Skip to main content Accessibility help
×
Home

Article contents

Requirements for An International Radiocarbon Soils Database

Published online by Cambridge University Press:  18 July 2016

Peter Becker-Heidmann
Affiliation:
Institüt für Bodenkunde, Universität Hamburg, Allende-Platz 2, D-20146 Hamburg, Germany
Rights & Permissions[Opens in a new window]

Extract

Up to now, Global Carbon Cycle Models (GCCM) have only represented the soil and biosphere in a very simplified way. For example, the High Resolution Biosphere Model (HRBM) (Esser 1987; Esser and Lautenschlager 1994) distinguishes five subreservoirs and determines the fluxes between them for selected area of a global grid. The models have not yet been sufficiently tested against global observations. Such testing is difficult because the observed variables are in turn dependent on the behavior of other geological carbon pools, e.g., the atmosphere and ocean.

Type
14C and Soil Dynamics: Special Section
Copyright
Copyright © The American Journal of Science 

References

Cherkinsky, A. E. and Chichagova, O. A. 1991 Types of soil organic matter profiles. In Soil Geography of the World and Soil-forming Factors. Moscow, USSR Academy of Sciences, Institute of Geography: 164–195.Google Scholar
Bonn, H. L. 1979 Estimate of organic carbon in world soils. Soil Science Society of America Journal 40: 468470.CrossRefGoogle Scholar
Buringh, P. 1984 Organic carbon in soils of the world. In Woodwell, G. M., ed., The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing, SCOPE. John Wiley & Sons, Ltd.: 91109.Google Scholar
Driessen, P. M. and Dudal, R. (eds.) 1989 Lecture Notes on the Geography, Formation, Properties and Use of the Major Soils of the World. Agricultural University Wageningen and Katholike Universiteit Leuven.Google Scholar
Esser, G. 1987 Sensitivity of global carbon pools and fluxes to human and potential climate impacts. Tellus 39B: 245260.CrossRefGoogle Scholar
Esser, G. and Lautenschlager, M. 1994 Estimating the change of carbon in the terrestrial biosphere from 18,000 BP to present using a carbon cycle model. Environmental Pollution 83: 4553.CrossRefGoogle ScholarPubMed
Kra, R. 1986 Standardizing procedures for collecting, submitting, recording, and reporting radiocarbon samples. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 765–775.CrossRefGoogle Scholar
Lieth, H. 1978 Vegetation and CO2 changes. In Williams, J., ed., Carbon Dioxide, Climate and Society. Proceedings of an IIASA workshop cosponsored by WMO, UNEP and SCOPE, February 21–24. Oxford, New York, Toronto, Sydney, Paris, Frankfurt, Pergamon Press: 103–109.Google Scholar
Parton, W. J., Ojima, D. S. and Schimel, D. S. 1995 Models to evaluate soil organic matter storage and dynamics. In Carter, M. R. and Stewart, B. A., Structure and Organic Matter Storage in Agricultural Soils. Boca Raton, Lewis Publishers: 421448.Google Scholar
Soil Survey Staff 1994 Keys to soil taxonomy. SMSS Technical Monograph 19. Blacksburg, Virginia.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Walker, A. J. and Kra, R. 1988 Report on the International Radiocarbon Data Base (IRDB) Workshop, archaeology and 14C Conference, Groningen, The Netherlands. Radiocarbon 30(2): 255258.CrossRefGoogle Scholar
Walker, A. J., Otlet, R. L., Housley, R. A. and van der Plicht, J. 1990 Operation of the Harwell UK 14C data base and its expansion through data exchange with other laboratories. Radiocarbon 32(1): 3136.CrossRefGoogle Scholar
Wilcock, J. D., Otlet, R. L., Walker, A. J., Charlesworth, S. A. and Drodge, J. 1986 Establishment of a working data base for the international exchange of 14C data using universal transfer formats. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 781–787.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 77 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-tmbpq Total loading time: 1.117 Render date: 2021-01-23T05:49:59.556Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Requirements for An International Radiocarbon Soils Database
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Requirements for An International Radiocarbon Soils Database
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Requirements for An International Radiocarbon Soils Database
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *