Skip to main content
×
×
Home

A Reassessment of the Routine Pretreatment Protocol for Radiocarbon Dating Cremated Bones

  • Christophe Snoeck (a1) (a2), Richard A Staff (a1) and Fiona Brock (a1) (a3)
Abstract

In the late 1990s, it was demonstrated that reliable radiocarbon dates could be obtained directly from cremated bone. Many 14C laboratories have since used a protocol for pretreating cremated (calcined) bones that consists of consecutive treatments with bleach and acetic acid to remove organic matter and extraneous or diagenetic carbonate, respectively. In most instances, the bleach used is sodium hypochlorite, although in recent years the Oxford Radiocarbon Accelerator Unit (ORAU) has used acidified sodium chlorite instead. However, properly calcined (white) bones should not contain any organic material; hence, the bleach treatment is potentially unnecessary. This article describes studies investigating the effectiveness of bleach (and the specific bleach used) during pretreatment of calcined bone, and demonstrates that 14C dates on six cremated bone samples are statistically indistinguishable whether or not the initial bleach step is applied.

Copyright
Corresponding author
*Corresponding author: Email: csnoeck@vub.ac.be.
References
Hide All
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.
Bronk Ramsey, C. 2013. OxCal ver.4.2.4 c14.arch.ox.ac.uk/oxcal/OxCal.html.
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2–3):587599.
Lanting, JN, Brindley, AL. 1998. Dating cremated bone: the dawn of a new era. The Journal of Irish Archaeology IX:17.
Lanting, JN, Aerts-Bijma, A, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249254.
Lebon, M, Zazzo, A, Reiche, I. 2014. Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeography, Palaeoclimatology, Palaeoecology 416:110119.
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, van der Plicht, J, Van Strydonck, M, Bronk Ramsey, C, Grootes, PM, Freeman, SPHT. 2007. A cremated bone intercomparison study. Radiocarbon 49(2):403408.
Olsen, J, Heinemeier, J, Hornstrup, KM, Bennike, P, Thrane, H. 2012. “Old wood” effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40(1):3034.
Praprotnik, M, Janežič, D. 2005. Molecular dynamics integration and molecular vibrational theory. II. Simulation of nonlinear molecules. The Journal of Chemical Physics 122(17):174102.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.
Roche, D, Ségalen, L, Balan, E, Delattre, S. 2010. Preservation assessment of Miocene-Pliocene tooth enamel from Tugen Hills (Kenyan Rift Valley) through FTIR, chemical and stable-isotope analyses. Journal of Archaeological Science 37(7):16901699.
Snoeck, C, Pellegrini, M. 2015. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1 – Impact on structure and chemical composition. Chemical Geology 417:394403.
Snoeck, C, Lee-Thorp, JA, Schutling, RJ. 2014a. From bone to ash: compositional and structural studies of burned bone. Palaeogeography, Palaeoclimatology, Palaeoecology 416:5568.
Snoeck, C, Brock, F, Schulting, RJ. 2014b. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates. Radiocarbon 56(2):591602.
Van Strydonck, M, Boudin, M, Hoefkens, M, De Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula 13:310.
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553568.
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2–3):578586.
Van Strydonck, M, Decq, L, Van den Brande, T, Boudin, M, Ramis, D, Borms, H, De Mulder, G. 2013. The protohistoric ‘quicklime burials’ from the Balearic Islands: cremation or inhumation. International Journal of Osteoarchaeology 25(4):392400.
Yoder, CH, Pasteris, JD, Worcester, KN, Schermerhorn, DV. 2012. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state 2H NMR. Calcified Tissue International 90(1):6067.
Zazzo, A, Balasse, M, Patterson, WP. 2006. The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. Journal of Archaeological Science 33(8):11771187.
Zazzo, A, Saliège, J-F, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855866.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 97 *
Loading metrics...

Abstract views

Total abstract views: 492 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2018. This data will be updated every 24 hours.