle Scholar
Schramm, A, Stein, M, Goldstein, SL. 2000. Calibration of the 14C time scale to >40 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175:2740.CrossRefGoogle Scholar
Seidov, D, Sarnthein, M, Stattegger, K, Prien, R, Weinelt, M. 1996. North Atlantic ocean circulation during the last glacial maximum and subsequent meltwater event: a numerical model. Journal of Geophysical Research 10(C7):16, 305332.Google Scholar
Simstich, J. 1999. Die ozeanische Deckschicht des Europäischen Nordmeeres im Abbild stabiler Isotope unter-schiedlicher Planktonforaminiferen. DSc dissertation, University of Kiel, Germany: Berichte-Reports Institut für Geowissenschaften, Univerität Kiel. Nr 2. 96 p.Google Scholar
Sowers, T, Bender, M, Labeyrie, L, Martinson, D, Jouzel, J, Raynaud, D, Pichon, JJ, Korotkevich, A. 1993. A 135,000-year Vostock-Specmap common temporal framework. Paleoceanography 8:737–66.CrossRefGoogle Scholar
Stocker, TF, Wright, DG. 1996. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11(6):773–95.CrossRefGoogle Scholar
Stocker, TF, Wright, DG. 1998. Rapid changes in ocean circulation and atmospheric radiocarbon. Radiocarbon 40(1):359–66.Google Scholar
Stoner, JS, Channell, JET, Hillaire-Marcel, C. 1995. Late Pleistocene relative geomagnetic paleo-intensity from the deep Labrador Sea: regional and global correlaions. Earth and Planetary Science Letters 134:237–52.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 Radiocarbon age calibration, 24,000-0 cal BP INTCAL98: calibration issue. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Stuiver, M, Grootes, PM. 2000. GISP2 oxygen isotope ratios. Quaternary Research 53(3):277–84.CrossRefGoogle Scholar
Trauth, MH, Sarnthein, M, Arnold, M. 1997. Bioturbational mixing depth and carbon flux at the seafloor. Paleoceanography 12:517–26.Google Scholar
Valet, J-P, Tric, E, Herrero-Bervera, E, Meynadier, L, Lock-wood, JP. 1998. Absolute paleointensity from Hawaiian lavas younger than 35 ka. Earth and Planetary Science Letters 161:1932.CrossRefGoogle Scholar
van Kreveld, S, Sarnthein, M, Erlenkeuser, H, Grootes, PM, Jung, S, Nadaeu, M-J, Pflaumann, U, Voelker, A. 2000. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60-18 kyr. Paleoceanography 15(4):425–42.CrossRefGoogle Scholar
Voelker, AHL, Sarnthein, M, Grootes, PM, Erlenkeuser, H, Laj, C, Mazaud, C, Nadeau, M-J, Schleicher, M. 1998. Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka BP. Radiocarbon 40(1):517–34.Google Scholar
Voelker, AHL. 1999. Zur Deutung der Dansgaard-Oeschger Ereignisse in ultra-hochauflösenden Sediment-profilen aus dem Europäischen Nordmeer. DSc dissertation, University of Kiel, Germany: Berichte-Reports, Institut für Geowissenschaften, Univerität Kiel, nr. 9:278p.Google Scholar
Vogel, JC. 1983. 14C variations during the Upper Pleistocene. Radiocarbon 25(2):213–18.CrossRefGoogle Scholar
Vogel, JC, Kronfeld, J. 1997. Calibration of radiocarbon dates for the late Pleistocene using UTh dates on stalagmites. Radiocarbon 39(1):2732.CrossRefGoogle Scholar
Wagner, G, Beer, J, Laj, C, Kissel, C, Masarik, J, Muscheler, R, Synal, H-A. 2000. Chlorine-36 evidence for the Mono Lake Event in the Summit GRIP ice core. Earth and Planetary Science Letters 181:16.CrossRefGoogle Scholar
Yiou, F, Raisbeck, GM, Baumgartner, S, Beer, J, Hammer, C, Johnsen, S, Jouzel, J, Kubik, PW, Lestringuez, J, Stievenard, M, Suter, M, Yiou, P. 1997. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. Journal of Geophysical Research 102(C12):26,78394.CrossRefGoogle Scholar
Zielinski, GA, Mayewski, PA, Meeker, LD, Grönvold, K, Germani, MS, Whitlow, S, Twickler, MS, Taylor, K. 1997. Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores. Journal of Geophysical Research (Oceans) 102(C12):26,62540.CrossRefGoogle Scholar
You have Access
144
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *